
Table of Contents

• ▪ 0.1 News and Reminders

▪ 0.2 Modules for this notebook

• 1 Recall: Graph Diameter

▪ 1.1 Breadth First Search (BFS) again

▪ 1.2 Graph Traversal

• 2 BFS for Distance

• 3 Variants []

▪ 3.1 Spanning Tree

CS4423-Networks: Week 6 (19+20 Feb 2025) [
]

Part 1: Graph Diameter

Niall Madden, School of Mathematical and Statistical Sciences

University of Galway

This Jupyter notebook, and PDF and HTML versions, can be found at https://

www.niallmadden.ie/2425-CS4423/#Week06

This notebook was written by Niall Madden, adapted from notebooks by Angela Carnevale.

News and Reminders

Dates and Deadlines

• Assignment 1: Deadline change to 5pm Friday 27th February, to avoid clash with FYP

presentations.

• Class Test: 14:00, Thursday 6th March (Week 8)

• Assignment 2: Week 10 or 11 (will discuss in class)

Modules for this notebook

import networkx as nx
import numpy as np
opts = { "with_labels": True, "node_color": "xkcd:sky blue"} # show labels; nodes are sky blue

np.set_printoptions(precision=3) # just display arrays to 3 decimal places
np.set_printoptions(suppress=True) # avoid scientific notation (better for matrices)

Recall: Graph Diameter

• The distance between nodes and , denoted , is the length of the shortest between

For self-study

Draft

In [1]:

x y d(x, y) x

CS4423-W06-Part-1 file:///home/niall/niallmadden.ie/2425-CS4423/W06/C...

1 of 8 19/02/2025, 00:19

file:///home/niall/niallmadden.ie/2425-CS4423/W06/CS4423-W06-Part-1.html#Variants-[$\color{red}{\text{For-self-study}}$]
file:///home/niall/niallmadden.ie/2425-CS4423/W06/CS4423-W06-Part-1.html#Variants-[$\color{red}{\text{For-self-study}}$]
file:///home/niall/niallmadden.ie/2425-CS4423/W06/CS4423-W06-Part-1.html#Variants-[$\color{red}{\text{For-self-study}}$]
file:///home/niall/niallmadden.ie/2425-CS4423/W06/CS4423-W06-Part-1.html#Variants-[$\color{red}{\text{For-self-study}}$]
file:///home/niall/niallmadden.ie/2425-CS4423/W06/CS4423-W06-Part-1.html#Variants-[$\color{red}{\text{For-self-study}}$]
file:///home/niall/niallmadden.ie/2425-CS4423/W06/CS4423-W06-Part-1.html#Variants-[$\color{red}{\text{For-self-study}}$]
https://www.niallmadden.ie/2425-CS4423/#Week06
https://www.niallmadden.ie/2425-CS4423/#Week06
https://www.niallmadden.ie/2425-CS4423/#Week06
https://www.niallmadden.ie/2425-CS4423/#Week06
file:///home/niall/niallmadden.ie/2425-CS4423/W06/CS4423-W06-Part-1.html#Variants-[$\color{red}{\text{For-self-study}}$]
file:///home/niall/niallmadden.ie/2425-CS4423/W06/CS4423-W06-Part-1.html#Variants-[$\color{red}{\text{For-self-study}}$]
file:///home/niall/niallmadden.ie/2425-CS4423/W06/CS4423-W06-Part-1.html#Variants-[$\color{red}{\text{For-self-study}}$]
file:///home/niall/niallmadden.ie/2425-CS4423/W06/CS4423-W06-Part-1.html#Variants-[$\color{red}{\text{For-self-study}}$]
file:///home/niall/niallmadden.ie/2425-CS4423/W06/CS4423-W06-Part-1.html#Variants-[$\color{red}{\text{For-self-study}}$]
file:///home/niall/niallmadden.ie/2425-CS4423/W06/CS4423-W06-Part-1.html#Variants-[$\color{red}{\text{For-self-study}}$]
file:///home/niall/niallmadden.ie/2425-CS4423/W06/CS4423-W06-Part-1.html#Variants-[$\color{red}{\text{For-self-study}}$]
file:///home/niall/niallmadden.ie/2425-CS4423/W06/CS4423-W06-Part-1.html#Variants-[$\color{red}{\text{For-self-study}}$]

and .

• The diameter of the network , denoted , is the length of the longest shortest path

between any two nodes,

Now we'll see how to compute it using BFS.

Breadth First Search (BFS) again

Consider the following problem: Given a node in a graph , what are the distances for

all nodes ?

We know that it is possible to answer this question by looking at sums of powers of the adjacency

matrix. But that is extremely expensive. Also, it does not give you the paths (automatically).

Better: use BFS.

• BFS provides a systematic procedure for finding these distances, and the shortest paths through

which they are realized.

• We will start by describing how BFS works for graph traversal.

Graph Traversal

In order to describe the algorithm step by step, let's recall that a node a neighbour (or friend) of

node , if is an edge, and let's denote by

the set of all neighbours of node .

The algorithm works through the network layer by layer:

• starting with the given vertex at layer

• its neighbours at layer ;

• then neighbours of neighbours at layer ;

• and so on, until every node that can be reached from by a path has been recorded, taking care

that no node gets recorded twice.

Note: the layer a node is found in corresponds to its distance from the given node .

In practice, for simple graph traversal, the layers do not need to be made explicit.

We need an example of a network to work with. For a change, let's load one from an adjacency file.

Syntax: for each line in the file, the first listed node is a neighbour of all the others in that row.

!cat bfs.adj

y

G diam(G)

diam(G) = max{d(x, y) : x, y ∈ X}.

x ∈ X G d(x, y)
y ∈ X

y

x {x, y}

N(x) = {y ∈ X : {x, y} ∈ E}

x

x 0
1

2
x

x

In [2]:

CS4423-W06-Part-1 file:///home/niall/niallmadden.ie/2425-CS4423/W06/C...

2 of 8 19/02/2025, 00:19

A B C D E
B C F
C F
D G H
E H
F I
G I J
H J
K I J

G4 = nx.read_adjlist("bfs.adj")
nx.draw(G4, **opts)

We set the seen attribute to False :

nx.set_node_attributes(G4, False, 'seen') # same as for loop above
print(G4.nodes['A']) # check

{'seen': False}

Initialise an empty queue, then add A to it, and set its seen attribute to True :

Q = []
Q.append('A')
G4.nodes['A']['seen'] = True
print(f"Q={Q}")

Q=['A']

Now check

list(G4.neighbors('A'))

In [3]:

In [4]:

In [5]:

N(A)

In [6]:

CS4423-W06-Part-1 file:///home/niall/niallmadden.ie/2425-CS4423/W06/C...

3 of 8 19/02/2025, 00:19

['B', 'C', 'D', 'E']

Add neighbours of to Q :

for y in G4.neighbors('A'):
Q.append(y)
G4.nodes[y]['seen'] = True

print(Q)

['A', 'B', 'C', 'D', 'E']

node = 'B'
for y in G4.neighbors(node):

if not G4.nodes[y]['seen']:
Q.append(y)
G4.nodes[y]['seen'] = True

print(Q)

['A', 'B', 'C', 'D', 'E', 'F']

node = 'C'
for y in G4.neighbors(node):

if not G4.nodes[y]['seen']:
Q.append(y)
G4.nodes[y]['seen'] = True

print(Q)

['A', 'B', 'C', 'D', 'E', 'F']

... and so on, until there are no more nodes to be processed.

Here is how to do it in a loop:

1. initialize
nx.set_node_attributes(G4, False, 'seen') # same as for loop above

G4.nodes['A']['seen'] = True
Q = ['A']

2. loop
for node in Q:

for y in G4.neighbors(node):
if not G4.nodes[y]['seen']:

Q.append(y)
G4.nodes[y]['seen'] = True

3. output result
print(f"Q = {Q}")

Q = ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K']

When this process is formulated as an algorithm, we use a queue to keep track of the node whose

neighbors are currently under consideration.

It can be shown that this version of the algorithm in the common case of a sparse network has

complexity , which is as good as one could hope for.

BFS for Distance

Breadth First Search for Distance. Given a simple graph and a vertex , determine

Out[6]:

A

In [7]:

In [8]:

In [9]:

In [10]:

O(n)

G = (X, E) x ∈ X

CS4423-W06-Part-1 file:///home/niall/niallmadden.ie/2425-CS4423/W06/C...

4 of 8 19/02/2025, 00:19

https://en.wikipedia.org/wiki/Sparse_network
https://en.wikipedia.org/wiki/Sparse_network

 for all nodes .

1. [Initialize.] Suppose that and that . Set (undefined) for

. Set and initialize a queue .

2. [Loop.] While :

• pop node off

• for each neighbor of with :

▪ push onto and set .

3. [Stop.] Return the array .

Note: the attribute records both the distance, and also whether the node has been visited. Also is

set immediately when it is pushed onto , rather than later when it pops off .

nx.set_node_attributes(G4, None, 'd')
x = 'B' #starting BFS at vertex B
G4.nodes[x]['d'] = 0 # and setting its distance to 0
Q = []
Q.append(x)
print(Q)

['B']

while len(Q)>0:
x = Q.pop(0)
for y in G4.neighbors(x):

if G4.nodes[y]['d'] is None: # checking if the distance is undefined
G4.nodes[y]['d'] = G4.nodes[x]['d'] + 1 # if so, define using previous
Q.append(y)

print(f"{x} : {Q}")

B : ['A', 'C', 'F']
A : ['C', 'F', 'D', 'E']
C : ['F', 'D', 'E']
F : ['D', 'E', 'I']
D : ['E', 'I', 'G', 'H']
E : ['I', 'G', 'H']
I : ['G', 'H', 'K']
G : ['H', 'K', 'J']
H : ['K', 'J']
K : ['J']
J : []

print([G4.nodes[x]['d'] for x in G4])

[1, 0, 1, 2, 2, 1, 3, 3, 2, 4, 3]

Variants []

BFS is an extremely versatile algorithm, which applies in many different situations and can be adapted

to produce additional information on a network.

For example, BFS run on a node in a network determines the connected component of

 in (as the set of all nodes that get a distance value assigned).

d(x, y) y ∈ X

X = {x0, x1, … , xn−1} x = xj di ←⊥
i = 0, … , n−1 dj ← 0 Q ← (xj)

Q ≠ ∅

xk Q

xl xk dl =⊥
xl Q dl ← dk + 1

(d0, … , dn−1)

d d

Q Q

In [11]:

In [12]:

In [13]:

For self-study

x G = (X, E)
x G

CS4423-W06-Part-1 file:///home/niall/niallmadden.ie/2425-CS4423/W06/C...

5 of 8 19/02/2025, 00:19

Spanning Tree

With little more work (and an additional array) BFS can produce a spanning tree (or shortest path

tree). Here, whenever node is pushed onto , it is assigned the current node (in the additional

array) as its predecessor on a shortest path from to . The subgraph of the network consisting of

these edges is a tree. As a tree, it has exactly one path between the given node and any of its

vertices and, by construction, this path is a shortest path between and .

nx.set_node_attributes(G4, None, 'd')
x = 'A' # start with vertex A
G4.nodes[x]['d'] = 0 # set its distance to 0
Q = [] # initialise a queue Q
Q.append(x) # push x in Q

nx.set_edge_attributes(G4, False, 'seen')

while len(Q)>0:
x = Q.pop(0) # pop a vertex from the queue
for y in G4.neighbors(x):

if not G4.nodes[y]['d']: # undefined?
G4.nodes[y]['d'] = G4.nodes[x]['d'] + 1 # set distance
Q.append(y) # push in queue
G4.edges[x, y]['seen'] = True # set relevant edge to seen

print(x, ": ", Q)

A : ['B', 'C', 'D', 'E']
B : ['C', 'D', 'E', 'A', 'F']
C : ['D', 'E', 'A', 'F']
D : ['E', 'A', 'F', 'G', 'H']
E : ['A', 'F', 'G', 'H']
A : ['F', 'G', 'H']
F : ['G', 'H', 'I']
G : ['H', 'I', 'J']
H : ['I', 'J']
I : ['J', 'K']
J : ['K']
K : []

print(G4.edges())

[('A', 'B'), ('A', 'C'), ('A', 'D'), ('A', 'E'), ('B', 'C'), ('B', 'F'), ('C', 'F'),
('D', 'G'), ('D', 'H'), ('E', 'H'), ('F', 'I'), ('G', 'I'), ('G', 'J'), ('H', 'J'),
('I', 'K'), ('J', 'K')]

sub = [e for e in G4.edges if G4.edges[e]['seen']]
subset of edges 'seen' while visiting the graph

pos = nx.spring_layout(G4)
nx.draw(G4, **opts, pos=pos)

xl Q xk

xj xl

x

y x y

In [14]:

In [15]:

In [16]:

In [17]:

In [18]:

CS4423-W06-Part-1 file:///home/niall/niallmadden.ie/2425-CS4423/W06/C...

6 of 8 19/02/2025, 00:19

nx.draw(G4.edge_subgraph(sub), **opts, pos=pos)In [19]:

CS4423-W06-Part-1 file:///home/niall/niallmadden.ie/2425-CS4423/W06/C...

7 of 8 19/02/2025, 00:19

Or, one could highlight the spanning tree inside the graph by using, say, red as color for the spanning

edges (and blue for the rest).

colors = ['red' if G4.edges[e]['seen'] else 'blue' for e in G4.edges]
nx.draw(G4, edge_color = colors, with_labels = True, width=2.0, pos=pos)

• Of course, in order to find distances, or shortest paths between all pairs of nodes and in a

network, one can perform BFS for each of the nodes in turn.

• As an exercise in a future assignment, you will see more in detail an implementation of BFS aimed

at constructing a spanning tree.

• The algorithm and its variants also works on directed networks, but the results then will have to

be interpreted in the context of directed networks.

More about BFS can be found in [Newman, Section 10.3].

End of Part 1

In [20]:

x y

x ∈ X

CS4423-W06-Part-1 file:///home/niall/niallmadden.ie/2425-CS4423/W06/C...

8 of 8 19/02/2025, 00:19

