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See also §1.6, §4.0 and §4.1 of Levin's Discrete Mathematics: an open introduction. Some slides

are based on ones by Angela Carnevale, all other good stuff due to Niall Madden, mistakes Kevin's.


http://discretetext.oscarlevin.com

Assignments... (2/40)

o Assignment 1 is closed. Your grade is available on Blackboard.

@ Assignment 2 is open until Thursday afternoon. You need to access it
through Blackboard.

o Assignment 3 is now open, with a deadline of 5pm, Thursday: 4

November



(3/40)

Example (MA284 Semester 1 Examination, 2014/2015)

(i) Find the number of different arrangements of the letters in the place
name WOLLONGONG.

(ii) How many of these arrangements start with the three 0's;
(iif) How many contain the two G's consecutively;

(iv) How many do not contain the two G's consecutively?




Part 1: Counting Functions (4/40)

MA284
Week 7: Introduction to Graph Theory

Start of ...

PART 1: Counting Functions

(This is actually left over from last week, and not really related to the main
topic of the week: Graph Theory)



Part 1: Counting Functions Bijections (5/40)

Recall the f : A — B is a function that maps every element of the set A onto
some element of set B. (We call A the “domain”, and B the “codomain”.)
Each element of A gets mapped to exactly one element of B.

If f(a) = b where a € A and b € B, we say that “the image of a is b".
Or, equivalently, “b is the image of a".

Examples:



Part 1: Counting Functions Bijections (6/40)

When every element of B is the image of some element of A, we say that the
function is SURJECTIVE (also called “onto”).

Examples:



Part 1: Counting Functions Bijections (7/40)

When no two elements of A have the same image in B, we say that the
function is INJECTIVE (also called “one-to-one”).

Examples:



Part 1: Counting Functions Bijections (8/40)

Bijection
The function f : A — B is a BIJECTION if it is both surjective and injective.
Then f defines a one-to-one correspondence between A and B.




Part 1: Counting Functions Counting (9/40)

Counting functions

Let A and B be finite sets. How many functions f: A — B are there?

We can use the Multiplicative Principle to deduce:

There are in total |B|! functions from A to B. J




Part 1: Counting Functions Counting (10/40)

Counting Bijective Functions (Example 1.3.2 of the textbook)

How many functions f: {1,2,3,4,5,6,7,8} — {1,2,3,4,5,6,7,8} are
bijective?

Remember what it means for a function to be bijective: each element in the
codomain must be the image of exactly one element of the domain. We
could write one of these bijections as

What we are really doing is just rearranging the elements of the codomain, so
we are defining a permutation of 8 elements.

The answer to our question is therefore 8!.

More generally, there are n! bijections of the set {1,2..., n} onto itself.



Part 1: Counting Functions Counting (11/40)

Counting Injective Functions (Example 1.3.2 of the textbook)

How many functions f: {1,2,3} — {1,2,3,4,5,6,7,8} are injective?

We need to pick an element from the codomain to be the image of 1. There
are 8 choices. Then we need to pick one of the remaining 7 elements to be the
image of 2. Finally, one of the remaining 6 elements must be the image of 3.
So the total number of functions is

P(8,3)=8-7-6.

Similarly, we can see a k-permutation of {1,2,3,...,n} as an injective function
from {1,2,...,k} to {1,2,3,...,n}. In general, the number of such injections
is P(n, k).



Part 1: Counting Functions Counting (12/40)

Finally, derangements can be interpreted as bijections from a set onto itself
and without fixed points.

Counting functions without fixed points (see also Section 1.6 of

the textbook)

How many bijective functions f: {1,2,3,4,5} — {1,2,3,4,5} are there such
that f(x) # x for all x € {1,2,3,4,5}?

Using our formula

1 1 1 1 1 11 1 1
— 5l _ — _—— — _— — frng _— = _—— — =
Ds =3l (1 121 3 g 5!) 120 (2 6 24 120) 4.



Part 1: Counting Functions Counting (13/40)

MA284
Week 7: Introduction to Graph Theory

END OF PART 1



Part 2: Graph theory - motivation

(14/40)

MA284
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Start of ...

PART 2: Graph Theory

An introduction...



Part 2: Graph theory - motivation (15/40)

Graph Theory is a branch of mathematics that is several hundred years old.
Many of its discoveries were motivated by practical problems, such as
determining the smallest number of colours needed to colour a map.

However, it remains one of the most important and exciting areas of modern
mathematics, as a bed-rock of data sciences and network theory.

2006 2007




Part 2: Graph theory - motivation (16,/40)

Graph Theory is unusual in that its beginnings can be traced to a precise date.

Kénigsberg in Prussia (now Kaliningrad, Russia) had seven bridges. Is it
possible to walk through the town in such a way that you cross each bridge
once and only once?

KONINGSBERGA.



https://en.wikipedia.org/wiki/Seven_Bridges_of_Konigsberg
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Part 2: Graph theory - motivation (16,/40)

Graph Theory is unusual in that its beginnings can be traced to a precise date.

Kénigsberg in Prussia (now Kaliningrad, Russia) had seven bridges. Is it
possible to walk through the town in such a way that you cross each bridge
once and only once?

The seven bridges of
Kénigsberg
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Part 2: Graph theory - motivation (17/40)

Is it possible to walk through the town in such a way that you cross each bridge
once and only once?

The seven bridges of
Konigsberg




Part 2: Graph theory - motivation (18/40)

Here is another way of stating the same problem. Consider the following
picture, which shows 4 dots connected by some lines.

Is it possible to trace over each line once and only once (without lifting up your
pencil)? You must start and end on one of the dots.



Part 2: Graph theory - motivation (19/40)

A GRAPH is a collection of
@ “vertices” (or “nodes”), which are the “dots” in the above diagram.
@ “edges” joining pair of vertices.

If the graph is called G (say), we often define it in terms of its edge set, E, and
vertex set, V, as
G=(V,E).




Part 2: Graph theory - motivation (20/40)

pi

If two vertices are connected by an edge, we say they are adjacent.



Part 2: Graph theory - motivation (21/40)

Graphs are used to represent collections of objects where there is a special
relationship between certain pairs of objects.

For example, in the Kénigsberg problem, the land-masses are vertices, and the
edges are bridges.

The seven bridges of
Kénigsberg




Part 2: Graph theory - motivation Example (22/40)

(Example 4.0.1 of the text-book)

Aoife, Brian, Conor, David and Edel are students in an Indiscrete Mathematics

module.

@ Aoife and Conor worked together on their assignment.
@ Brian and David also worked together on their assignment.

o Edel helped everyone with their assignments.

Represent this situation with a graph.




Part 2: Graph theory - motivation Water-Power-Gas graph (23/40)

The Three Utilities Problem; also Eg 4.0.2 in text-book

We must make Water, Power and Gas connections to three houses.
Is it possible to do this without the conduits crossing?



https://en.wikipedia.org/wiki/Three_utilities_problem

Part 2: Graph theory - motivation Water-Power-Gas graph (24/40)

MA284
Week 7: Introduction to Graph Theory

END OF PART 2



Part 3: Graph Theory - Basics (25/40)

MA284
Week 7: Introduction to Graph Theory

Start of ...

PART 3: Graph Theory - The Basics

Key terms and notation



Part 3: Graph Theory - Basics Order (26/40)

Definition (ORDER)
The order a graph G = (V, E) is the size of its vertex set, |V/|.

Let G =(V, E), with
V ={a,b,c, d}, E = {{a,b},{a,c},{b,c},{b,d},{c,d}}

What is the order of G? Sketch G.




Part 3: Graph Theory - Basics Isomorphic Graphs (27/40)

Two graphs are EQUAL if the have exactly the same Edge and Vertex sets.
That is it is not important how we draw them, how where we position the
vertices, the length of the edges, etc.

Example (Section 4.1 of text-book)

Show that the two graphs given below are equal

O ()
7N
RN 94}0




Part 3: Graph Theory - Basics Isomorphic Graphs (28/40)

An ISOMORPHISM between two graphs, Gi = (V4, E1) and Gy = (W,, E2), is a
bijection f : Vi — V, between the vertices in the graph such that, if {a, b} is
an edge in Gy, then {f(a),f(b)} is an edge in G,.

Two graphs are ISOMORPHIC if there is an isomorphism between them. In
that case, we write G; & G;.




Part 3: Graph Theory - Basics Isomorphic Graphs (29/40)

Example (Example 4.1.1 of text-book)

Show that the graphs
Gy = {V4, E1}, where Vi = {a, b, c} and E; = {{a, b},{a, c}, {b,c}};

G, = { Vs, Ex} where Vo = {u,v,w}, and E; = {{u, v}, {u,w}, {v,w}}

are not equal but are isomorphic.




Part 3: Graph Theory - Basics Isomorphic Graphs (30/40)

Example (Example 4.1.3 from text-book)

Decide whether the graphs G = {V4, E1} and G, = { V5, E;} are equal or
isomorphic, where

Vi ={a, b,c,d}, E1 = {{a, b},{a,c},{a,d},{c,d}} and

Vo ={a, b,c,d}, E; = {{a, b},{a,c},{b,c},{c,d}}




Part 3: Graph Theory - Basics Labels (31/40)

When we give a graph without labeling the vertices, we are really talking about
all graphs that are isomorphic to the one we have just drawn. For example,
when we draw the following graph, we mean it to represent all those graphs
that are isomorphic to the Water-Power-Gas graph.

% DY
&7 WK



Part 3: Graph Theory - Basics Simple graphs; Multigraphs (32/40)

Other than the Koénigsberg Bridges example, all the graphs we have looked at
so far

1. have no loops (i.e., no edge from a vertex to itself).

2. have no repeated edges (i.e., there is at most one edge between each pair
of vertices).

Such graphs are called SIMPLE graphs. But because they are the most
common, unless we say otherwise, when we say “graph” we mean “simple
graph”.



Part 3: Graph Theory - Basics Simple graphs; Multigraphs (33/40)

If a graph does have repeated edges, like in the Konigsberg example, we call it
a MULTIGRAPH. Then the list of edges is not a set, since some elements are
repeated: it is a multiset (see Week 5).



Part 3: Graph Theory - Basics Simple graphs; Multigraphs (34/40)

MA284
Week 7: Introduction to Graph Theory

END OF PART 3
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PART 4: Walks, paths, cycles and circuits



Part 4: Walks, paths, cycles and circuits (36,/40)

Definition (WALK, TRAIL, PATH)

A WALK is sequence of vertices such that consecutive vertices are adjacent.
A TRAIL is walk in which no edge is repeated.

A PATH is a trail in which no vertex is repeated, except possibly the first and
last.

Example:



Part 4: Walks, paths, cycles and circuits (37/40)

We can also describe a path by the edge sequence. This can be useful, since
the LENGTH of the path is the number of edges in the sequence.

And, since there can be more than one, the SHORTEST PATH is particularly
important.

Example:



Part 4: Walks, paths, cycles and circuits (38/40)

Cycles and Circuits

There are two special types of path that we will study later in detail:

Cycle: A path that begins and ends at that same vertex, but no other
vertex is repeated;

Circuit: A path that begins and ends at that same vertex, and no edge
is repeated;



Exercises (39/40)

These questions are based on exercises in Sections 1.6 and 4.1 of Levin's Discrete Mathematics.
Solutions are also available from that book.

Q1. Consider functions f : {1,2,3,4} — {a, b,c,d, e, f}. How many functions have the
property that f(1) # a or f(2) # b, or both?

Q2. Consider sets A and B with |A| = 10 and |B| = 5. How many functions f : A — B are
surjective? [Hint: the answer is 5 — 5 x 41° 410 x 31 — 10 x 21° — 5. But why7?|

Q3. (Exercise 4.1.1 from text-book) If 10 people each shake hands with each other, how many
handshakes took place? What does this question have to do with graph theory?

Q4. (Exercise 4.0.2 of text-book and MA284 Semester 1 Exam, 2015/2016) Among a group of
five people, is it possible for everyone to be friends with exactly two of the other people in the
group?

Is it possible for everyone to be friends with exactly three of the other people in the group?
Explain your answers carefully.


http://discretetext.oscarlevin.com

Exercises (40/40)

Q5.

Q6.

Are the two graphs below equal? Are they isomorphic? If they are isomorphic, give the
isomorphism. If not, explain.

Graph 1: V ={a, b,c,d, e}, E={{a, b},{a,c},{a, e}, {b,d},{b, e}, {c,e}}.

a

Graph 2: d ¢

(MA284, Semester 1 Exam, 2016/2017) For each of the following pairs of graphs,
Gy = (V1, E1) and G, = (W2, E,), determine if they are isomorphic. If they are, give an
isomorphism between them. If not, explain why.

(a) Vi={a,b,c,d}, E={{a b} {a,c},{a,d},{c,d}} and
Va={w,x,y,z}, B = {{y.x},{x, 2}, {z,w} {z, v} }.

(b) Vi ={a,b,c}, Ei={{a b},{b,c},{a,c}} and
Vo ={w,x,y,z}, Ex= {{W7 z},{z,y}, {W,X}}.

() Vi={a,b,c,d,e}, E1={{a,c},{a e}, {b,c} {b,d},{e,c},{d,e}} and
Vo ={v,w,x,y,z}, Ex= {{v,x}, {xyh Ay, z} {z, v}, {z, x}, {x, W}}
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