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1 INTRODUCTION

1 Introduction

CS4423 Networks is a Semester 2 module on Network Science. Modern societies are in many ways highly connected.
Certain aspects of this phenomenon are frequently described as networks. CS4423 is an introduction to this emerging
interdisciplinary subject. We’ll cover several major topics in this module, including:

* Graphs & Graph Theory, and how they relate to networks;
* Representations of networks, including as matrices;

* Computing with networks, using networkx in Python;

* Centrality measures;

* Random graphs;

Small worlds;
* Models of growing graphs;

Lecture notes & assignments will come in the form of Jupyter notebooks, which allows us to include interactive Python
code with the text.

1.1 Lecturer Contact Information

* Name: Dr Niall Madden.

* School of Mathematical & Statistical Sciences, University of Galway.
* Office: Room ADB-1013, Aris de Brun.

* E-mail: niall. nadden@universityofgalway.ie.

e Website: https://www.niallmadden.ie

1.2 Exam Information

First year lecturing, should be similar to old exam papers. Only looked at the past 2 years or so.

1.3 Schedule

Tentative schedule for labs / tutorials:
* Tuesday at 16:00 in AC215;
* Wednesday at 10:00 in CA116a.

There will be some practicals during the semester: Week 3 “Introduction to Python & Jupyter” sessions, later weeks
help with assignments, preparations for exam, etc.

1.4 Assessment

* Two homework assignments. Tentative deadlines: Weeks 5 & 10. Each contribute 10% each to the final grade.
* One in-class test. Probably Week 7 (depending on FYP deadlines). Contributes 10% to the final grade.

¢ Final exam: 70%.
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1 INTRODUCTION

1.5 Introduction to Networks

Newman (for example) broadly divides the most commonly studied real-world networks into four classes:

1. Technological networks: rely on physical infrastructure. In many cases, this infrastructure has been built
over many decades and forms part of the backbone of modern societies, including roads & other transportation
networks, power grids, and communications networks.

2. Social networks: the vertices of a social network are people (or, at leasts, User IDs), with edges representing
some sort of social interaction. In sociology, the vertices are often called actors, and the edges are called ties.
Social networks are not just online: sociologists have studied social networks long before people started exhibiting
their relations to others online. Traditionally, data about the structure of social networks have been compiled by
interviewing the people involved.

3. Information networks: consist of data items which are linked to each other in some way. Examples include
relational databases. Sets of information (like scientific publications) have been linking to each other (e.g.,
through citations) long before computers were invented, although links in digital form are easier to follow.

The WWW is probably the most widespread & best-known example of an information network. Its nodes are
web pages containing information in form of text & pictures, and its edges are the hyperlinks, allowing us
to surf or navigate from page to page. Hyperlinks run in one direction only, from the page that contains the
hyperlink to the page that is referenced. Therefore, the WWW is a directed network, a graph where each edge
has a direction.

4. Biological networks:

* Biochemical networks represent molecular-level patterns of interaction & control mechanisms in the
biological cell, including metabolic networks, protein-protein interaction networks, & genetic regulatory
networks.

* A neural network can be represented as a set of vertices, the neurons, connected by two types of directed
edges, one for excitatory inputs and one for inhibitory inputs. (Not to be confused with an artificial neural
network).

* Ecological networks are networks of ecological interactions between species.

In each case, a network connects parts of a system (nodes) by some means (links). Different techniques are used to
display, discover, & measure the structure in each example.

In its simplest form, a network is just a collection of points (called vertices or nodes), some of which are joined
in pairs (called edges or links). Many systems of interest are composed of individual parts that are in some way linked
together: such systems can be regarded as networks, and thinking about them in this way can often lead to new & useful
insights.

Network science studies the patterns of connections between the components of a system. Naturally, the struc-
ture of the networks can have a big impact on the behaviour of the system. A network is a simplified representation of a
complex system by vertices & edges. The scientific study of networks is an interdisciplinary undertaking that combines
ideas from mathematics, computer science, physics, the social sciences, & biology. Between these scientific fields, many
tools have been developed for analysing, modeling, & understanding networks.

1.5.1 Network Measures

Centrality is an example of a useful & important type of network measure; it is concerned with the question of how
important a particular vertex or edge is in a networked system. Different concepts have been proposed to capture mathe-
matically what it means to be central. For example, a simple measure of the centrality of a vertex is its degree, that is, the
number of edges it is part of (or, equivalently, the number of vertices it is adjacent to). Applications of centrality include
determining which entities in a social network have the most influence, or which links in a power grid are most vulnerable.
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Which measurements & calculations give meaningful answers for a particular system depends of course on the specific
nature of the system and the questions one wants to ask.
1.5.2 Network Concepts

Another interesting network concept is the small-world effect, which is concerned with the question of how far apart
two randomly chosen points in a network typically are. Here, distance is usually measured by the number of edges one
would need to cross over when travelling along a path from one vertex to another. In real-world social networks, the
distance between people tends to be rather small.

2 Graphs

A graph can serve as a mathematical model of a network. Later, we will use the networkx package to work with examples
of graphs & networks.

2.1 Example: The Internet (circa 1970)

Figure 1: The Internet (more precisely, ARPANET) in December 1970. Nodes are computers, connected by a link if
they can directly communicate with each other. At the time, only 13 computers participated in that network.

UCSB SRI UCLA

SRI UCLA STAN UTAH
UCLA STAN RAND
UTAH SDC MIT

RAND SDC BBN

MIT BBN LINC

BBN HARV

LINC CASE

HARV CARN

CASE CARN

Listing 1: arpa.adj

The following diagram, built from the adjacencies in arpa.adj, contains the same information as in the above figure,
without the distracting details of US geography; this is actually an important point, as networks only reflect the topology
of the object being studied.



2 GRAPHS

H = nx.read adjlist("../data/arpa.adj")
opts = { "with labels": True, "node color": 'y' }

nx.draw(H, **opts)

Listing 2: arpa.adj

\_\UTAH

CASE
N’//,RAND SRI————UJCSB
BB
CAR
CLA
AR
STAN

Figure 2: The ARPA Network as a Graph

2.2 Simple Graphs

A simple graph is a pair G = (X, F) consisting of a finite set X of objects called nodes, vertices, or points and a set of
links or edges E/ which are each a set of two different vertices.

* We can also write ¥ C ()2(), where ()2() (X choose 2) is the set of all 2-element subsets of X.
* The order of the graph G is denoted as n = | X |, where n is the number of vertices in the graph.

* The size of the graph is denoted as m = | E|, where m is the number of edges in the graph. Naturally, m < (g) .

2.3 Subgraphs & Induced Subgraphs

Given G = (X, E),asubgraphof Gis H = (Y, Ey)withY C Xand Ey C EN (Z), therefore, all the nodes in
H are also in G and any edge in H was also in G, and is incident only to vertices in Y.

One of the most important subgraphs of G is the induced subgraphonY C X: H = (Y, E N (g) ); that is,
given a subset Y of X, we include all possible edges from the original graph G too. Each node has a list of neighbours
which are the nodes it is directly connected to by an edge of the graph.

2.4 Important Graphs

The complete graph on a vertex set X is the graph with edge set ()2( ). For example, if X = {0,1,2,3}, then
E ={01,02,03,12,13,23}

The Petersen graph is a graph on 10 vertices with 15 edges. It can be constructed as the complement of the line graph
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of the complete graph K5, that is, as the graph with the vertex set X = ({0’1’3’3’4}) (the edge set of K5) and with an
edge between x,y € X wheneverz Ny = (.

A graph is bipartite if we can divide the node set X into two subsets X and X3 such that:
* X1 N X2 = 0 (the sets have no edge in common);
e X1 UXo = X.

For any edge (u1, u2), we have u; € X1 and up € Xo; thatis, we only ever have edges between nodes from different
sets. Such graphs are very common in Network Science, where nodes in the network represent two different types
of entities; for example, we might have a graph wherein nodes represent students and modules, with edges between
students and modules they were enrolled in, often called an affiliation network.

A complete bipartite graph is a particular bipartite graph wherein there is an edge between every node in X1 and
every node in X». Such graphs are denoted Ky, 1, where | X1 | = mand | X»| = n.

The path graph with n nodes, denoted P, is a graph where two nodes have degree 1, and the other n — 2 have
degree 2.

The cycle graph on n > 3 nodes, denoted C, (slightly informally) is formed by adding an edge between the two nodes
of degree 1 in a path graph.

2.5 New Graphs from Old

The complement of a graph G is a graph H with the same nodes as GG but each pair of nodes in H are adjacent if and
only if they are not adjacent in G. The complement of a complete graph is an empty graph.

A graph G can be thought of as being made from “things” that have connection to each other: the “things” are
nodes, and their connections are represented by an edge. However, we can also think of edges as “things” that are
connected to any other edge with which they share a vertex in common. This leads to the idea of a line graph: the line
graph of a graph G, denoted L(G) is the graph where every node in L(G) corresponds to an edge in G, and for every
pair of edges in G that share a node, L(G) has an edge between their corresponding nodes.

3 Matrices of Graphs

There are various was to represent a graph, including the node set, the edge set, or a drawing of the graph; one of the
most useful representations of a graph for computational purposes is as a matrix; the three most important matrix
representations are:

* The adjacency matrix (most important);
* The incidence matrix (has its uses);

* The graph Laplacian (the coolest).

3.1 Adjacency Matrices

The adjacency matrix of a graph G of order n is a square n X . matrix A = (a; ;) with rows & columns corresponding
to the nodes of the graph, that is, we number the nodes 1, 2, .. ., n. Then, A is given by:

{ 1 ifnodes i and j are joined by an edge,
a;, j =

0 otherwise

Put another way, a; ; is the number of edges between node ¢ and node j. Properties of adjacency matrices include:
« YN, Zé\le aij = Y uex deg(u) where deg(w) is the degree of u.

5
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* All graphs that we’ve seen hitherto are undirected: for all such graphs, A is symmetric. A = AT and, equivalently,
Q5 = aj, 1.

* a;; = Oforalls.
* In real-world examples, A is usually sparse which means that Efil Zjvzl ai j < n?, thatis, the vast majority

of the entries are zero. Sparse matrices have huge importance in computational linear algebra: an important idea
is that is much more efficient to just store the location of the non-zero entities in a sparse matrix.

Any matrix M = (m; ;) with the properties that all entries are zero or one and that the diagonal entries are zero (i.c.,
m;,; = 0) is an adjacency matrix of some graph (as long as we don’t mind too much about node labels). In a sense,
every square matrix defines a graph if:

* We allow loops (an edge between a node and itself).

* Every edge has a weight: this is equivalent to the case for our more typical graphs that every potential edge is
weighted 0 (is not in the edge set) or 1 (is in the edge set).

* There are two edges between each node (one in each direction) and they can have different weights.

3.1.1 Examples of Adjacency Matrices

Let G = G(X, E) be the graph with X = {a,b, ¢, d, e} nodes and edges {a <> b,b <> ¢,b <> d,c <+ d,d <> e}.
Then:

01 00O
1 01 10
A=]10 1 0 1 0
01101
00010
The adjacency matrix of Ky is:
01 1 1
1 01 1
A= 1 1 0 1
1 110

3.2 Degree

The degree of a node in a simple graph is the number of nodes to which it is adjacent, i.e., its number of neighbours.
For a node v we denote this number deg(v). The degree of a node can serve as a (simple) measure of the importance of a
node in a network. Recall that one of the basic properties of an adjacency matrixis D"y Y30 aij = -, x deg(u),
where deg(u) is the degree of u and n is the order of the graph; this relates to a (crude) measure of how connected a
network is: the average degree:

1 1
verage degree = UGEX eg(u) - Zgj a; j

However, if the size of the network (the number of edges) is m, then the total sum of degrees is 2m (since each edge
contributes to the degree count of two nodes), meaning that the average degree is 2.

3.3 Walks

A walk in a graph is a series of edges (perhaps with some repeated) {u; <> vi,u2 ¢ ug,...,up <> vp} with the
property that v; = u;41. If v, = g, thenitis a closed walk. The length of a walk is the number of edges in it.

Adjacency matrices can be used to enumerate the number of walks of a given length between a pair of vertices. Obviously,
a; ; is the number of walks of length 1 between node 7 and node j. We can extract that information for node j by
computing the product of A and e; (column jof the identity matrix).
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4 Connectivity & Permutations
4.1 Notation
To start, let’s decide on our notation:
* If we write A = (a; ;), we mean that A is a matrix and a; j is its entry row 4, column j.

* We also write such entries as (A);_j; the reason for this slightly different notation is to allow us to write, for
example, (AQ)Z‘J is the entry in row ¢, column j of B = A2,

* The trace of a matrix is the sum of its diagonal entries, that s, tr(A) = >""" | a; ;. (Very standard).

* When we write A > 0, we mean that all entries of A are positive.

4.2 Counting Walks

Recall that the adjacency matrix of a graph G of order N is a square n x n matrix A = (a; ;) with rows and columns
corresponding to the nodes of the graph. a; ; is set to be the number of edges between nodes i and j. We learned
previously that:

e Ifejisthe jth column of the identity matrix I, then (Ae;); is the number of walks of length 1 from node i to
node j. Also, it is the same as a; ;.

* Moreover, (A(Aej)); = (A%e;) is the number of walks of length 2 from node i to node j. We can conclude
that, if B = A2, then b; ; is the number of walks of length 2 between nodes 7 and j. Note that b; ; is the degree
of node 7.

e Infact, if B = AF, then b; ; is the number of walks of length £ between nodes % and j.

4.3 Paths

A trail is walk with no repeated edges. A cycle is a trail in which the first and last nodes are the same, but no other node
is repeated; a triangle is a cycle of length 3. A path is a walk in which no nodes (and so no edges) are repeated. (The
idea of a path is hugely important in network theory, and we will return to it often).

The length of a path is the number of edges in that path. A path from node u to node v is a shortest path if
there is no path between them that is shorter (although there could be other paths of the same length). Finding shortest
paths in a network is a major topic that we will return to at another time.

* Every path is also a walk.
* Ifa particular walk is the shortest walk between two nodes then it is also the shortest path between two nodes.

* If k is the smallest natural number of which (Ak)iyj = 0, then the shortest walk from node i to node j is of
length k.

* Itfollows that & is also the length of the shortest path from node i to node j.

For example, consider the following adjacency matrix and its powers:

01000
10100
A=10 1 0 1 1
00101
00110
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10100
02011
A2=11 03 0 0
011 21
0111 2
02011
2041 1
A3=10 4 2 4 4
114 2 3
114 3 2

We can observe that, where A is the adjacency matrix of the graph G':

¢ (A2),; is the degree of node i.

tr(A?) is the degree sum of the nodes in G.

(A3);; # 0if node i is in a triangle.

tr(A3) . . .
s =g s the number of triangles in G.

* If G is bipartite, then (A3)Z-7j = Oforall,j.

4.4 Connectivity

Let G be a graph and A its adjacency matrix: in G, node 7 can be reached from node j if there is a path between them.
If node i is reachable from node j, then (A¥); ; # 0 for some k. Also, note that k < n. Equivalently, since each power
of A is non-negative, we can say that (I + A + A2 + A3 + ... + AF) > 0.

A graph/network is connected if there is a path between every pair of nodes. That is, every node is reachable from every
other node. If a graph is not connected, we say that it is disconnected. Determining if a graph is connected or not is
important; we’ll see later that this is especially important with directed graphs. A graph G of order n is connected if and
only if, for each 4, j, there is some K < n for which (Ak)i,j # 0.

4.5 Permutation Matrices

We know that the structure of a network is not changed by labelling its nodes. Sometimes, it is useful to re-label the
nodes in order to expose certain properties, such as connectivity. Since we think of the nodes as all being numbered
from 1 to n, this is the same as permuting the numbers of some subset of the nodes.

Swop lubels N
of 2£ &

& © ?

Example:

3

Figure 3: Example wherein nodes are re-labelled to expose certain properties of the graph

When working with the adjacency matrix of a graph, such a permutation is expressed in terms of a permutation matrix
P; this is a 0-1 matrix (also known as a Boolean or a binary matrix) where this is a single 1 in every row & column. If the
nodes of a graph G (with adjacency matrix A) are listed as entries in a vector g, then:
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* Pgq is a permutation of the nodes.
» PAPT is the adjacency matrix of the graph with that node permutation applied.

In many examples, we will have a symmetric P for the sake of simplicity, but in general, P neqPT. However,

PTAP = PAPTand PT = P~1so PAPT = PAPL.

A graph with adjacency matrix A is disconnected if and only if there is a permutation matrix P such that

(X O r_ (X O
r(X9) parr - p (X 9)

where O represents the zero matrix with the same number of rows as X and the same number of columns as Y.

5 Permutations & Bipartite Networks

5.1 Graph Connectivity

Recall that a graph is connected if there is a path between every pair of nodes. If the graph is not connected, we say that
it is disconnected. We now know how to check if a graph is connected by looking at powers of its adjacency matrix.
However, that is not very practical for large networks. Instead, we can determine if a graph is connected by just looking
at the adjacency matrix, provided that we have ordered the nodes properly.

5.2 Connected Components

If a network is not connected, then we can divide it into components which are¢ connected. The number of connected
components is the number of blocks in the permuted adjacency matrix.

o gqraph wikh 3 cormgcted comp onels

( OO0 o |0OO° o>

? o OO0 | © 9O Bloch |

. |

Oe Ol I lOooO Olo.am-wl. .

o o6& (I 01 o O

o ol \0 OO

o ©
(V)

Figure 4: Connected components example
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6 Bipartite Networks: Colours & Computations

6.1 Class Survey Example

2. Which of the following do you watch?

Only Murders in the Building
Breaking Bad

The Penguin

Succession

Squid Game

The Bear

The Boys

Better Call Saul

Night Agent

Dr Who

® & ¢ ¢ ¢ ¢ ¢ 0o ¢ o o

Is it Cake?

Sa
IS
Yannas

o
o
=
o
=
a

20

Figure S: Final survey data

Rhez

Qisi )
AK _-.,____‘ N \
Tom ———
—a —

S
Ro s

Figure 6: Final survey graph, with order 39 and size 87
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BB

%00001000 OOOOOM
cNoNeoNeRNoll ol o) cNeoNeoNeNelNe)
OO OO+ OpPp O OO O O oo
OO O+ OOoOpP O o O o
o — - — O O o O o o O
o o o o oo o o O O o O
o — O — O OO OO oo oo
O 1 O - O0Oj0 O OO OCO OO o
= O OO0 O 000000 O0o
OO OO o OoOpMHH OO O-A OO O
OO O OO OO0 A 1O A O—A O
o o o oo o o - O o o
o O YO o O —= O — = OO O
O OO OO OO+ - - O o o
NIOOOOOO_I_OOOOOOO\W

FAonn
Figure 7: Subgraph of the survey network based on 7 randomly chosen people, with order 16 and size 24

Figure 8: Adjacency matrix where the nodes for people are listed first
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(1 11010100 0O0O0O0O0OTUO0OF®O
132022 1J0000O0O0O0O0TO
1 251 4 2 2,000 N0 O O
oo 11 1 1 1300 00 0 0J)O0 0 O
1 2 4 1 6 3 3|0 0 00 0 @g/0 0 O
0 2 2 1 3 5 1]0 0 0”0 0 0 O
11213 13J]000O0O0O0O0O0O0
B— 0 000 O0OO0Of53 11321220
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0 00<Q 001 2 2010101
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0 000O0O0OO0210021120
KO 0 000O0O0BOT11I1O01O0T10O0 1}

Figure 9: B = A?
Since we know from before that (A¥); ; is the number of walks of length kbetween nodes i and j, we can see that in

this context:

* For the first 7 rows & columns, b; ; is the number of programmes in common between person 7 and person j.
(This even works for ¢ = j, but the number of programmes a person has in common with themselves is just the
number they watch).

* For the last 9 rows & columns, b; ; is the number of people who watch both programmes ¢ and j.

6.2 Projections

Given a bipartite graph G whose node set V' has parts V1 & V5, and projection of G onto (for example) V7 is the graph
with:

* Node set V7;
* An edge between a pair of nodes in V7 if they share a common neighbour in G.

In the context of our survey example, a projection onto Vi (people/actors) gives us the graph of people who share a
common programme. To make such a graph:

* Let A be the adjacency matrix of G.
* Let B be the submatrix of A2 associated with the nodes in V5.
* Let C be the adjacency matrix with the property:

{1 bij > Oandi # j
67'7]:

0 otherwise
Thatis, b; j = O0ori = j.

* Let Gy, be the graph on V; with adjacency matrix C'. Then, Gy, is the projection of G onto V.

12
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Bruno

Rhea

Fionk

Figure 10: Gy, computed for our survey data

6.3 Colouring

Figure 11: The original survey graph is more easily digestible if coloured

For any bipartite graph, we can think of the nodes in the two sets as coloured with different colours. For instance,
we can think of nodes in X as white nodes and those in X» as black nodes. A vertex-colouring of a graph Gis an

13
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assignment of (finitely many) colours to the nodes of G' such that any two nodes which are connected by an edge have
difterent colours. A graph is called /N-colourable if it has a vertex colouring with at most IV colours. The chromatic
number of a graph G is the smallest N for which a graph G is N-colourable. The following statements about a graph
G are equivalent:

* G is bipartite;
¢ (G is 2-colourable;

* Each cycle in G has even length.

7  Trees

A cycle in a simple graph provides, for any two nodes on that cycle, at least two different paths from node a to node b.
It can be useful to provide alternative routes for connectivity in case one of the edges should fail, e.g., in an electrical
network.

A graph is called acyclic if it does not contain any cycles. A tree is a simple graph that is connected & acyclic. In
other words, between any two vertices in a tree there is exactly one simple path. Trees can be characterised in many
different ways.

Theorem: Let G = (X, E) be a (simple) graph of order n = |X| and size m = |E|. Then, the following are

equivalent:
* Gisatree (ie., acyclic & connected);
* Gisconnectedandm =n — 1.
* G'is a minimally connected graph (i.e., removing any edge will disconnect 7).
* Gisacyclicandm =n — 1.
* G is amaximally acyclic graph (i.e., adding any edge will introduce a cycle in G);
* There is a unique path between each pair of nodes in G.

All trees are bipartite: there are a few ways of thinking about this; one is that a graph is bipartite if it has no cycles of
odd length — since a tree has no cycles, it must be bipartite.

7.1 Cayley’s Formula

Theorem: there are exactly n™ 2 distinct (labelled) trees on the n-element vertex set X = {0,1,2,...,n — 1}if
n > 1.

7.1.1 Priifer Codes

The Prfer code of a tree can be determined (destructively) as follows:
1. Start with a tree 7" with nodes labelled 0, 1, . .., n — 1 and an empty list a.

2. Find the leaf node  with the smallest label (with a “leaf node” being a node of degree 1. Every tree must have at
least two leaf nodes).

3. Append the label of its unique neighbour yto the list a.
4. Remove z (and the edge x «+ y) from T'.

S. Repeat steps 2-3 until 7" has only two ndoes left. We now have the code as a list of length n — 2.
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7 TREES

A tree can be re-constructed from its Priifer code as the degree of a node « is 1 plus the number of entries  in the
Priifer code of T'. A tree can be computed from a Priifer code a (where the list @ is a list of length n — 2 with all entries
numbered 0 ton — 1) as follows:

1. Set G to be a graph with nodelist [0, 1,2, ..., n — 1] and no edges yet.
2. Compute the list of node degrees d from the code.
3. Fork=0,1,...,n—2:

1. Sety = alk].

2. Set zto be the node with the smallest degree in d.

3. Add theedge (z,y) to G.

4. Setd[z] = d[x] — land d[y] = d[y] — 1 (that s, decrease the degrees of both = and y by one).

4. Finally, connect the remaining two nodes of degrees 1 by an edge.

Since we know now that there is a bijection between labelled trees and Priifer codes, we can prove Cayley’s theorem
easily:

1. A tree with n nodes has a Priifer code of length n — 2.
2. There are n choices for each entry in the code.
3. So, there are n" 2 possible codes for a tree with n nodes.

4. So, there are n* 2 possible trees with 7 nodes.

7.2 Graph & Tree Traversal

Often, one has to search through a network to check properties of nodes such as to find the node with the largest degree.

For large unstructured networks, this can be challenging; fortunately, there are simple & efficient algorithms to achieve
this:

* DES.

* BES.

7.2.1 Depth-First Search

Depth-first search (DFS) works by starting at a root node and travelling as far along one of its branches as it can, then
returning to the last unexplored branch. The main data structure needed to implement DES is a stack, also known as a
Last-In-First-Out (LIFO) queue. Given a rooted tree 1" with root x, to visit all nodes in the tree:

1. Start with an empty stack S.
2. Push z onto S.

3. While S # 0:

1. Pop node y from the stack.
2. Visity.

3. Push y’s children onto the stack.
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7.2.2 Breadth-First Search

Breadth-first search (BFS) works by starting at a root node and exploring all the neighbouring nodes (on the same
level) first. Next, it searches their neighbours (level 2), etc. The main data structure needed to implement BES is a
queue, also known as a First-In-First-Out (FIFO) queue. Given a rooted tree T" with root z, to visit all nodes in the tree:

* Start with an empty queue Q).
* Push z onto Q.
* While Q # 0:

1. Pop node y from Q).
2. Visit node y.
3. Push ’s children onto Q.

Many questions on networks regarding distance & connectivity can be answered by a versatile strategy involving a
subgraph which is a tree and then searching that; such a tree is called spanning tree of the underlying graph.

7.2.3 Graph Diameter

A natural problem arising in many practical applications is the following: given a pair of nodes x, v, find one or all
the paths from z to y with the fewest number of edges possible. This is a somewhat complex measure on a network
(compared to, say, statistics on node degrees) and we will therefore need a more complex procedure, that is, an algorithm,
in order to solve such problems systematically.

Definition: let G = (X, E) be a simple graph and let 2,y € X. Let P(x,y) be the set of all paths from x to
1. Then:

* The distance d(z,y) from z to y is
d(z,y) = min{l(p) : p € P(z,y)},

the shortest possible length of a path from  to y, and a shortest path from = to y isa pathp € P(z,y) of
length I(p) = d(z,y).

* The diameter diam(G) of the network G is the length of the longest shortest path between any two nodes:

diam(G) = max{l(p) : p € P(x,y)}

8 Centrality Measures

Key nodes in a network can be identified through centrality measures: a way of assigning “scores” to nodes that
represents their “importance”. However, what it means to be central depends on the context; accordingly, in the context
of network analysis, a variety of different centrality measures have been developed. Measures of centrality include:

* Degree centrality: just the degree of the nodes, important in transport networks for example.
* Eigenvector centrality: defined in terms of properties of the network’s adjacency matrix.
* Closeness centrality: defined in terms of a node’s distance to other nodes in the network.

* Betweenness centrality: defined in terms of shortest paths.
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8 CENTRALITY MEASURES

8.1 Degree Centrality

Ina(simple) graph G = (X, E) with X = {0,1,...,n — 1} and adjacency matrix A = (a; ;), the degree centrality
ciD of nodei € X is defined as:
CZ-D = k‘i = Z am
J

where k; is the degree of node i.

In some cases, this measure can be misleading since it depends (among other things) on the order of the graph. A better
measure is the normalised degree centrality: the normalised degree centrality O of node i € X is defined as:

cb = S

n—1 n—1

k; cP <_ degree of centrality of node % >

"~ number of potential neighbours of %

Note that in a directed graph, one distinguishes between the in-degree and the out-degreeo f a node and defines the
in-degree centrality and the out-degree centrality accordingly.

8.2 Eigenvector Centrality

Let A be a square n X n matrix. An n-dimensional vector, v, is called an eigenvector of A if :
Av = v
for some scalar A which is called an eigenvalue of A.

When A is a real-valued matrix, one usually finds that A and v are complex-valued. However, if A is symmetric,
then they are real-valued. A may have up to n eigenvalues A1, A2, ..., Ap. The spectral radius of A is p(A) :=
max(|A1], A2, ..., [An]). If v is an eigenvector associated with the eigenvalue ), so too is any non-zero multiple of v.

The basic idea of eigenvector centrality is that a node’s ranking in a network should relate to the rankings of the
nodes it is connected to. More specifically, up to to some scalar A, the centrality Cf of node i should be equal to the
sum of the centralities cf of its neighbouring nodes j. In terms of the adjacency matrix A = (a; ;), this relationship is

E_ B
Ac; = E ;, ;C;
J

expressed as:

which, in turn, in matrix language is:
AP = AcP

for the vector ¢ = (cF) which then is an eigenvector of A. So ¢¥ is an eigenvector of A (but which one?).

8.2.1 How to find cZ and/or \

If the network is small, one could use the usual method (although it is almost never a good idea).

1. Find the characteristic polynomial p o(x) of A as determinant of the matrix £ — A, where I is the n X n identity
matrix.

2. Find the roots A of p4 () (i.e., scalars A such that p4(A) = 0).

3. Find a non-trivial solution of the linear system (AI — A)c = 0 (where 0 stands for an all-0 column vector and
c=(c1,...,cn)is acolumn of unknowns).

For large networks, there is a much better algorithm, such as the Power method, which we will look at later.
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8.2.2 Perron-Frobenius Theory

Presently, we’ll lean that the adjacency matrix always has one eigenvalue which is greater than all the others.

A matrix A is called reducible if, for some simultaneous permutations of its rows and columns, it has the block

o Al,l A1,2
A= ( (0] A272>

If A is not reducible, we say that it is irreducible. The adjacency matrix of a simple graph G is irreducible if and only

form:

if G is connected.

A matrix A = (a; ;) is non-negative is a; j>o for all 4, j. For simplicity, we usually write A > 0. It is impor-
tant to node that adjacency matrices are examples of non-negative matrices. There are similar concepts of, say, positive
matrices, negative matrices, etc. Of particular importance are positive vectors: v = (v;) is positive for if v; > 0 for all
1. We write v > 0.

Theorem: suppose that A is a square, non-negative, irreducible matrix. Then:

* Ahasareal eigenvalue A = p(A) and A > |\'| for any other eigenvalue ' of A. X is called the Perron root of
A.

* \isasimple root of the characteristic polynomial of A (so has just one corresponding eigenvector).

* There is an eigenvector, v, associated with A such thatv > 0.
For us, this means:

* The adjacency matrix of a connected graph has an eigenvalue that is positive and greater in magnitude than any
other.

* It has an eigenvector v that is positive.

* v; is the eigenvector centrality of the node i.

8.3 Closeness Centrality

A node x in a network can be regarded as being central if it is close to (many) other nodes, as it can quickly interact
with them. Recalling that d(¢, j) is the distance between nodes i and j (i.c., the length of the shortest path between
them). Then, we can use ﬁ as a measure of “closeness”; in a simple, connected graph G = (X, E) of order n, the

closeness centrality, cic of node 7 is defined as:

1 1
6027:7

(2 .. .
Djex d(ig)  s()
where s(1) is the distance sum for node i. As is usually the case, there is a normalised version of this measure; the
normalised closeness centrality is defined as:

C _ (n— 1)eC — _
Co=m e == )~ 50

Note that 0 < CZ-C < 1.

The distance matrix of a graph, G, of order n is the n x n matrix D = (d; ;) such that:
dij = d(i, j)
We’ll return to how to compute D later, but for now we note:

* 5(i) is the sum of row i of D.

* If s is the vector of distance sums, then s = De wheree = (1,1,...,1)%.
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8.4 Betweenness Centrality

In a simple, connected graph G, the betweenness centrality cf of node 7 is defined as:
B ni(j, k) .
G = . y J 7é k 7é 1
220G

where n(j, k) denotes the number of shortest paths from node j to node k, where n;(j, k) denotes the number of
those shortest paths passing through node 7.

In a simple, connected graph G, the normalised betweenness centrality C? of node 7 is defined as:

cB

B _ 1
¢ (n—=1)(n—2)

9 Random Graphs

A random graph is mathematical model of a family of networks, where certain parameters (like the number of nodes
& edges) have fixed values, but other aspects (like the actual edges) are randomly assigned. Although a random graph
is not a specific object, many of its properties can be described precisely in the form of expected values or probability
distributions.

9.1 Random Samples

Suppose our network G = (X, E') has | X| = n nodes. Then, we know that the greatest number of edges it can have is:

(Z) (i —n!2)!2! - n(nQ_ .
3

Our goal is to randomly select edges on the vertex set X, that is, pick random elements from the set (%, ) of pairs of
nodes. So, we need a procedure for selecting 7 from IV objects randomly, in such a way that each of the (%) subsets of
the IV objects is an equally likely outcome. We first discuss sampling 1 values in the range {0,1,..., N — 1}.

1. Suppose that we choose a natural number N and a real number p € [0, 1].
2. Then, iterate over each element of the set {0,1..., N — 1}.

3. For each, we pick a random number z € [0, 1].

4. Itz < p, we keep that number. Otherwise, remove it from the set.

When we are done, how many elements do we expect in the setif p = 77 for some chosen m? And what is the likelihood
of there being, say, K elements in the set? Since we are creating random samples, where the size of each is a random
number, k, we expect that E[k] = Np = m; this is a binomial distribution:

¢ The probability of a specific subset of size K to be chosen is p¥ (1 — p)N =,

* Thereare (%) subsets of size k, so the probability P(k) of the sample to have size k is P(k) = () p*(1—p)V—F.
We use the following facts:

< i(N)p' = Np(F)p .

c(1-pPNd=q1 _p)(N—l)—(j—l)_

* (p+(1—p))" =1forallr.
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9 RANDOM GRAPHS

The expected value is:

N
Elk] = Z JP(j) weighted average of j
j=1
= Z] ( . >p7(1 —p)N formula for P(j)
— \J
J
N-1o
=Np Z ( I )pl(l —p)(N_l)_l = Np substitutingl =k — 1
=0

9.2 Erdos-Rényi Models
9.2.1 Model A: Gr(n, m) — Uniformly Selected Edges

Letn > 1,let N = (3) andlet 0 < m < N. The model Ggr(n, m) consists of the ensemble of graphs G on the n
nodes X ={0,1,...,n — 1}, and M randomly selected edges, chosen uniformly from the N = (g) possible edges.
Equivalently, one can choose uniformly at random one network in the set G(n, m) of a// networks on a given set of

nodes with exactly m edges.
Equivalently, one can choose uniformly at random one network in the set G(n, m) of a/l networks on a given set of 12

nodes with exactly m edges. One could think of G(n, m) as a probability distribution P : G(n, m) — R that assigns
to each network G € G(n, m) the same probability

where N = (g)

Figure 12: Some networks drawn from G (20, 15)

9.2.2 Model B: Ggr(n,p) — Randomly Selected Edges

Letn > 1,let N = (g) andlet 0 < p < 1. The model GEr(n, p) consists of the ensemble of graphs G on the n

nodes X = {0, 1,...,n — 1} with each of the possible N = (g’) edges chosen with probability p.
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9 RANDOM GRAPHS

The probability P(G) of a particular graph G = (X, E) with X = {0,1,...,n — 1} and m = |E| edges in
the Ggr(n, p) model is
P(G)=p"(1-p)""

Figure 13: Some networks drawn from Ggr(20,0.5)

Of the two models, G r(n, p) is the more studied. There are many similarities, but they do differ. For example:

* Gggr(n, m) will have m edges with probability 1.

* A graphin Ggr(n, p) will have m edges with probability (Z) p"(p— )N,

9.2.3 Properties

We’d like to investigate (theoretically & computationally) the properties of such graphs. For example:

* When might it be a tree?

* Does it contain a tree, or other cycles? If so, how many?

* When does it contain a small complete graph?

* When does it contain a large component, larger than all other components?
* When does the network form a single connected component?

* How do these properties depend on 1 and m (or p)?
Denote by Gy, the set of a/l graphs the n nodes X = {0,...,n — 1}. Set N = () the maximal number of edges of a
graph G € G. Regard the ER models A & B as probability distributions P : G, — R

Denote m(G) as the number of edges of a graph G. As we have seen, the probability of a specific graph Ggr to
be sampled from the model G(n, m) is:

Ny _
P(G) = (m) itm(G) = m,
0 otherwise
And the probability of a specific graph G' to be sampled from the model G(n, p) is
P(G)=n""(1-n)N —m
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9 RANDOM GRAPHS

9.2.4 Expected Size & Average Degree

Let’s use the following notation:
* a is the expected value of property a (that is, as the graphs vary across the ensemble produced by the model).
* < a > is the average of property a over all the nodes of a graph.
In G((n, m) the expected size is
m=m
as every graph G in G/(n, m) has exactly m edges. The expected average degree is

2m

(k) = =

n

as every graph has average degree 2. Other properties of G(n, m) are less straightforward, and it is easier to work with

the G(n,p).

In G(n, m), the expected size (i.c., expected number of edges) is
m = pN

Also, variance is 02, = Np(1 — p).

The expected average degree is

(k) = p(n — 1)

with standard deviation oy, = 1/p(1 — p)(n — 1).

9.2.5 Degree Distribution
The degree distribution p : Ng — R, k = pj, of a graph G'is defined as

ng
Pk = —
n

where, for k > 0, ny, is the number of nodes of degree k in G. This definition can be extended to ensembles of graphs
with n nodes (like the random graphs G(n, m) and G(n, p)) by setting

ng
Pr—
n

where 7i3, denotes the expected value of the random graph ny, over the ensemble of graphs.

The degree distribution in a random graph G(n, p) is a2 binomial distribution:

n—1 1 )
pk=< L >pk(1—p)" "% = bin(n — 1, p, k)

That is, in the G(n, p) model, the probability that a nodes has degree & is p,. Also, the average degree of a randomly
chosen node is
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(with standard deviation o, = 1/p(1 — p)(n — 1)).

In general, it is not so easy to compute

(72) — 1) (k)pFa —p)n Tk

However, in the limit n — oo with (k)k = p(n — 1) kept constant, the binomial distribution bin(n — 1, p, k) is
well-approximated by the Poisson distribution:

)\k
P = e_’\ﬁ = Pois(\, k)

where A = p(n — 1).

10 Giant Components & Small Worlds

Recall that a network may be made up of several connected components, and any connected network has a single
connected component. It is common in large networks to observe a giant component: a connected component which
has a large proportion of the network’s nodes. This is particularly the case with graphs in G gr(n, p) with large enough
p. More formally, a connected component of a graph G is called a giant component if its number of nodes increases
with the order n of G as some positive power of 1. Suppose that p(n) = cn ™! for some positive constant ¢; then, the
average degree (k) = pn = c remains fixed as n — 0. For graphs Ggr(n, p):

* If ¢ < 1, the graph contains many small components with orders bounded by O(In(n)).

* If ¢ = 1 the graph has large components of order S' = O(ng ).

s If ¢ > 1, there is a unique giant component of order S = O(n).

10.1 Small World Network

Many real-world networks are small world networks, wherein most pairs of nodes are only a few steps away from each
other, and where nodes to form c/zgues, i.e., subgraphs in which all nodes are connected to each other. Three network
attributes that measure these small-world effects are:

* Characteristic path length, L: the average length of all shortest paths in the network.
* Transitivity, T": the proportion of ¢7zads that form triangles.
* Clustering coefficient, C': the average node clustering coefficient.
A network is called a small world network if it has:
* A small average shortest path length L (scaling with log(n), where n is the number of nodes) and
* A high clustering coefficient C'.

It turns out that ER random networks do have a small average shortest path length, but not a high clustering coefficient.
This observation justifies the need for a different model of random networks, if they are to be used to model the
clustering behaviour of real-world networks.

10.1.1 Distance

We have seen how BES can determine the length of a shortest path from a given node x to any node y in a connected
network. An application to all nodes x yields the shortest distances between all pairs of nodes. Recall that the distance
matrix of a connected graph G = (X, E) is D = (d,; ;) where entry d; ; is the length of the shortest path from node
i € X tonode j € X. (Note that d; ; = 0 for all 7). There are a number of graph (and node) attributes that can be
defined in terms of this matrix:
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10 GIANT COMPONENTS & SMALL WORLDS

* The eccentricity ¢; of anode ¢ € X is the maximum distance between ¢ and any other vertex in G, so ¢; =
max;(d; ;).

* The graph radius R is the minimum eccentricity, R = min;(e;).

* The graph diameter D is the maximum eccentricity: D = max;(e;) = —max; j(d; ;).

Note that one shouldn’t think that the “diameter is twice the radius”, but rather diameter is the distance between the
points furthest from each other and radius is the distance from the “centre” to the furthest point from it. It can be

helpful to think about F,.

10.1.2 Characteristic Path Length

The characteristic path length (i.c., the average shortest path length) L of a graph G is the average distance between
pairs of nodes:
1
DR
-1 ©J
n(n—1) 3
For graphs drawn from Ggr(n, m) and Ggr(n,p), L = %, where (k) is the average degree of the network.

10.1.3 Clustering

In contrast to random graphs, real-world networks also contain many triangles: it is not uncommon that a friend of
one of my friends is also my friend. This degree of transitivity can be measured in several different ways. For the first,
we need two concepts:

* The number of triangles in G, denoted 1, is the number of subgraphs of G' that are isomorphic to Cs.

* The number of triads in GG, denoted n, is the number of pairs of edges with a shared node.
There is an easy way to count the number of triads in a network: if node 7 has degree k; = deg(?), then it is involved in

(kQZ) triads, so the total number of triadsis ny = ), (kQZ)

The transitivity T of a graph G = (X, E) is the proportion of transitive triads, i.c., triads which are subgraphs of
triangles. This proportion can be computed as follows:

T =3"A
na

where na is the number of triangles in G' and n is the number of triads.
10.1.4 Small World Behaviour

Anetwork G = (X, E) issaid to exhibit small world behaviour if its characteristic path length L grows proportionally
to the logarithm of the number of nodes of G
L ~ In(n)

In this sense, the ensembles G(n, m) & G(n, p) of random graphs do exhibit small world behaviour (as n — 00).
10.1.5 Transitivity

The transitivity T of a graph G = (X, E) is the proportion of transitive triads, i.c., triads which are subgraphs of
triangles. This proportion can be computed as:

where na is the number of triangles in G and 5 is the number of triads.

The transitivity of a graph in Ggr(n, p) is easy to estimate: for every triad, the “third” edge is present with probability

P, sO:
T=p

Or, compute ‘?—AA using the explicit formulas from the previous lecture: na = ()p* and np = 3(})p*
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10.2 Clustering
The concept of clustering measures the transitivity of a node, or of an entire graph in a different way. To define it, we

need the concept of an induced subgraph.

10.2.1 Induced Subgraph
Given G = (X, E) and Y C X, the induced subgraph of G on Y is the graph H = (Y, En (52/)) That is:

* H is a subgraph of G with nodeset Y.
* H has all possible edges in G for which both nodes arein Y.

10.2.2 Clustering Coefficient

Foranodei € X ofagraph G = (X, F), denote by G; the subgraph induced on the neighbours of 7 in GG, and by
m(G,) its number of edges; the node clustering coefficient ¢; of node 7 is defined as:

B M@ k=2
’ 0 otherwise

That is, the node clustering coefficient measures the proportion of existing edges in its social graph among the possible

edges.

The graph clustering coefficient C of G is the average node clustering coefficient:

1 n
C = (c)c= - Zci
i=1
By definition, 0 < ¢; < 1forallnodes? € X,and0 < C < 1.

The node clustering coefficient of any node i in a Ggr(n, p) random graph is ¢; = p, ie., in any selection
of potential edges, by construction a proportion p of them is present in the random graph; this is true in particular
for the (g) potential edges between the k neighbours of a node of degree k. The graph clustering coefficient of a
GEr(n,p) random graph is:
C=p

Note that when p(n) = (k)n ™! for a fixed expected average degree (k), then C' = % — 0 forn — oo; that is, in
large G g random graphs, the number of triangles is negligible. In real-world networks, one often observers that %
does not depend on n (as n — o0).

10.2.3 Clustering versus Transitivity

Foranodei € X, denote by nzA = (];L) the number of triads containing ¢ as their central node, and by nzA the actual
number of triangles containing 7; then, the node clustering coeflicient is:

ng
C; = N or,
n;
A AN
ne =ne
3na

— A _ AL s _ _ 1 AP _ 1
Moreover, 3na = ) . n; andny = ), n;it follows that 7' = a = > i ci,incontrastto C' = -3 . c;.
Thatis, C'is the (plain) average of the node clustering coefficients, whereas 1" is a weighted average of node clustering

coefhicients, giving higher weight to high-degree nodes.
The fact that ER random networks tend to have low transitivity & clustering shows the need for a new kind of

(random) network construction that is better at modelling real-world networks. One idea is to start with some regular
network that naturally has bigh clustering, and then to randomly distort its edges to introduce some short paths.
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