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Time in Distributed Systems
2

 A distributed system (DS) is a type of networked system where 
multiple computers (nodes) work together to perform a task

 Such systems may or may not be connected to the Internet

 Time and time synchronisation are an important issues here

 Think of error logs in distributed systems; how can error events 
recorded in different computers be correlated with each other, if 
there is no common time-base

 Problem: 

 GNSS-based time synchronisation may or may not be available, as 
GPS signals are absorbed or weakened by building structures

 There is no other time reference such systems can rely on, as in such 
a distributed system there are just a series of imperfect computer 
clocks



Example: Airline Reservation System
3

 Assume an airline reservation system consisting of three servers A, B 
and C and some client computer that makes a booking

 Each server has its own local clock

 Server A receives a client request to purchase last ticket on flight 
ABC123

 Server A timestamps the purchase using its local clock reading 
(9h:15m:32.45s) and logs it. It replies “ok” to client

 That was the last seat. Server A sends message to Server B stating 
“flight full.”

 B enters “Flight ABC123 full” + local its clock reading 
(9h:10m:10.11s) into its log

 At a later stage server C queries A’s and B’s logs. It reads that a 
client purchased a ticket after the flight became full



Recap: The Clock Synchronisation 

Problem
4

 In distributed systems, all the different nodes are 

supposed to have the same notion of time, but quartz 

oscillators oscillate at slightly different frequencies 

 Hence, clocks tick at different rates (→clock skew), 

resulting in an increasing gap in perceived time

 The difference between two clocks at a given point in 

time is called clock offset

 Clock synchronization aims to minimise clock skew (and 

subsequently) offset between two or more clocks



Dealing with Drifting Clocks
5

 A clock can show a positive of negative offset with 
regard to a reference clock (e.g. UTC)

 Need to resynchronise clock periodically

 One can’t just set clock to ‘correct’ time

 Jumps (particularly backward!) can confuse software / 
operating systems

 Instead aim for gradual compensation by correcting 
the skew

 If clock runs too fast, make it run slower until correct

 If clock runs too slow, make it run faster until correct
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• Make small changes to tick- 

increment in order to 

compensate skew and to 

gradually adjust time

• These changes are dynamically 

adjusted to follow (UTC) 

reference



Pseudo Code Clock Handler with Skew 

Compensation
9

// Global variable to store time

struct timespec Master_clock;

int Skew_comp;

…

#define CLOCK_TICK_INCREMENT 64000

#define ONE_SECOND_IN_NANO_SEC 1000000000

…

void init_Master_Clock() {

  Master_clock.tv_sec = 0;

  Master_clock.tv_nsec = 0;

  Skew_comp = 0;

}

…

void change_skew_comp(int delta) { // delta can be positive of negative

  Skew_comp += delta;

}

__interrupt void clock_handler() {

 Master_clock.tv_nsec += CLOCK_TICK_INCREMENT + Skew_comp;

 while (Master_clock.tv_nsec  > ONE_SECOND_IN_NANO_SEC) {

   Master_clock.tv_nsec  -= ONE_SECOND_IN_NANO_SEC;

   Master_clock.tv_sec++;

 }

} 

 



Time Synchronisation of DS – Some 

Examples
10

 Time synchronisation is crucial for many distributed 
systems

 Synchronisation needs of endpoints are application-
specific

 From nanoseconds to seconds

 As technology evolves, error margins tend to get smaller, 
and are easier to meet  

 E.g. Gigabit Ethernet

 This is turn makes systems far more vulnerable if 
synchronisation is interfered with 



Example High Frequency Trading
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 High frequency trading (HFT) is an automated trading 
platform used by large investment banks

 It requires fast computers that run complex trading 
algorithms and fast network technology to trade large 
numbers of orders at extremely high speeds

◼ https://www.youtube.com/watch?v=z4nCTdQlH8w 

 Due to its speed it provides split second arbitrage 
opportunities for institutions to execute trades before the 
open market can

 Accurate time synchronisation ensures that orders are 
executed precisely at the intended time, avoiding 
discrepancies or delays that could impact trade outcomes

https://www.youtube.com/watch?v=z4nCTdQlH8w


MiFID 2
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 Directive 2014/65/EU, commonly known as MiFID 2 (Markets in 
financial instruments directive 2), is a legal act of the EU

 It provides a legal framework for securities markets, investment 
intermediaries, and trading venues 

 In particular, MiFID 2 introduced the requirement for trading 
venues, their members and participants to synchronise the 
business clocks used to record the date and time of reportable 
events to UTC



European Trading Platforms and 

Gateway Latencies (2015 Data)
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Example: Energy Systems - Power Line Fault 

Detection



Example: Energy Systems - Power Line Fault 

Detection

Timestamp 

when noise 

pulse arrivesSpeed of light c = 3 x 108 m/s   ➔ 0.3 m / nanosecond
→ If the synchronisation error between the two fault 
detection units is one microsecond, the line fault can be 
narrowed down to a 300 m stretch of cable



Synchronising Distributed Systems
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 Synchronisation can take place in different forms

 Based on physical (“real”) clocks - we look at them first

◼ Absolute to each other by synchronising to accurate time source (e.g. UTC)

◼ Absolute to each other by synchronising to locally agreed time (i.e. no link to 
global time reference)

◼ Here the term absolute means that differences in timestamps are proper time 
intervals

 Based on logical clocks (i.e. clocks are more like counters)

◼ Timestamps may be ordered but with no notion of measurable time intervals

 In either way, the DS endpoints synchronise using a shared network

 For physical clock synchronisation network latencies must be considered, 
as packets traverse from a sending node to a receiving node



Perfect Networks 
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 Messages always arrive, with propagation delay 

exactly d

 Sender sends time T in a message

 Receiver sets clock to T + d 

 Synchronisation is exact



Deterministic Networks
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 Messages arrive with propagation delay d, with 0 < d <= 
D

 Sender sends time T in a message

 Receiver sets clock to T + D /2 

 Synchronisation error is at most D / 2

 Deterministic communication is the ability of a network 
to guarantee that a message will be transmitted in a 
specified, predictable period of time



Synchronisation in the Real World
19

 Most off-the-shelf networks are asynchronous

 I.e., data is transmitted intermittently on a best effort basis

 They are designed for flexibility, not determinism

 CSMA/CD contention mechanism isn’t helpful either

 As a result, propagation delays are arbitrary and 

sometime even unsymmetric (i.e. upstream and 

downstream latencies are different)

 Therefore, synchronisation algorithms are needed to 

accommodate these limitations



Cristian’s Algorithm
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 Attempt to compensate for symmetric network delays

 Client remembers local time T0 just before sending request

 Server receives request, determines Ts and puts it into reply

 When client receives reply, it notes local arrival time T1

 The correct time is then approximately (Ts + (T1- T0) / 2)

 Algorithm assumes symmetric network latency

 If the server is synced to UTC, all clients will follow UTC



Cristian’s Algorithm: Example
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 Round Trip Time (RTT) T1 – T0 = 460ms → one-way delay is ~ 230 ms

 Estimate correct time: 08:02:04.325 + 230 ms = 08:02:04.555

 Client C gradually adjusts local clock to gain 2.425 seconds (as seen before) 
– i.e. C’s lock will be adjusted to tick slower or faster



Limitations of Cristian’s Algorithm
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 The algorithm assumes 

a symmetric network latency

timestamps can be taken as the packet hits the 

wire / arrives at the client

TS is right in the middle of server  process 

◼E.g., consider the server process being pre-empted 

just before it sends the response back to the client; 

this will corrupt the synchronisation of the client



Berkeley Algorithm
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 In this algorithm there is no accurate time server, instead a set of 
client clocks is synchronised to their average time

 Assumption is that offsets / skews of all clocks follow some symmetric 
distribution (e.g. a normal distribution) with some clocks going faster and 
others slower, i.e. with a mean value close to 0

 One node is designated the master (or leader) M

 It periodically queries all other clients for their local time

 Each client returns a timestamp or their clock offset to the master

 Christian’s algorithm is used to determine and compensate for RTTs, 
which can be different for each client (not shown in the following 
examples) 

 Using these, the master computes average time (thereby ignoring 
outliers), calculates the difference to all timestamps it has received, 
and sends an adjustment to each client

 Again, each computer gradually adjusts its local clock 



Berkeley Algorithm Example Var 1
24

 Master (”Time daemon”) sends timestamp to all clients (left image)

 Each client return their relative offset to master (centre image)

 Master calculates average offset (i.e., (-10 + 0 + 25) / 3 = 5 
minutes), determines the local time estimate (3:00 + 5), calculates 
the relative offset for each client clock, and sends adjustments to 
clients (right image)



Berkeley Algorithm Example Var 2
25

 Master requests timestamps from A, B and C, which 

they duly return (left image)

 Master discards outliers (C’s timestamp), calculates the 

average time (Avg) as well as the clients’ relative 

offsets, which are send to the clients (right image) 



In-Class Activity: Menti
26

 Consider the following timestamps by computers M, 

A, B, C, D:

 M: 8:00:13 

 A:  7:59:59

 B:  8:00:01

 C:  7:59:55

 D:  8:00:05

 Which of those values is an outlier? 

 Calculate the average time

M



Berkeley Algorithm
27

 Client clocks are adjusted to run

faster or slower, to be synched

to overall agreed system time

 The client network is an intranet, i.e., an isolated system

 This makes the Berkeley algorithm an internal clock 

synchronisation algorithm

 The Berkeley algorithm was implemented in the TEMPO 

time synchronisation protocol, which was part of the 

Berkeley UNIX 4.3BSD system (a remote uncle of today’s 

Linux)



Logical Clocks
28

 Logical clocks is another concept linked to internal clock 

synchronisation

 Logical clocks only care about their internal consistency, 

but not about absolute (UTC) time

 Subsequently they do not need clock synchronisation and 

take into account the order in which events occur rather 

than the time at which they occurred

 In practice, if clients / processes only care about “event a 

happens before event b”, but don’t care about the time 

difference exactly, they can use logical clock



The “Happens-Before” Relation
29

 Some applications don’t need to know exactly when event a occurred

 Just need to know if a occurred before or after b

 Define the happens-before relation, a → b

 If events a and b are within the same process, then a → b, if a occurs with an 
earlier local timestamp (process order)

 If a is the event of a message being sent by one process, and b is the event of 
the message being received by another process , then a → b (causal order)

 We have transitivity, i.e. if a → b and b → c, then a → c

 Note that this only provides a partial order:

 If two events, a and b, happen in different processes that do not exchange 
messages (not even indirectly), then a → b is not true, but neither is b → a

 We say that a and b are concurrent and write a ~ b

◼ I.e. nothing can be said about when the events happened or which event happened 
first



Example
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 Three processes P1, P2 and P3 (each with 6 events enumerated
a … f), and 2 messages m1 and m2

 Due to process order, we know a → b, c → d and e → f

 Causal order tells us b→ c and d→ f

 And by transitivity a → c, a → d, a → f, b → d, b → f, c → f

 However, event e is concurrent to a, b, c and d



Implementing Happens-Before using 

the Lamport Scheme
31

 Each process Pi has a logical clock Li

 Li can simply be an integer variable, initialised to 0

 Li is incremented on every local event e

 We write Li (e) or L(e) as the timestamp of e

 When Pi sends a message, it increments Li and copies 

its content into the packet

 When Pi receives a message from Pk, it extracts Lk and 

sets Li := max(Li, Lk), and then increments Li

 This guarantees that if a → b, then Li(a) < Lk(b)

 But nothing else!



Lamport Clocks Example
32

 When P2 receives m1, it extracts timestamp 2 and sets its 
clock to max(0, 2) before incrementing it, i.e. L2 = 3

 It is possible for events to have the same timestamp

 e.g. event e has the same timestamp as event a

 If desired, unique timestamps can be created for example by 
adding a process identifier (PID), but there’s no real benefit



Lamport Clocks Example
33

 3 processes with their logical clocks before (left) 

and after applying Lamport’s algorithm (right)



Identify incorrect timestamps by their X-Y position in the 

grid (e.g. “TA” for the top left timestamp)
34

0 0 0 A

2 1 1 A

3 2 3 B

7 5 4 C

6 6 6 D

9 5 6 E

11 8 10 F

12 9 11 G

13 13 14 H
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Incorrect Timestamps
35

0 0 0

2 1 1 A

3 2 3 B

7 5 4 C

6 6 5 D

9 5 6 E

11 8 10 F
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13 13 14 H
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Limitations of Lamport’s Logical Clocks
36

 Lamport’s logical clocks lead to a situation where all 

events in a distributed system are ordered, so that if 

event a (linked to Pi) “happened before” event b (linked 

to Pk), i.e. a → b, then a will also be positioned in that 

ordering before b, i.e. Li(a) < Lk(b) or simply L(a) < L(b)

 However, nothing can be said about the relationship 

between two events a and b by merely comparing their 

time values Li(a) and Lk(b), iff i <> k, i.e. we can’t tell if 

a → b / b → a, or a ~ b



Limitations of Lamport’s Logical Clocks: 

Example
37

 Each process keeps a list of time- 
stamped events following Lamport

 Examining these lists allows us 
(obviously) to determine that

 L(a) < L(c)

 L(e) < L(c)

 However (and we only know 
this from examining the diagram):

 a → c, but 

 e ~ c

 I.e., comparing the timestamps of some events a and b alone does 
not allow us to determine if a → b, b → a, or a ~ b, unless they 
are happening on the same process 

 The problem is that Lamport clocks do not capture causality

a b c d e f

P1 1 2

P2 3 4

P3 1 5



Vector Clocks
38

 In practice, causality is captured by means of vector clocks 

 Vector clocks work as follows:

 There is an ordered list of logical clocks, with one per process

 Each process Pi maintains vector Vi [], initially all zeroes at start

 On a local event e, Pi increments Vi [i] (i
th vector component)

◼ If the event is “message send”, new Vi[] is copied into packet

 If Pi receives a message from Pm then, for all k = 0, 1, …, it sets 

Vi [k] := max(Vm[k], Vi[k]), and increments Vi[i]

 Intuitively Vi[k] captures the number of events at process Pk 

that have been observed by Pi



Vector Clocks Example
39

 When P2 receives m1, it merges the entries from P1’s clock

 choose the maximum value in each position

 Similarly when P3 receives m2, it merges in P2’s clock

 this incorporates the changes from P1 that P2 already saw

 Vector clocks explicitly track the transitive causal order: f’s 
timestamp captures the history of a, b, c & d



Using Vector Clocks for Ordering
40



Lamport Clocks versus Vector Clocks

a b c d e f

P1 1 2

P2 3 4

P3 1 5

a b c d e f

P1
(1,0,0) (2,0,0)

P2
(2,1,0) (2,2,0)

P3
(2,2,1) (2,2,2)

41

Lamport Clocks Vector Clocks

Is it e → c or e ~ c? It is e ~ c!



Summary
42

 Accurate clock synchronisation is an important task for 

many distributed systems

 We’ve looked at various approaches to achieve that 

by

 using physical or logical clocks

 applying different synchronisation algorithms / 

approaches

 In the next lecture we’ll be looking at concrete time 

synchronisation network protocols, how they work, and 

their performance (i.e., Assignment 1)
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