
Programming Paradigms
CT331 Week 7 Lecture 2

Finlay Smith
Finlay.smith@universityofgalway.ie

Example recursive function: Factorial

The factorial of a non-negative integer n,

written n!, is the product of all integers less

than or equal to n. The factorial of 0 is 1

Factorial

1. What is the base case? 0

2. What should the answer be when we are at the base case?

3. How do you reduce to get to this base case ?

4. What other work needs to be done for each function call?

5. (e.g., creating a new list, etc.)?

6. How can these steps be put together?

Factorial

1. What is the base case? 0 or 1?

2. What should the answer be when we are at the base case? The factorial of 0 is 1

3. How do you reduce to get to this base case ?

4. What other work needs to be done for each function call?

5. (e.g., creating a new list, etc.)?

6. How can these steps be put together?

Factorial

(fact 0) => 1

(fact 1) => 1 * (fact 0)

(fact 2) => 2 * 1 * (fact 0)

Factorial

(fact 0) => 1

(fact 1) => 1 * (fact 0)

(fact 2) => 2 * 1 * (fact 0)

This is the same as (fact 1)

Factorial

(fact 0) => 1

(fact 1) => 1

(fact 2) => 2 * 1

(fact 3) => 3 * 2 * 1

This is the same as (fact 2)

(fact 4) => 4 * 3 * 2 * 1

This is the same as (fact 3)

Factorial

(fact 0) => 1

(fact 1) => 1

(fact 2) => 2 * 1

(fact 3) => 3 * 2 * 1

This is the same as (fact 2)

(fact 4) => 4 * 3 * 2 * 1

This is the same as (fact 3)

(fact 3) => 3 * (fact 2)

(fact 4) => 4 * (fact 3)

Factorial

1. What is the base case? 0

2. What should the answer be when we are at the base case? The factorial of 0 is 1

3. How do you reduce to get to this base case ? n * (n-1) * (n-2) * (n-3) ...

4. What other work needs to be done for each function call?

5. (e.g., creating a new list, etc.)?

6. How can these steps be put together?

Factorial

1. What is the base case? 0

2. What should the answer be when we are at the base case? The factorial of 0 is 1

3. How do you reduce to get to this base case ? n * (n-1) * (n-2) * (n-3) ...

4. What other work needs to be done for each function call?

5. Subtract 1 from n, multiply result

6. How can these steps be put together? Simpler example first

Example recursive function: sum

Write a scheme function that takes a number n

and returns the sum of the numbers up to n.

Example (sum 4) will return 10

Recursive sum function

(define (sum num)

(if (> num 1)

(+ num (sum (- num 1)))

1))

Recursive factorial function

(define (factorial num)

(if (> num 1)

(* num (factorial (- num 1)))

1))

Very similar to sum

Example recursive function: all atom?

Write a recursive function all_atoms? which checks if all elements in a list

are symbols returning #t or #f, e.g.,

> (all_atoms? ’(x y z))

#t

> (all_atoms? ’())

#t

> (all_atoms? ’(a (b) c))

#f

Hint:

you will need to make use of the built-in

predicate atom?

Other functions/predicates needed: define

cond null? car cdr not

Example recursive function: all atom?

Base cases:

● (null? lst) stop and output #t

● (car lst) not an atom, stop and output #f

● One element in list and it is a atom, stop and output #t

Reduce:

● if (car lst) is a atom, continue and check (cdr lst).

Work through this problem – we can look at it in tutorial this week

Example recursive function: sequence

Write a (recursive) function sequence which is passed a number num and

creates a list of numbers from 1 to num.

Note: Can write this function only using functions/predicates we have seen:

define

cond

append

list

=

’()

Example recursive function: sequence

Base case: If num is 0?

Reduce: - 1 from num

Work: append num to end of new list

Write the code for this function – again we can look at it in the tutorial

Is it the most efficient solution?

Example recursive function: max

The built-in function max returns the maximum of a set of numbers, e.g.,

(max 3 5 4 19 7) returns 19.

Write your own version of a function to find the maximum of a list of numbers,

e.g., (maxlst ’(3 5 4 19 7)) returns 19

Example recursive function: max

Base case:

one element in list - it’s the maximum

Reduce:

Keep checking pairs of items in list, removing the smaller one, until we have

reduced to a list with one element

Example recursive function: max

Base case:

One element in list?

(null? (cdr lst))

Return that element

(car lst)

Example recursive function: max

Recursive case: Checking pairs of elements

If first element bigger than second one

(> (car lst) (cadr lst))

remove (cadr lst) from list which will be sent to recursive call:

(cons (car lst) (cddr lst))

If second element is bigger, ignore (car lst) for recursive call.

(cdr lst)

Example recursive function: max

(define (maxlst lst)

(cond [(null? lst) (display ’(empty list))]

[(null? (cdr lst)) (car lst)]

[(> (car lst) (cadr lst))

(maxlst (cons (car lst) (cddr lst)))]

[else (maxlst (cdr lst))]))

