
CS4423: Networks

Week 10, Part 1: Giant Components and
Small Worlds
Dr Niall Madden

School of Maths, University of Galway

19+20 March 2025)

These slides include material by Angela Carnival.CS4423 — Week 10, Part 1: Giant Components and Small Worlds 1/21



Homework Assignment 2

Homework Assignment 2 has started

I Part 1: A written (i.e., Python-free) assignment. See
https://www.niallmadden.ie/2425-CS4423/#Assignment-2-1

I Part 2: See
https://www.niallmadden.ie/2425-CS4423/#Assignment-2-2

I Deadline: 5pm. Friday, 28 March.

Questions?
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Outline

This weeks notes are split between PDF slides, and a Jupyter Notebook.
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Slides are at:
https://www.niallmadden.ie/2425-CS4423
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Giant Components

Recall that a network may be made up of several connected
components, and any connected network has a single connected
components.
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Giant Components

It is common in large networks to observe a giant component: a
connected component which has a large proportion of the networks
nodes. This is particularly the case with graphs in GER(n, p) with
large enough p. In the following examples we take n = 100.

p = 2/n; largest component has 89 nodes
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Giant Components

It is common in large networks to observe a giant component: a
connected component which has a large proportion of the networks
nodes. This is particularly the case with graphs in GER(n, p) with
large enough p. In the following examples we take n = 100.

p = 1/n; largest component has 13 nodes
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Giant Components

It is common in large networks to observe a giant component: a
connected component which has a large proportion of the networks
nodes. This is particularly the case with graphs in GER(n, p) with
large enough p. In the following examples we take n = 100.

p = 0.5/n; largest component has 5 nodes
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Giant Components GER(n, p)

Giant component

A connected component of a graph G is called a giant compo-
nent if its number of nodes increases with the order n of G as
some positive power of n.

Suppose p(n) = cn−1 for some positive constant c . (Then the
average degree 〈k〉 = pn = c remains fixed as n→∞.)

Theorem (Erdős-Rényi)

For graphs in GER(n, p):

I If c < 1 the graph contains many small components, orders
bounded by O(ln n).

I c = 1 the graph has large components of order S = O(n2/3).

I c > 1 there’s a unique giant component of order S = O(n).
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Giant Components GER(n, p)

n = 1000, p = cn−1
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Small world network

Many real world networks are small world networks, where most
pairs of nodes are only a few steps away from each other, and
where nodes tend to form cliques, i.e., subgraphs having all nodes
connected to each other.
Examples:

I MathSciNet allows users to explore distances between authors
in the collaborations network. The distance of an author to
Erdös is know as this author’s Erdös number

I The cinematographic version of this phenomenon is the Six
Degrees of Kevin Bacon
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Small world network Erdös Number

Paul Erdös was a prolific mathematics, with over 1,500 published
papers, and a prolific collaborator, with over 500 collaborators.
The concept of an Erdös Number was invented to celebrate the
his propensity for collaboration.

Paul Erdös and Terry Tao

CS4423 — Week 10, Part 1: Giant Components and Small Worlds 9/21



Small world network Erdös Number

I Erdös Number 0: you are Paul Erdös;

I Erdös Number 1: you co-authored a paper with Paul Erdös;

I Erdös Number 2: you co-authored a paper with someone with
Erdös Number 1 (and you are not Paul Erdös);

I More generally, your Erdös Number is 1 plus the minimum
Erdös Number of your co-authors.

The point of the exercise is to show how connected the
mathematical world is. E.g., my own EN is 4; the median EN of
my colleagues in Mathematics here in Galway is, I believe, 3.
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Measures

Three network attributes that measure these small-world effects

I characteristic path length, L, defined as the average length
of all shortest paths in the network;

I transitivity, T , defined as the proportion of triads that form
triangles;

I clustering coefficient C , defined as the average node
clustering coefficient
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Measures

Small worlds networks

A network is called a small world network if it has

1. a small average shortest path length, L (scaling with log n,
where n is the number of nodes), and

2. a high clustering coefficient, C .

It turns out that ER random networks do have a small average
shortest path length, but not a high clustering coefficient. This
observation justifies the need for a different model of random
networks, if they are to be used to model the clustering behavior of
real world networks.
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Distance

We have seen how BFS can determine the length of a shortest
path from a given node x to any node y in a connected network.
An application to all nodes x yields the shortest distances between
all pairs of nodes.

Recall (from Week 7, Part 1) that the distance matrix of a
connected graph G = (X ,E ), is D = (dij) where entry dij is the
length of the shortest path from node i ∈ X to node j ∈ X . (Note:
dii = 0 for all i .)

There are a number of graph (and node) attributes that can be
defined in terms of this matrix.
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Distance Eccentricity, Radius, and Diameter

Eccentricity: ei of a node i ∈ X is the maximum distance between
i and any other vertex in G . So, ei = max

j
dij .

Graph Radius: R is the minimum eccentricity: R = min
i

ei .

Graph Diameter: D is the maximum eccentricity:
D = max

i
ei = −max

ij
dij

Note: don’t think in terms of “diameter is twice the radius”, but
rather:

I Diameter is the distance between the points furthest from
each other;

I Radius is the distance from the “centre” to the furthest point
from it.

I Can be helpful to think about Pn.
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Distance Eccentricity, Radius, and Diameter

Example

The (m, n)-lolipop graph is made from Kn connected to Pn.
Sketch the (3, 3)-lolipop graph. Write down the distance matrix for
this graph. Compute the eccentricity of each node, and then the
graph radius and diameter.
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Characteristic path length

Definition (Characteristic path length)

The characteristic path length, (a.k.a., average shortest path
length) L, of G is the average distance between pairs of nodes:

L =
1

n(n − 1)

∑
i

∑
j

dij .
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Characteristic path length CPL for GER

In tomorrow’s class, we’ll look at computing the characteristic path
length in practice, and in particular for graphs drawn from
GER(n,m) and GER(n, p).

Spoiler! For these models, L =
ln n

ln〈k〉
.
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Clustering

(As mentioned in Assignment 2, Part 2) In contrast to random
graphs, real world networks also contain many triangles: it is not
uncommon that a friend of one of my friends is my friend, too.
This degree of transitivity can be measured in several different
ways.
For the first we need two concepts:

I The number of triangles in G , denoted n∆, is the number of
subgraphs of G that are isomorphic to C3.

I The number of triads in G , denoted n∧, is the number of
pairs of edges with a shared node.
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Clustering Counting Triads

There is an easy way to count the number of triads in a network:

I If node i has degree ki = deg(i), then it is involved in

(
ki
2

)
triads;

I So, the total number of triads is n∧ =
∑
i

(
ki
2

)
Example:
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Clustering Graph transitivity

Definition (Graph transitivity)

The transitivity T of a graph G = (X ,E ) is the proportion of
transitive triads, i.e., triads which are subgraphs of triangles.
This proportion can be computed as follows:

T = 3
n∆

n∧
,

where n∆ is the number of triangles in G , and n∧ is the number of
triads.
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Clustering Graph transitivity
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