
CT420 REAL-TIME SYSTEMS

TIME SYNCHRONISATION IN DISTRIBUTED SYSTEMS

Dr. Michael Schukat

Time in Distributed Systems
2

 A distributed system (DS) is a type of networked system where
multiple computers (nodes) work together to perform a task

 Such systems may or may not be connected to the Internet

 Time and time synchronisation are an important issues here

 Think of error logs in distributed systems; how can error events
recorded in different computers be correlated with each other, if
there is no common time-base

 Problem:

 GNSS-based time synchronisation may or may not be available, as
GPS signals are absorbed or weakened by building structures

 There is no other time reference such systems can rely on, as in such
a distributed system there are just a series of imperfect computer
clocks

Example: Airline Reservation System
3

 Assume an airline reservation system consisting of three servers A, B
and C and some client computer that makes a booking

 Each server has its own local clock

 Server A receives a client request to purchase last ticket on flight
ABC123

 Server A timestamps the purchase using its local clock reading
(9h:15m:32.45s) and logs it. It replies “ok” to client

 That was the last seat. Server A sends message to Server B stating
“flight full.”

 B enters “Flight ABC123 full” + local its clock reading
(9h:10m:10.11s) into its log

 At a later stage server C queries A’s and B’s logs. It reads that a
client purchased a ticket after the flight became full

Recap: The Clock Synchronisation

Problem
4

 In distributed systems, all the different nodes are

supposed to have the same notion of time, but quartz

oscillators oscillate at slightly different frequencies

 Hence, clocks tick at different rates (→clock skew),

resulting in an increasing gap in perceived time

 The difference between two clocks at a given point in

time is called clock offset

 Clock synchronization aims to minimise clock skew (and

subsequently) offset between two or more clocks

Dealing with Drifting Clocks
5

 A clock can show a positive of negative offset with
regard to a reference clock (e.g. UTC)

 Need to resynchronise clock periodically

 One can’t just set clock to ‘correct’ time

 Jumps (particularly backward!) can confuse software /
operating systems

 Instead aim for gradual compensation by correcting
the skew

 If clock runs too fast, make it run slower until correct

 If clock runs too slow, make it run faster until correct

J.Shannon PhD

J.Shannon PhD

• Make small changes to tick-

increment in order to

compensate skew and to

gradually adjust time

• These changes are dynamically

adjusted to follow (UTC)

reference

Pseudo Code Clock Handler with Skew

Compensation
9

// Global variable to store time

struct timespec Master_clock;

int Skew_comp;

…

#define CLOCK_TICK_INCREMENT 64000

#define ONE_SECOND_IN_NANO_SEC 1000000000

…

void init_Master_Clock() {

 Master_clock.tv_sec = 0;

 Master_clock.tv_nsec = 0;

 Skew_comp = 0;

}

…

void change_skew_comp(int delta) { // delta can be positive of negative

 Skew_comp += delta;

}

__interrupt void clock_handler() {

 Master_clock.tv_nsec += CLOCK_TICK_INCREMENT + Skew_comp;

 while (Master_clock.tv_nsec > ONE_SECOND_IN_NANO_SEC) {

 Master_clock.tv_nsec -= ONE_SECOND_IN_NANO_SEC;

 Master_clock.tv_sec++;

 }

}

Time Synchronisation of DS – Some

Examples
10

 Time synchronisation is crucial for many distributed
systems

 Synchronisation needs of endpoints are application-
specific

 From nanoseconds to seconds

 As technology evolves, error margins tend to get smaller,
and are easier to meet

 E.g. Gigabit Ethernet

 This is turn makes systems far more vulnerable if
synchronisation is interfered with

Example High Frequency Trading
11

 High frequency trading (HFT) is an automated trading
platform used by large investment banks

 It requires fast computers that run complex trading
algorithms and fast network technology to trade large
numbers of orders at extremely high speeds

◼ https://www.youtube.com/watch?v=z4nCTdQlH8w

 Due to its speed it provides split second arbitrage
opportunities for institutions to execute trades before the
open market can

 Accurate time synchronisation ensures that orders are
executed precisely at the intended time, avoiding
discrepancies or delays that could impact trade outcomes

https://www.youtube.com/watch?v=z4nCTdQlH8w

MiFID 2
12

 Directive 2014/65/EU, commonly known as MiFID 2 (Markets in
financial instruments directive 2), is a legal act of the EU

 It provides a legal framework for securities markets, investment
intermediaries, and trading venues

 In particular, MiFID 2 introduced the requirement for trading
venues, their members and participants to synchronise the
business clocks used to record the date and time of reportable
events to UTC

European Trading Platforms and

Gateway Latencies (2015 Data)
13

Example: Energy Systems - Power Line Fault

Detection

Example: Energy Systems - Power Line Fault

Detection

Timestamp

when noise

pulse arrivesSpeed of light c = 3 x 108 m/s ➔ 0.3 m / nanosecond
→ If the synchronisation error between the two fault
detection units is one microsecond, the line fault can be
narrowed down to a 300 m stretch of cable

Synchronising Distributed Systems
16

 Synchronisation can take place in different forms

 Based on physical (“real”) clocks - we look at them first

◼ Absolute to each other by synchronising to accurate time source (e.g. UTC)

◼ Absolute to each other by synchronising to locally agreed time (i.e. no link to
global time reference)

◼ Here the term absolute means that differences in timestamps are proper time
intervals

 Based on logical clocks (i.e. clocks are more like counters)

◼ Timestamps may be ordered but with no notion of measurable time intervals

 In either way, the DS endpoints synchronise using a shared network

 For physical clock synchronisation network latencies must be considered,
as packets traverse from a sending node to a receiving node

Perfect Networks
17

 Messages always arrive, with propagation delay

exactly d

 Sender sends time T in a message

 Receiver sets clock to T + d

 Synchronisation is exact

Deterministic Networks
18

 Messages arrive with propagation delay d, with 0 < d <=
D

 Sender sends time T in a message

 Receiver sets clock to T + D /2

 Synchronisation error is at most D / 2

 Deterministic communication is the ability of a network
to guarantee that a message will be transmitted in a
specified, predictable period of time

Synchronisation in the Real World
19

 Most off-the-shelf networks are asynchronous

 I.e., data is transmitted intermittently on a best effort basis

 They are designed for flexibility, not determinism

 CSMA/CD contention mechanism isn’t helpful either

 As a result, propagation delays are arbitrary and

sometime even unsymmetric (i.e. upstream and

downstream latencies are different)

 Therefore, synchronisation algorithms are needed to

accommodate these limitations

Cristian’s Algorithm
20

 Attempt to compensate for symmetric network delays

 Client remembers local time T0 just before sending request

 Server receives request, determines Ts and puts it into reply

 When client receives reply, it notes local arrival time T1

 The correct time is then approximately (Ts + (T1- T0) / 2)

 Algorithm assumes symmetric network latency

 If the server is synced to UTC, all clients will follow UTC

Cristian’s Algorithm: Example
21

 Round Trip Time (RTT) T1 – T0 = 460ms → one-way delay is ~ 230 ms

 Estimate correct time: 08:02:04.325 + 230 ms = 08:02:04.555

 Client C gradually adjusts local clock to gain 2.425 seconds (as seen before)
– i.e. C’s lock will be adjusted to tick slower or faster

Limitations of Cristian’s Algorithm
22

 The algorithm assumes

a symmetric network latency

timestamps can be taken as the packet hits the

wire / arrives at the client

TS is right in the middle of server process

◼E.g., consider the server process being pre-empted

just before it sends the response back to the client;

this will corrupt the synchronisation of the client

Berkeley Algorithm
23

 In this algorithm there is no accurate time server, instead a set of
client clocks is synchronised to their average time

 Assumption is that offsets / skews of all clocks follow some symmetric
distribution (e.g. a normal distribution) with some clocks going faster and
others slower, i.e. with a mean value close to 0

 One node is designated the master (or leader) M

 It periodically queries all other clients for their local time

 Each client returns a timestamp or their clock offset to the master

 Christian’s algorithm is used to determine and compensate for RTTs,
which can be different for each client (not shown in the following
examples)

 Using these, the master computes average time (thereby ignoring
outliers), calculates the difference to all timestamps it has received,
and sends an adjustment to each client

 Again, each computer gradually adjusts its local clock

Berkeley Algorithm Example Var 1
24

 Master (”Time daemon”) sends timestamp to all clients (left image)

 Each client return their relative offset to master (centre image)

 Master calculates average offset (i.e., (-10 + 0 + 25) / 3 = 5
minutes), determines the local time estimate (3:00 + 5), calculates
the relative offset for each client clock, and sends adjustments to
clients (right image)

Berkeley Algorithm Example Var 2
25

 Master requests timestamps from A, B and C, which

they duly return (left image)

 Master discards outliers (C’s timestamp), calculates the

average time (Avg) as well as the clients’ relative

offsets, which are send to the clients (right image)

In-Class Activity: Menti
26

 Consider the following timestamps by computers M,

A, B, C, D:

 M: 8:00:13

 A: 7:59:59

 B: 8:00:01

 C: 7:59:55

 D: 8:00:05

 Which of those values is an outlier?

 Calculate the average time

M

Berkeley Algorithm
27

 Client clocks are adjusted to run

faster or slower, to be synched

to overall agreed system time

 The client network is an intranet, i.e., an isolated system

 This makes the Berkeley algorithm an internal clock

synchronisation algorithm

 The Berkeley algorithm was implemented in the TEMPO

time synchronisation protocol, which was part of the

Berkeley UNIX 4.3BSD system (a remote uncle of today’s

Linux)

Logical Clocks
28

 Logical clocks is another concept linked to internal clock

synchronisation

 Logical clocks only care about their internal consistency,

but not about absolute (UTC) time

 Subsequently they do not need clock synchronisation and

take into account the order in which events occur rather

than the time at which they occurred

 In practice, if clients / processes only care about “event a

happens before event b”, but don’t care about the time

difference exactly, they can use logical clock

The “Happens-Before” Relation
29

 Some applications don’t need to know exactly when event a occurred

 Just need to know if a occurred before or after b

 Define the happens-before relation, a → b

 If events a and b are within the same process, then a → b, if a occurs with an
earlier local timestamp (process order)

 If a is the event of a message being sent by one process, and b is the event of
the message being received by another process , then a → b (causal order)

 We have transitivity, i.e. if a → b and b → c, then a → c

 Note that this only provides a partial order:

 If two events, a and b, happen in different processes that do not exchange
messages (not even indirectly), then a → b is not true, but neither is b → a

 We say that a and b are concurrent and write a ~ b

◼ I.e. nothing can be said about when the events happened or which event happened
first

Example
30

 Three processes P1, P2 and P3 (each with 6 events enumerated
a … f), and 2 messages m1 and m2

 Due to process order, we know a → b, c → d and e → f

 Causal order tells us b→ c and d→ f

 And by transitivity a → c, a → d, a → f, b → d, b → f, c → f

 However, event e is concurrent to a, b, c and d

Implementing Happens-Before using

the Lamport Scheme
31

 Each process Pi has a logical clock Li

 Li can simply be an integer variable, initialised to 0

 Li is incremented on every local event e

 We write Li (e) or L(e) as the timestamp of e

 When Pi sends a message, it increments Li and copies

its content into the packet

 When Pi receives a message from Pk, it extracts Lk and

sets Li := max(Li, Lk), and then increments Li

 This guarantees that if a → b, then Li(a) < Lk(b)

 But nothing else!

Lamport Clocks Example
32

 When P2 receives m1, it extracts timestamp 2 and sets its
clock to max(0, 2) before incrementing it, i.e. L2 = 3

 It is possible for events to have the same timestamp

 e.g. event e has the same timestamp as event a

 If desired, unique timestamps can be created for example by
adding a process identifier (PID), but there’s no real benefit

Lamport Clocks Example
33

 3 processes with their logical clocks before (left)

and after applying Lamport’s algorithm (right)

Identify incorrect timestamps by their X-Y position in the

grid (e.g. “TA” for the top left timestamp)
34

0 0 0 A

2 1 1 A

3 2 3 B

7 5 4 C

6 6 6 D

9 5 6 E

11 8 10 F

12 9 11 G

13 13 14 H

14 15 16 I

T U V

M

Incorrect Timestamps
35

0 0 0

2 1 1 A

3 2 3 B

7 5 4 C

6 6 5 D

9 5 6 E

11 8 10 F

12 9 11 G

13 13 14 H

14 15 16 I

T U V

Limitations of Lamport’s Logical Clocks
36

 Lamport’s logical clocks lead to a situation where all

events in a distributed system are ordered, so that if

event a (linked to Pi) “happened before” event b (linked

to Pk), i.e. a → b, then a will also be positioned in that

ordering before b, i.e. Li(a) < Lk(b) or simply L(a) < L(b)

 However, nothing can be said about the relationship

between two events a and b by merely comparing their

time values Li(a) and Lk(b), iff i <> k, i.e. we can’t tell if

a → b / b → a, or a ~ b

Limitations of Lamport’s Logical Clocks:

Example
37

 Each process keeps a list of time-
stamped events following Lamport

 Examining these lists allows us
(obviously) to determine that

 L(a) < L(c)

 L(e) < L(c)

 However (and we only know
this from examining the diagram):

 a → c, but

 e ~ c

 I.e., comparing the timestamps of some events a and b alone does
not allow us to determine if a → b, b → a, or a ~ b, unless they
are happening on the same process

 The problem is that Lamport clocks do not capture causality

a b c d e f

P1 1 2

P2 3 4

P3 1 5

Vector Clocks
38

 In practice, causality is captured by means of vector clocks

 Vector clocks work as follows:

 There is an ordered list of logical clocks, with one per process

 Each process Pi maintains vector Vi [], initially all zeroes at start

 On a local event e, Pi increments Vi [i] (i
th vector component)

◼ If the event is “message send”, new Vi[] is copied into packet

 If Pi receives a message from Pm then, for all k = 0, 1, …, it sets

Vi [k] := max(Vm[k], Vi[k]), and increments Vi[i]

 Intuitively Vi[k] captures the number of events at process Pk

that have been observed by Pi

Vector Clocks Example
39

 When P2 receives m1, it merges the entries from P1’s clock

 choose the maximum value in each position

 Similarly when P3 receives m2, it merges in P2’s clock

 this incorporates the changes from P1 that P2 already saw

 Vector clocks explicitly track the transitive causal order: f’s
timestamp captures the history of a, b, c & d

Using Vector Clocks for Ordering
40

Lamport Clocks versus Vector Clocks

a b c d e f

P1 1 2

P2 3 4

P3 1 5

a b c d e f

P1
(1,0,0) (2,0,0)

P2
(2,1,0) (2,2,0)

P3
(2,2,1) (2,2,2)

41

Lamport Clocks Vector Clocks

Is it e → c or e ~ c? It is e ~ c!

Summary
42

 Accurate clock synchronisation is an important task for

many distributed systems

 We’ve looked at various approaches to achieve that

by

 using physical or logical clocks

 applying different synchronisation algorithms /

approaches

 In the next lecture we’ll be looking at concrete time

synchronisation network protocols, how they work, and

their performance (i.e., Assignment 1)

	Slide 1: CT420 Real-Time Systems Time Synchronisation in Distributed Systems
	Slide 2: Time in Distributed Systems
	Slide 3: Example: Airline Reservation System
	Slide 4: Recap: The Clock Synchronisation Problem
	Slide 5: Dealing with Drifting Clocks
	Slide 6
	Slide 8
	Slide 9: Pseudo Code Clock Handler with Skew Compensation
	Slide 10: Time Synchronisation of DS – Some Examples
	Slide 11: Example High Frequency Trading
	Slide 12: MiFID 2
	Slide 13: European Trading Platforms and Gateway Latencies (2015 Data)
	Slide 14: Example: Energy Systems - Power Line Fault Detection
	Slide 15: Example: Energy Systems - Power Line Fault Detection
	Slide 16: Synchronising Distributed Systems
	Slide 17: Perfect Networks
	Slide 18: Deterministic Networks
	Slide 19: Synchronisation in the Real World
	Slide 20: Cristian’s Algorithm
	Slide 21: Cristian’s Algorithm: Example
	Slide 22: Limitations of Cristian’s Algorithm
	Slide 23: Berkeley Algorithm
	Slide 24: Berkeley Algorithm Example Var 1
	Slide 25: Berkeley Algorithm Example Var 2
	Slide 26: In-Class Activity: Menti
	Slide 27: Berkeley Algorithm
	Slide 28: Logical Clocks
	Slide 29: The “Happens-Before” Relation
	Slide 30: Example
	Slide 31: Implementing Happens-Before using the Lamport Scheme
	Slide 32: Lamport Clocks Example
	Slide 33: Lamport Clocks Example
	Slide 34: Identify incorrect timestamps by their X-Y position in the grid (e.g. “TA” for the top left timestamp)
	Slide 35: Incorrect Timestamps
	Slide 36: Limitations of Lamport’s Logical Clocks
	Slide 37: Limitations of Lamport’s Logical Clocks: Example
	Slide 38: Vector Clocks
	Slide 39: Vector Clocks Example
	Slide 40: Using Vector Clocks for Ordering
	Slide 41: Lamport Clocks versus Vector Clocks
	Slide 42: Summary

