
CT420 REAL-TIME SYSTEMS

PROCESS SYNCHRONIZATION AND RTS

Dr. Michael Schukat

Background
2

 We already know a RTS may miss deadlines under the following
circumstances:

 Poorly structured CE or process hierarchy

 Erroneous task / process WCET assumptions

 Non-preemptable kernel sections

 Too many asynchronous events, i.e. signals or interrupts, to be processed

 Incorrect use of timers to control process schedule (i.e., nanosleep()
example)

 However, there is another problem area in pre-emptive
multitasking environments (and RTOS): Poorly designed resource
sharing of processes

 Problematic for both pure OS and OS RT extensions

 In this lecture we are going to investigate this problem and at
solutions to make sure that resource sharing does not interfere with
the timely execution particularly of high-priority tasks

Lecture Overview
3

 Introduction to real-time synchronisation, problems

and workarounds, i.e.

 critical regions

 priority inversion

 priority inheritance

 the priority ceiling protocol

 The Mars Pathfinder case study

Critical Region

 Attention is needed when more than one process requires
access to single resource
 Necessary to prevent race conditions

“The condition of an electronics, software, or other system where
the system's behaviour is dependent on the sequence or timing of
other uncontrollable events”

 Ensure that only one process can access resource at any time
◼ E.g. memory write / read

 A Critical Region is a section of code that interacts with the
shared resource
 Once task enters critical region, it must be allowed to complete

 This is achieved via mutexes & semaphores

Semaphore Example
5

 Two tasks have a print job, but only one task can

access the printer at a time

Critical Region Example

 Task 1 and 2 share common a resource

 The access to the resource is provided via a critical region

 A single mutex (binary semaphore) S shared between both tasks is used to
enforce single access

 Semaphores and their API are provided by OS

 wait(S)and signal(S)are used to lock and unlock access to region
respectively

Task 1 Task 2

. wait(S)

. critical region

 signal(S)

.

.

wait(S) .

critical region .

signal(S)

TIME

Typical Semaphore Implementation

value determines how

many processes can

access the protected

resource at a time

Example: Binary Semaphore
8

 In this example a binary semaphore S is used by

processes P1,…, P4 to control access to some

resource within a CS

Actions Results

State no. Calling process Operation Running in Blocked Value of

 CS on S S

0 1

1 P1 Wait(S) P1 0

2 P1 Signal(S) 1

3 P2 Wait(S) P2 0

4 P3 Wait(S) P2 P3 -1

5 P4 Wait(S) P2 P3,P4 -2

POSIX Semaphore API

See next slide

POSIX Semaphore API

Semaphore Pitfalls in RTS: The Priority

Inversion Problem
11

 Priority inversion is a scenario in process scheduling

in which a high-priority task is indirectly pre-

empted by a lower priority task effectively

inverting the relative priorities of the two tasks

 This behaviour is undesirable, particularly in RTS,

where a high-priority task needs to meet a

deadline

 Let’s have a look at an example

Example: Priority Inversion Problem

 Consider Task 1, Task 2, Task 3 with decreasing task priorities

 Task 1 and 3 share resource that is protected via mutex (binary
semaphore) S

 Timeline (next slide)
 t0: Task 3 commences

 t1: Task 3 enters critical region S

 t2: Task 1 pre-empts Task 3

 t3: Task 1 attempts to enter shared critical region S

◼ Locked out by Task 3

◼ Blocks ➔ Task 3 resumes

 t4: Task 2 released and pre-empts Task 3

 t5: Task 2 completes

◼ Task 3 resumes S

 t6: Task 3 completes critical region.. Releases S

◼ Task 1 enters S

 t7: Task 1 releases S

Example: Priority Inversion Problem

Task 1

Task 2

Task 3
t0 t1 t2 t3 t4 t5 t6 t7 t8

S S S

S

Blocks on

S

 Task 1, Task 2, Task 3 have decreasing task priorities

 Task 1 and 3 share resource that is protected via the
mutex (binary semaphore) S

Problem!

Example: Priority Inversion Problem

 Task 2 delays Task 1 indirectly by period t5-t4

 Pre-empts Task 3 which was blocking Task 1

 Lower priority Task 3 indirectly delays higher priority
Task 1 for indeterminate period

 Priority Inversion

 Intermediate Task 2 can repeatedly pre-empt Task3

 Ideally, Task 2 should be prohibited from pre-empting
Task 3 when Task 3 was already blocking Task 1

 Priority Inheritance facilitates this solution

Solution: Priority Inheritance

 If a higher priority task is blocked by a lower priority
task (due to a critical region), the lower priority task
inherits the priority of the higher priority task for the
duration of critical region, after which lower priority
task restored to initial priority

 More generally, a task causing blocking executes with
priority
 max(Own Priority, Highest Priority of any tasks it is

blocking)

 prevents an intermediate task priority from
 delaying a higher priority task

Example: Priority Inheritance

Task 1

Task 2

Task 3
t0 t1 t2 t3 t4 t5 t6 t7 t8

S S S

S

Task 3 inherits Task 1 priority

Blocks on

S

Example: Priority Inheritance

• Timeline

– t0: Task 3 commences

– t1: Task 3 enters critical region S

– t2: Task 1 pre-empts Task 3

– t3: Task 1 attempts to enter shared critical region S
• Locked out by Task 3

• Blocks ➔ Task 3 resumes but inherits Task 1 priority

– t4: Task 2 is released but does not pre-empt Task 3
• Task 3 continues

– t5: Task 3 completes critical region and releases S
• Task 1 enters S

– t6: Task 1 completes critical region and releases S
• Task 1 continues to completion

– t7: Task 2 runs

• Task 1 is only delayed (blocked) by time interval required by Task 3 to complete S

• It will then get access to S

• Note:

• A task T can be blocked multiple times by different lower priority tasks which
have locked various resources shared with Task T

• The total blocked time can be significant and needs to be considered by system
designers

Another Problem: Task Deadlocks

 Consider Task 1 and Task 2 with Task 1 having the highest priority

 They share 2 resources R1 and R2, protected by S1 and S2

 Task 1: Accesses S1, then S2 nested within

 Task 2: Accesses S2, then S1 nested within

t0 t1 t2 t3

Above scenario: Time separated access ➔ No problem

t0-t1: Task 1 is running S1 locked

t1-t2: Task 1 nested lock of S2, S2 unlocked at t2

t3-t4: Task 1 running : no locks, complete at t4

t5: Task 2 runs, locks S2 at t6

t7: Nested lock of S1, unlocked at t8, S2 unlocked at t9

Task 1

Task 2

S1

S1

S2 S1

t4 t5 t6 t7 t8 t9 t10

S2 S2

Example for a Deadlock Situation

• Scenario 2

t0 t1 t2 t3

t0: Task 2 is running and locks S2

t1: Task 1 pre-empts Task 2 and locks S1 at t’

t2: Task 1 attempts to lock S2 … Fails ➔Task 2 runs

t3: Task 2 attempts to lock S1 ... Fails

➔ Deadlock

Task 2

Task 1

S2

S1

t’

The Priority Ceiling Protocol avoids this situation

M

The Priority Ceiling Protocol

 Extends the Priority Inheritance Protocol
 Prevents deadlock situations

 Reduces total potential blocking time

 Define
 The Priority Ceiling of a resource (critical region) R protected

by semaphore S denoted π(R) is defined as the highest priority
of all the tasks that may utilise R
◼ With priority inheritance, priority of task will change if it is locking a

resource requested by a higher priority task BUT by definition the Priority
Ceiling of that resource is unchanged by this

 The Current Priority Ceiling of the overall system denoted Π(t)
is defined as highest priority ceiling of all the resources that are
in use at time t (presuming some resources are in use)

Example: Priority Ceiling Protocol

 Tasks T1 toT4

 Decreasing priorities P1 to P4

 π(R) constant and shown in the table

 Π(t) depends on resources in use at

time t

Task 1

P1

Task 2

P2

Task 4

P3
Task 3

P4

R3

R1 R2

Resource Tasks π(R)

R1 T1,T2,T4 P1

R2 T3,T4 P3

R3 T2,T3 P2

R4 T1,T4 P1

R4

RTS

Priority Ceiling Protocol

 Rules

 At time t, if Task T requests resource R

◼ If R is already locked, the request fails and task T is blocked

◼ If R is free

◼ If the priority of task T is > Π(t) , R is allocated to T

◼ If the priority of task T is not > Π(t) , R is allocated iff task T is
already holding the resource R2 whose priority ceiling π(R2) is
Π(t)

◼ Note: If another task is holding the resource R2, with priority
ceiling π(R2), T is blocked even if it never actually requires
access to R2

◼ Otherwise, task T is blocked

There’s no

lower priority

task that

shares

(potentially)

a resource

with T -> No

deadlock

possible

T holds the

resource, i.e. it

can’t block

itself

If we can’t guarantee the

above, we need to be prudent

and block T

I.e. we only consider that is a resource is potentially shared, but we do

not further consider if and when this will ever happen during the

execution of the program

Priority Ceiling Protocol

 General Rule: By definition, at time t, if the priority of

a task T is higher than the priority ceiling of the

system at that time Π(t),

 task T does not ever require the resources in use at time t

 tasks with priorities equal to or higher than T will not ever

use them either (otherwise Π(t) would be equal or higher

than T)

➔ Π(t) by default tells us the subset of tasks to which we can

grant free resources at time t, i.e. all the tasks that have

priorities higher than Π(t)

Recall Example Deadlock

• Scenario 2

t0 t1 t2 t3

t0: Task 2 is running and locks S2

t1: Task 1 pre-empts Task 2 and locks S1 at t’

t2: Task 1 attempts to lock S2 … Fails ➔Task 2 runs

t3: Task 2 attempts to lock S1 ... Fails

➔ Deadlock

Task 2

Task 1

S2

S1

t’

Priority Ceiling Protocol avoids this situation

Example: Deadlock Avoidance via the

Priority Ceiling Protocol

t0 t1 t2 t3

Task 2

Task 1

S2

S1

t’

S1 S2

t4

S2 S1

t5 t6 t7 t8 t9

Example: Deadlock Avoidance via the

Priority Ceiling Protocol

 In the previous example,
 Have 2 resources R1, R2 protected by S1 and S2 and

shared by 2 Tasks, Task 1 and Task 2
◼ R1 ➔S1 : Priority Ceiling is π(R1) = Prior(Task 1)

◼ R2➔ S2 : Priority Ceiling is π(R2) = Prior(Task 1)

 At time t’, Task 1 attempts to lock S1
◼ Priority Ceiling of System Π(t) is that of resource R2 which is locked

by Task 2 ➔ Π(t) = π(R2) = Prior(Task1)

◼ S1 is unlocked (R1 free) BUT
◼ Priority(Task 1) is not > Π(t) as Π(t) = Prior(Task1)

◼ Task 1 is NOT holding resource whose priority ceiling = Π(t)

◼ i.e. Task 2 holding R2

◼ Task 1 blocked from locking S1

◼ Task 2 continues and inherits Task 1 priority

Example: Deadlock Avoidance via the

Priority Ceiling Protocol

• Scenario 2: Full timeline

t0: Task 2 is running and locks S2

t1: Task 1 pre-empts Task 2 and attempts to lock S1 at t’

t’: Task 1 blocked, Task 2 resumes and inherits Task 1 priority

t2: Task 2 attempts to lock S1 .. Successful

Note: Prior(Task 2) = Prior(Task 1) = P through inheritance

P not > Π(t) as Π(t) = π(R2) = Prior(Task1) BUT

Task 2 actually holds R2 ➔ ok

t3: Task 2 releases S1, continues with S2

t4: Task 2 releases S2, priority restored to Prior(Task 2)

t4:Task 1 pre-empts Task 2, resumes, locks S1

t5: Task 1 attempts to lock S2 .. Successful

Same reason as above t2 but logic applied to Task 1

t6: Task 1 releases S2, continues with S1

t7: Task 1 releases S1, no resources held. Task 1 continues

t8: Task 1 complete, Task 2 resumes

t9: Task 2 complete

Case Study: Mars Pathfinder

 Launched 1996 and landed July 1997

 Consisted of a Lander (Pathfinder) and a Rover
(Sojourner)

 It was the first mission to Mars since the Viking
programme in 1976 (2 probes were sent)

 Inflation corrected,

 the Viking programme did cost $7 billion

 Pathfinder did only cost $485 million

 It was a “faster-better-cheaper” project and a
demonstrator for using new landing techniques
(parachute and airbags) and standard components
where possible (e.g. computer boards or OS)

 See

 https://www.youtube.com/watch?v=5-cBjI2zgB0

 Compare this to the 2021 landing of
Perseverance:

 https://www.youtube.com/watch?v=rzmd7RouGrM

https://www.youtube.com/watch?v=5-cBjI2zgB0
https://www.youtube.com/watch?v=rzmd7RouGrM

Mars Pathfinder Hardware
29

 The computer on board the rover was based on a 2

MHz Intel 80C85 CPU with 512 KB of RAM and

176 KB of flash memory solid-state storage, running

a bare-bone cyclic executive

 The computer of the Pathfinder lander was a

radiation hardened IBM RISC 6000 (Rad6000 SC)

CPU with 128 MB of RAM and 6 MB of EEPROM; it

used the RTOS VxWorks

VxWorks

 Proprietary RTOS by Wind River Systems

 See http://www.windriver.com/products/vxworks/

 Fully POSIX.4 Compliant included pre-emptive FIFO priority
scheduling

 Continuously improved since the 1990s

 Widely used, even in safety critical systems

 Boeing 787 (aviation industry)

 Router/Switches

 Mars Pathfinder

 However, a few days after being deployed on Mars,
Pathfinder suffered repeated system resets

http://www.windriver.com/products/vxworks/

Mars Pathfinder Hardware Architecture

 The Rad6000 SC CPU controlled the entire spacecraft

(excluding the rover)

Pathfinder Instruments
32

 Imager for Mars Pathfinder (IMP):

 Hosted on the lander

 Used for imaging the surface of Mars and helped to navigate the
rover

 Atmospheric Structure Instrument and Meteorology Package
(ASI/MET):

 Hosted on the lander

 Used to acquire atmospheric information (e.g. pressure,
temperature, wind)

 Alpha Proton X-ray Spectrometer (APXS):

 Hosted on the rover

 Designed to determine the elements that make up the rocks and
soil on Mars

Mars Pathfinder Hardware Architecture

CPU

Radio IMP

Lander / ASI-MET Cruise

VME Bus

1553 Bus

1553 Bus Interface

Mars Pathfinder Bus Architecture

 The CPU was connected to a VME hardware bus, which

linked it to the radio, the camera, and the interface to a

1553 bus

 The VME bus is a parallel bus originally designed for the Motorola

68000 series

 The 1553 bus is a military grade serial bus, and it

connected to:

 The "cruise stage" part of the spacecraft and

 The "lander" part of the spacecraft

Mars Pathfinder: Lander/ASI-MET and

Cruise Subsystem

 The hardware on the Cruise

part of the spacecraft controlled

thrusters, valves, a sun

sensor, and a star scanner

 Was only operational during the flight to Mars

 The hardware on the Lander / ASI-MET part provided

 an accelerometers and a radar altimeter (used during the

landing phase only)

 the aforementioned ASI-MET instrument (used when the

lander was on the Mars surface)

The VME Bus
36

 Data (video images, meteorological readings, etc.) from the
various instruments on the lander (Pathfinder) and the rover
(Sojourner) had to pass through this bus to be transmitted to
Earth

 Likewise, commands to control the instruments on Pathfinder
(such as the camera or the ASI-MET) had to pass through
this bus

 Obviously, this couldn’t happen all at once, therefore data
threads and command strings had to take turns using the
bus

 It was the job of VxWorks to schedule traffic through the
bus according to the pre-assigned priorities of data and
commands

Pathfinder Software Architecture
37

 VxWorks provided pre-emptive fixed-priority

scheduling

 Tasks were executed via a cyclic scheduler with a

cycle of 125 ms

 Basically, the scheduler was organised as a CE, a bit like

the example in previous lectures, but with

◼ just one task per priority

◼ tasks exited after completion and were executed again in the

next cycle

Pathfinder Software Architecture

 The software to control the 1553 bus and the attached
instruments was implemented in two main tasks
 Bus Scheduler: bc_sched
◼ Decided what instrument would transmit data next and transmitted

the schedule to the instrument

 Data Collection: bc_dist

◼ Handled the collection of the instrument data selected by bc_sched

 Additional tasks perform other spacecraft functions
 Communication task (for radio comms): communication

 Meteorological data processing task (processing data from ASI-
MET instrument): ASI-MET

 Process priorities were as follows:

 prio(“bc_sched”) > prior(“bc_dist”) >
prio(“communication”) > prio(“ASI-MET”)

Pathfinder Software Architecture
39

 Using a watchdog timer, the bc_sched task checked at the
beginning of its execution whether the bc_dist task had
completed its execution in the previous cycle

 Similar to TimerFlag variable in the CE example

 If bc_dist had not completed, bc_sched initiated a
system reset

 A system reset caused a cold restart of the pathfinder to
bring it back to a safe state
 This terminated all current ground commanded activities including

rover control, data upload etc. for hours

 This was critical, since the probe had only a limited expected
lifetime (30 days for the lander and 7 days for the rover) because
of dust slowly covering the solar panels

The Problem

 The ASI-MET task and the bc_dist task shared a

resource managed by a binary semaphore

 The fault sequence looks as follows:
 t0: The ASI-MET task acquires semaphore

 t1: communication task pre-empts ASI-MET

 t2: bc_dist is released and pre-empts the communication task

 t3: bc_dist attempts to lock semaphore which is already locked

◼ communication task resumes

 t4: bc_sched is released and determines that bc_dist has not completed

◼ Forces system reset

 ➔ Classical Priority Inversion Problem

The Problem

bc_dist

communication

ASI-MET
t0 t2 t3 t4

S

bc_dist attempts to lock S.. fails

t1

bc_sched

bc_sched released.. system reset

Root Cause Analysis and Fix

 The problem only manifested when ASI-MET collected data and the
communication task was heavily loaded

 There were two oversights by NASA engineers

 Firstly, testing before launch was limited to the "best case" communication
task activity, therefore the problem did never occur

 Secondly, engineers were not aware that VxWorks sets the priority
inheritance flag off for semaphores by default, i.e. it needs to be set via a

compiler switch

 However, the problem was identified (as a priority inversion issues) by
engineers within a day

 The problem was subsequently rectified by recompiling the code with
the Priority Inheritance option set, and uploaded it to the pathfinder
probe

Timeline with Priority Inheritance Option

enabled

bc_dist

Medium Task

ASI-MET

S

bc_dist attempts to lock S.. Fails

ASI-MET inherits priority and runs

bc_sched

S released, bc_dist preempts

ASI-MET locks S

bc_dist completes

Med task resumes

	Slide 1: CT420 Real-Time Systems Process Synchronization And RTS
	Slide 2: Background
	Slide 3: Lecture Overview
	Slide 4: Critical Region
	Slide 5: Semaphore Example
	Slide 6: Critical Region Example
	Slide 7: Typical Semaphore Implementation
	Slide 8: Example: Binary Semaphore
	Slide 9: POSIX Semaphore API
	Slide 10: POSIX Semaphore API
	Slide 11: Semaphore Pitfalls in RTS: The Priority Inversion Problem
	Slide 12: Example: Priority Inversion Problem
	Slide 13: Example: Priority Inversion Problem
	Slide 14: Example: Priority Inversion Problem
	Slide 15: Solution: Priority Inheritance
	Slide 16
	Slide 17
	Slide 18: Another Problem: Task Deadlocks
	Slide 19
	Slide 20: The Priority Ceiling Protocol
	Slide 21: Example: Priority Ceiling Protocol
	Slide 22: Priority Ceiling Protocol
	Slide 23: Priority Ceiling Protocol
	Slide 24
	Slide 25
	Slide 26: Example: Deadlock Avoidance via the Priority Ceiling Protocol
	Slide 27
	Slide 28: Case Study: Mars Pathfinder
	Slide 29: Mars Pathfinder Hardware
	Slide 30: VxWorks
	Slide 31: Mars Pathfinder Hardware Architecture
	Slide 32: Pathfinder Instruments
	Slide 33: Mars Pathfinder Hardware Architecture
	Slide 34: Mars Pathfinder Bus Architecture
	Slide 35: Mars Pathfinder: Lander/ASI-MET and Cruise Subsystem
	Slide 36: The VME Bus
	Slide 37: Pathfinder Software Architecture
	Slide 38: Pathfinder Software Architecture
	Slide 39: Pathfinder Software Architecture
	Slide 40: The Problem
	Slide 41
	Slide 42: Root Cause Analysis and Fix
	Slide 43

