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Summary of topic
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* Binning

 Sampling

 The Curse of Dimensionality & feature selection
 Covariance and correlation matrices
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Data normalisation

Problem — Scaling:
Attribute 1 has range 0-10,
Attribute 2 has range 0-1000
Attribute 2 will dominate calculations

Solution:

Rescale all dimensions independently
Mean=0, Std deviation=1 [Z-Normalisation]
(HousePrices-1NN.xIsx on Blackboard has a worked example with k-NN)
D « (D - Mean) / StDev
Min=0, Max=1 [0-1 Normalisation] (also referred to as “range normalisation”)
D « (D — Min) / (Max — Min)
Normalisation is important in many other areas of machine learning and optimisation
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Normalisation example

HEIGHT SPONSORSHIP EARNINGS
Values Range Standard | Values Range Standard
192  0.500 -0.073 561 0.315 -0.649
197 0.679 0.533 1,312  0.776 0.762
192  0.500 -0.073 1,359 0.804 0.850
182  0.143 -1.283 1,678  1.000 1.449
206  1.000 1.622 314 0.164 -1.114
192  0.500 -0.073 427  0.233 -0.901
190 0.429 -0.315 1,179  0.694 0.512
178  0.000 -1.767 1,078 0.632 0.322
196  0.643 0.412 47  0.000 -1.615
201 0.821 1.017 1111 0.652 0.384
206 1,678
178 47
193 907
8.26 532.18




Normalisation in scikit-learn

It is generally good practice to normalise continuous variables before developing an ML model. Some
algorithms (e.g. k-NN) are much more susceptible to the effects of the relative scale of attributes than
others (e.g. decision trees are more robust to the effects of scale)

z-normalisation is easily accomplished in scikit-learn using the StandardScaler utility class
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html

0-1 normalisation can be accomplished using the MinMaxScaler utility class
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html

See the following link for more information:

https://scikit-learn.org/stable/modules/preprocessing.htmlitstandardization-or-mean-removal-and-
variance-scaling
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https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
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Binning

Binning involves converting a continuous feature into a
categorical feature
To perform binning, we define a series of ranges (called bins) for
the continuous feature that correspond to the levels of the new
categorical feature we are creating.
We will introduce two of the more popular ways of defining bins:
equal-width binning
equal-frequency binning
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Setting the number of bins

Deciding on the number of bins can be difficult. The
general trade-off is this:
If we set the number of bins to a very low number we may lose
a lot of information
If we set the number of bins to a very high number then we
might have very few instances in each bin or even end up with
empty bins.

<y

;@@_@ OLLSCOILNA GAILLIMHE
EI.%.IZ« UNIVERSITY oF GALWAY
LW




Density

0 0.0 003 .04 0.05 .06

0.0

Density

i} 0.02 i} 0.04 005 0.08

000

- - 3
.
£ v
[}
¥ u
— o N
' L]
L v
- J s
A ™ ¢
—t — —— .
# b 4 5
i b - s b
I I I L 1
50 aa 70 B0 80
Value

The effect of different numbers of bins

Density

am (i) 0.m 004 0.05 006

0.00

-

il

T
80 70 a0

Value

(g) 60 bins

(e) 3 bins

LL,

Y
O‘*@R@C OLLSCOILNAGAILLIMHUE
- slima|= -
cﬁlvr.-.li UNIVERSITY oF GALWAY

LW




Density

0.0k

0.004

0.6

Q.00

0.000

Equal-width binning

The equal-width binning approach splits the range of the feature values into b bins each of size range/b
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Equal-frequency binning

Equal-frequency binning first sorts the continuous feature values into ascending order and then places an
equal number of instances into each bin, starting with bin 1.

The number of instances placed in each bin is simply the total number of instances divided by the number
of bins, b.
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Sampling

Sometimes the dataset we have is so large that we do not use all the data available to us and instead
sample a smaller percentage from the larger dataset.

E.g. we may wish to use only part of the data because training will take a long time with very many
examples for some algorithms. Or in the case of k-NN, a very large training set may lead to long
prediction times

We need to be careful when sampling, however, to ensure that the resulting datasets are still
representative of the original data and that no unintended bias is introduced during this process.
Common forms of sampling include: top sampling, random sampling, stratified sampling, under-
sampling, over-sampling
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Top sampling

Top sampling simply selects the top s% of instances from a
dataset to create a sample.
Top sampling runs a serious risk of introducing bias, however, as

the sample will be affected by any ordering of the original
dataset.

Therefore top sampling should be avoided.
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Random sampling

A good default sampling strategy is random sampling
Random sampling randomly selects a proportion of s% of the
instances from a large dataset to create a smaller set.

Random sampling is a good choice in most cases as the random

nature of the selection of instances should avoid introducing
bias.
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Stratified sampling

Stratified sampling is a sampling method that ensures that the relative
frequencies of the levels of a specific stratification feature are maintained

in the sampled dataset.

To perform stratified sampling:
the instances in a dataset are divided into groups (or strata), where each group
contains only instances that have a particular level for the stratification feature
s% of the instances in each stratum are randomly selected these selections are
combined to give an overall sample of s% of the original dataset.
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Dealing with imbalanced datasets

In contrast to stratified sampling, sometimes we would like a
sample to contain different relative frequencies of the levels of a
particular discrete feature to the distribution in the original

dataset.

To do this, we can use under-sampling or over-sampling.
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Under-sampling

Under-sampling begins by dividing a dataset into groups, where each group contains
only instances that have a particular level for the feature to be under-sampled.

The number of instances in the smallest group is the under-sampling target size.

Each group containing more instances than the smallest one is then randomly sampled
by the appropriate percentage to create a subset that is the under-sampling target
size.

These under-sampled groups are then combined to create the overall under-sampled
dataset.
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Over-sampling

Over-sampling addresses the same issue as under-sampling but in the
opposite way around.

After dividing the dataset into groups, the number of instances in the
largest group becomes the over-sampling target size.

From each smaller group, we then create a sample containing that
number of instances using random sampling with replacement.
These larger samples are combined to form the overall over-sampled
dataset.
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The Curse of Dimensionality [1]
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The Curse of Dimensionality [2]

Problem — Curse of Dimensionality:
Some attributes are much more significant than others

This is particularly problematic for k-NN if all attributes are considered equally in distance metric, possibly leading to
bad predictions.

k-NN uses all attributes when making a prediction, whereas other algorithms e.g., decision trees use only the most
useful features so are not as badly affected by the Curse of Dimensionality

With many attributes, everything becomes 'distant’ [see next slide]
Solution a:

Assign weighting to each dimension
(not same as distance-weighted k-NN!)

Optimise weighting to minimise error Any algorithm that
Solution b: considers all attributes

Give some dimensions 0 weight: in a high-dimensional space

Feature Subset Selection equally has this problem,

not just k<-NN +
Euclidean Distance!
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The Curse of Dimensionality [3]

Russell & Norvig:
Consider N cases with d dimensions, in hypercube of unit volume
Assume neighbourhoods are hypercubes, length b: volume is b?
To contain k points, average neighbourhood must occupy k/N of entire volume
=> b = k/N
=> b = (k/N)*/d
High dimensions:
k =10; N =1,000,000; d =100 => b =0.89
i.e. neighbourhood spans nearly 90% of each dimension of space!
Low dimensions:
k and N unchanged; d =2 => b =0.003 [OK]
High-D spaces are generally very sparse: all neighbours far away
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Feature Selection

Fortunately, some algorithms partially mitigate the effects of the curse of
dimensionality (e.g., decision tree learning). This is not true for all algorithms however,

and heuristics for search can sometimes be misleading!

K-NN and many other algorithms use all attributes when making a prediction

Acquiring more data is not (always) a realistic option
The best way to avoid the curse is to use only the most useful features during learning,

this process is known as feature selection
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Types of features

We may wish to distinguish between different types of descriptive features:
Predictive: provides information that is useful when estimating the correct target
value

Interacting: provides useful information only when considered in conjunction with
other features

Redundant: features that have a strong correlation with another feature
Irrelevant: doesn’t provide any useful information for estimating the target value

|deally, a good feature selection approach should identify the smallest subset of
features that maintain prediction performance
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Feature Selection Approaches

Rank and prune:

Rank features according to their predictive power and keep only the top X%
A filter is a measure of predictive power used during ranking, e.g. information gain
Drawback: features evaluated in isolation, so we will miss useful interacting features

Search for useful feature subsets:

We can pick out useful interacting features by evaluating feature subsets

Could generate, evaluate and rank all possible feature subsets then pick best (essentially a brute
force approach, computationally expensive/infeasible?)

Better approach: greedy local search, build feature subset iteratively by starting out with an empty
selection, then trying to add additional features incrementally. Requires evaluation experiments

along the way. Stop trying to add more features to the selection once termination conditions are
met.
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CAREER SPONSORSHIP SHOE

ID PosITION HEIGHT WEIGHT STAGE AGE EARNINGS SPONSOR
1 forward 192 218 veteran 29 561 yes
2 center 218 251 mid-career 35 60 no
3 forward 197 221 rookie 22 1,312 no
4 forward 192 219 rookie 22 1,359 no
5 forward 198 223 veteran 29 362 yes
6 guard 166 188 rookie 21 1,536 yes
7 forward 195 221 veteran 25 694 no
Exa m p I e 8 guard 182 199 rookie 21 1,678 yes
9 guard 189 199 mid-career 27 385 yes
d ataset: 10  forward 205 232 rookie 24 1,416 no
11 center 206 246 mid-career 29 314 no
. 12 guard 185 207 rookie 23 1,497 yes
p rOfe SSIOoNAa | 13 guard 172 183 rookie 24 1,383 yes
14 guard 169 183 rookie 24 1,034 yes
b as ket b 3 I I 15 guard 185 197 mid-career 29 178 yes
16 forward 215 232 mid-career 30 434 no
17 guard 158 184 veteran 29 162 yes
o | ayers 18 guard 190 207 mid-career 27 648 yes
19 center 195 235 mid-career 28 481 no
20 guard 192 200 mid-career 32 427 yes
21 forward 202 220 mid-career 31 542 no
22 forward 184 213 mid-career 32 12 no
23 forward 190 215 rookie 22 1,179 no
24 guard 178 193 rookie 21 1,078 no
25 guard 185 200 mid-career 31 213 yes
26 forward 191 218 rookie 19 1,855 no
OLLSCOILNA GAILLIMUE 27 center 196 235 veteran 32 47 no
UNIVERSITY oF GALWAY 28 forward 198 221 rookie 22 1,409 no
29 center 207 247 veteran 27 1,065 no

30 center 201 244 mid-career 25 1,111 yes




Scatter plot example

Note strong positive & e
correlation between § °
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@R 1uscommGanLmns Figure: An example scatter plot showing the re_Iationship between the
818 UNIVERSITY or GALWAY HEIGHT and WEIGHT features from the professional basketball squad




Some further scatter plot examples
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and (b) the HEIGHT and AGE features from the dataset in Table 4 1.
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Measuring covariance and correlation

As well as visually inspecting scatter plots, we can
calculate formal measures of the relationship between two
continuous features using covariance and correlation.

For two features, a and b, in a dataset of n instances, the
sample covariance between aand b is

(bi — b)) (1)

cov(a,b) =

—1

where a; and b; are values of features a and b for the i
Instance in a dataset, and a and b are the sample means
of features a and b.




Covariance

Covariance values fall into the range [—o0, oco] where
negative values indicate a negative relationship, positive
values indicate a positive relationship, and values near
zero indicate that there is little or no relationship between

the features.
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Example co-variance calculation (1/2)

HEIGHT WEIGHT (h—h)x AGE (h— h)x

D () h-h (w w-w (w-w) (@ a-a (a-a)

1 192 0.9 218 3.0 2.7 29 2.6 2.3

2 218 26.9 251 36.0 967.5 35 8.6 231.3

3 197 5.9 221 6.0 352 22 -4.4 -26.0

4 192 0.9 219 4.0 3.6 22 -4.4 -4.0

5 198 6.9 223 8.0 55.0 29 2.6 17.9

26 191 -0.1 218 3.0 -0.3 19 -7.4 0.7

27 196 4.9 235 20.0 97.8 32 5.6 27.4

28 198 6.9 221 6.0 412 22 -4.4 -30.4

29 207 15.9 247 32.0 508.3 27 0.6 9.5

30 201 9.9 244 29.0 286.8 25 -1.4 -13.9
Mean 191.1 215.0 26.4
Std Dev 13.6 19.8 4.2

Sum 7,009.9 570.8




Example co-variance calculation (2/2)

Covariance is measured in the same units as the features that it measures,
so comparisons like the above don’t really make sense (the pairs of
features being measured should be in the same units

To solve this problem we can use the correlation coefficient. (Formally

known as the Pearson product-moment correlation coefficient or

Pearson’s r)

cov(HEIGHT, WEIGHT) = 0999 _ 241.72

29
570.8

29

cov(HEIGHT, AGE) = 19.7
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Correlation

Correlation is a normalized form of covariance that ranges
between —1 and +1.

The correlation between two features, a and b, can be
calculated as

cov(a, b)

sd(a) x sd(b) 2)

corr(a,b) =

where cov(a, b) is the covariance between features a and
b and sd(a) and sd(b) are the standard deviations of a
and b respectively.




Correlation

Correlation values fall into the range [—1, 1], where values
close to —1 indicate a very strong negative correlation (or
covariance), values close to 1 indicate a very strong
positive correlation, and values around O indicate no
correlation.

Features that have no correlation are said to be
independent.

ULy
J_@i}:’_: OLLSCOILNA GAILLIMUE
E‘L%J’J UNIVERSITY OF GALWAY

4w




Calculating correlation

This example confirms what we observed earlier in the

scatterplots:
There is a strong positive relationship between height and weight
There is little correlation between height and age (unsurprisingly!)

. . 241.72
corr(Height, Weight) = 36<198 0.898
. 19.7
corr(Height, Age) = = 0.345

13.6 x 4.2
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Covariance matrices

The covariance matrix, usually denoted as ) ’, between a
set of continuous features, {a, b, ..., z}, is given as

 var(a) cov(a,b) --- cov(a,z)
Z ~ cov(:b, a) var;(b) .-~ cov(b,z) 3)
(802 cov(z,a) cov(z,b) --- var(z)




Correlation matrices

Similarly, the correlation matrix is just a normalized
version of the covariance matrix and shows the correlation
between each pair of features:

‘corr(a,a) corr(a,b) --- corr(a,z)]

, , corr(b,a) corr(b,b) --- corr(b,Zz)
correj{!al;;on q':atnx —
ab,....z

corr(z,a) corr(z,b) --- corr(z,z)
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Covariance and correlation matrices for the
basketball dataset

Covariance matrix _1 85.1 28 241.7/2 1 9.7 |
Z — | 241.72 392.102 24.469
<Height,Weight Age> | 19.7 24.469 17.697

Correlation matrix

1.0 0.898 0.345
correlation matrix = [{0.898 1.0 0.294

< Height, Weight,Age> 0.345 0.294 1.0
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Example scatter plot matrix

Relationship
between
scatter plots
and corelation
matrices
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Shortcomings of covariance and correlation

Correlation is a good measure of the relationship between two continuous features,
but it is not by any means perfect.

First, the correlation measure given earlier responds only to linear relationships
between features.

In a linear relationship between two features, as one feature increases or decreases,
the other feature increases or decreases by a corresponding amount.

Frequently, features will have very strong non-linear relationships that correlation
does not respond to.

Some of the limitations of measuring correlation are illustrated very clearly in the
famous example of Anscombe’s quartet published by the famous statistician Francis

Anscombe in 1973
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Anscombe’s quartet

Here we see 4 pairs of features that
all have the same correlation to
one another: 0.816

Note the linearly increasing
relationship as shown by the best
fit linear regression line

Main lesson: it is important to
visualise your data as well as
looking at summary statistics!
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A more extreme example — The Datasaurus Dozen (Autodesk)

https://www.autodesk.com/research/publications/same-stats-different-graphs
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https://www.autodesk.com/research/publications/same-stats-different-graphs

Correlation and causation

Perhaps the most important thing to remember in relation to correlation
is that correlation does not necessarily imply causation.
Two main mistakes that are made:

1. Mistaking the order of a causal relationship

2. Inferring causation between two features, but neglecting a third

hidden feature that has a causal relationship with the first two

Main lesson: before causation is concluded based on a strong correlation
between two features, in-depth studies involving domain experts are
required—correlation alone is just not enough
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Mistaking the order of a causal relationship

Windmills are observed to spin faster when there is a stronger wind
Therefore, can we conclude that spinning windmills cause wind?

No — the relationship is the other way around, wind causes windmills to
spin

Many basketball players are taller than average

Therefore, can we conclude that being a basketball player makes one
taller?

No — basketball players are taller than average because the extra height
gives them an advantage against shorter opponents
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Hidden third factors

Every summer, ice cream sales increase. Every summer, drownings also increase

Should we conclude that ice cream causes drowning?

No — there is a hidden third factor (temperature) that causes ice cream sales to increase, and also
increases the number of people swimming (hence the increase in drownings)

In 1999, a study was published in Nature (one of the world’s top journals) claiming a causal relationship
between night light use as a child and the development of near-sightedness later in life. However, other
researchers could not replicate the results. Later it was discovered that near-sighted parents tend to use
night lights in their children’s bedrooms because of the parents’ poor vision. Near-sighted parents are
also more likely to have near sighted children — hence the hidden third factor in this case is the parents,
explaining the correlation, while also ruling out a causal link.

QOLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY




Correlation matrices with Pandas

Correlation matrices are easily computed
using the pandas library, specifically the
pandas.DataFrame.corr function mean texture

mean radlus -

mean perimeter -

Lots of tutorials available online, here’s

one example: mean area -
https://likegeeks.com/python-correlation-

- mean smoothness
matrlx[

medan compactness
In this example the seaborn library is also
used for visualising the correlation matrix

mean radius
mean texturs
Mean area
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mean perimeter

mean smockthness
mean compactness -



https://likegeeks.com/python-correlation-matrix/
https://likegeeks.com/python-correlation-matrix/
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