
CS4423-W04-Jupyter

February 6, 2025

Table of Contents

1 Modules for this notebook

2 Our small affiliation network

3 Bipartite graphs in networkx

3.1 Drawing

3.2 2-colouring

4 Adjacency Matrices

4.1 The Biadjacency Matrix

5 Projections

1 CS4423-Networks : Lecture 8 [Final version]

2 Colourings and Computations
Niall Madden, School of Mathematical and Statistical Sciences
University of Galway

This Jupyter notebook, and PDF and HTML versions, can be found at
https://www.niallmadden.ie/2425-CS4423/#Week04

This notebook was written by Niall Madden, adapted from notebooks by Angela Carnevale.

2.1 Modules for this notebook
Today, we’ll default to lime-coloured nodes. For more options, see https://xkcd.com/color/rgb/

[1]: import networkx as nx
import numpy as np
opts = { "with_labels": True, "node_color": 'xkcd:lime' } # show labels; lime␣

↪noodes

2.2 Our small affiliation network
We built an affiliation network based on data you provided. The network had two types of nodes:
* People (usually referred to as Actors) * Programmes (here a programme is an example of a focus;

1

so these nodes are foci).

We took a subgraph with just 7 people. The data for that is in a file called CS4423-7.txt.

[2]: !cat CS4423-7.txt

Fionn BB
Rhea BB NightAgent Cake?
Rory BB Penguin Squid Bear NightAgent
Bruno Squid
JackA BB Squid Bear Boys NightAgent BCS
Sam OMitB Squid Boys Cake? NightAgent
Andrew BB Squid BCS

We can easily build a network from this file, and draw it:

[3]: G7 = nx.read_adjlist('CS4423-7.txt')
G7 = nx.read_adjlist('CS4423.txt') # uncomment this line to get the full graph
nx.draw(G7, **opts)

Let’s check the graphs basic properties:

2

[4]: print(f"G7 is {G7.order()} nodes and {G7.size()} edges")

G7 is 16 nodes and 24 edges

Unfortunately, this graph can be a little tricky to work with, unless we change it a little. This is
not least because networkx does not automatically order the nodes the way we would like. In this
example, here is how they are ordered:

[5]: print(list(G7.nodes()))

['Fionn', 'BB', 'Rhea', 'NightAgent', 'Cake?', 'Rory', 'Penguin', 'Squid',
'Bear', 'Bruno', 'JackA', 'Boys', 'BCS', 'Sam', 'OMitB', 'Andrew']

We can see that Nodes 0, 2, 5, 9, 10, 13 and 15 are the “people” nodes. We could build a permutation
matrix from this, but will leave that for another time.

2.3 Bipartite graphs in networkx

Since affiliation networks (and, more generally, bipartite graphs) are so important in Network
Theory, networkx comes with various tools for working with them.

In fact, networkx comes with sub-module, bipartite for working with these graphs.

For example, it has a tool for verifying that a graph is, indeed, bipartite:

[6]: print(f"G7 is bipartite: {nx.bipartite.is_bipartite(G7)}")
K33 = nx.complete_bipartite_graph(3,3)
K5 = nx.complete_graph(5)
print(f"K33 is bipartite: {nx.bipartite.is_bipartite(K33)}")
print(f"K5 is bipartite: {nx.bipartite.is_bipartite(K5)}")

G7 is bipartite: True
K33 is bipartite: True
K5 is bipartite: False

One of the key methods is the sets function, which tries to compute the parts of the graph, which
it returns as a tuple:

[7]: top, bottom = nx.bipartite.sets(G7)
print(f"Set 1: {top}")
print(f"Set 2: {bottom}")

Set 1: {'Rory', 'JackA', 'Sam', 'Bruno', 'Rhea', 'Andrew', 'Fionn'}
Set 2: {'Boys', 'NightAgent', 'OMitB', 'Penguin', 'BB', 'Cake?', 'BCS', 'Bear',
'Squid'}

Since we can see that Set 1 represents the people, and Set 2 the programmes, let’s give them suitable
names:

[8]: Actors = top; Foci = bottom;

3

2.3.1 Drawing

We can use this information, for example, to compute good positions for drawing the graph:

[9]: positions = nx.bipartite_layout(G7, Actors) # compute the positions
nx.draw(G7, **opts, font_size=20, pos=positions)

2.3.2 2-colouring

We’ll use this to make the node colouring which is a list of colours, corresponding the the list of
nodes.

[10]: Nodes = list(G7.nodes())
G7_colours = ['c' if node in top else 'm' for node in Nodes]
print(G7_colours)

['c', 'm', 'c', 'm', 'm', 'c', 'm', 'm', 'm', 'c', 'c', 'm', 'm', 'c', 'm', 'c']

[11]: nx.draw(G7, node_color=G7_colours, pos=positions, with_labels=True)

4

2.4 Adjacency Matrices
We know the adjacency matrix 𝐴 of a bipartite graph 𝐺, with respect to a suitable order-
ing/permutation of the nodes (𝑉1 first, then 𝑉2), has the form of a 2 × 2-block matrix,

𝐴 = (0 𝐶
𝐶𝑇 0)

where the blocks on the diagonal consist entirely of zeros, as there are no edges between nodes
belonging to the same part.

However, without the right ordering, we don’t see this nice structure..

Let’s look at the adjacency matrix for 𝐺7:

[12]: A = nx.adjacency_matrix(G7).toarray()
print(A)

[[0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[1 0 1 0 0 1 0 0 0 0 1 0 0 0 0 1]
[0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0]
[0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0]
[0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0]

5

[0 1 0 1 0 0 1 1 1 0 0 0 0 0 0 0]
[0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 1 0 0 0 1 1 0 0 1 0 1]
[0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0]
[0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0]
[0 1 0 1 0 0 0 1 1 0 0 1 1 0 0 0]
[0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0]
[0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1]
[0 0 0 1 1 0 0 1 0 0 0 1 0 0 1 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0]
[0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0]]

Here is one way to get a version of the graph with a “nice” ordering:

[13]: H=nx.Graph() # make a new, empty graph
H.add_nodes_from(Actors) # first add ther Actor nodes
#print(H.nodes())
H.add_nodes_from(Foci) # then the Foci nodes

Check the order:

[14]: print(H.nodes())

['Rory', 'JackA', 'Sam', 'Bruno', 'Rhea', 'Andrew', 'Fionn', 'Boys',
'NightAgent', 'OMitB', 'Penguin', 'BB', 'Cake?', 'BCS', 'Bear', 'Squid']

Then copy the edges from 𝐺7

[15]: H.add_edges_from(G7.edges()) # Now add the edges

Let’s check the adjacency matrix for 𝐻
[16]: A = nx.adjacency_matrix(H).toarray() # matrix for H

print(A)

[[0 0 0 0 0 0 0 0 1 0 1 1 0 0 1 1]
[0 0 0 0 0 0 0 1 1 0 0 1 0 1 1 1]
[0 0 0 0 0 0 0 1 1 1 0 0 1 0 0 1]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1]
[0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1]
[0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0]
[0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0]
[1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0]
[0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0]
[1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[1 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0]
[0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0]
[0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0]

6

[1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0]]

2.4.1 The Biadjacency Matrix

Bipartite graphs have a special matrix representation called the Biadjacency Matrix. If |𝑉1| = 𝑟
and |𝑉2| = 𝑠, then it is a 𝑟 × 𝑠 matrix, 𝐵, where 𝑏𝑖𝑗 = 1 if there is an edge between Node 𝑖 in 𝑉1
and Node 𝑗 in 𝑉2.

We can compute it as follows:

[17]: B = nx.bipartite.biadjacency_matrix(H, Actors, Foci).toarray()
print(B)

[[0 1 0 1 1 0 0 1 1]
[1 1 0 0 1 0 1 1 1]
[1 1 1 0 0 1 0 0 1]
[0 0 0 0 0 0 0 0 1]
[0 1 0 0 1 1 0 0 0]
[0 0 0 0 1 0 1 0 1]
[0 0 0 0 1 0 0 0 0]]

2.5 Projections
We learned just a while ago that the adjacency matrix of the projection of a bipartite graph 𝐺 is
related the top-left, or bottom-right, non-zero block of 𝐴2

[18]: print(A@A)

[[5 4 2 1 2 2 1 0 0 0 0 0 0 0 0 0]
[4 6 3 1 2 3 1 0 0 0 0 0 0 0 0 0]
[2 3 5 1 2 1 0 0 0 0 0 0 0 0 0 0]
[1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0]
[2 2 2 0 3 1 1 0 0 0 0 0 0 0 0 0]
[2 3 1 1 1 3 1 0 0 0 0 0 0 0 0 0]
[1 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 2 2 1 0 1 1 1 1 2]
[0 0 0 0 0 0 0 2 4 1 1 3 2 1 2 3]
[0 0 0 0 0 0 0 1 1 1 0 0 1 0 0 1]
[0 0 0 0 0 0 0 0 1 0 1 1 0 0 1 1]
[0 0 0 0 0 0 0 1 3 0 1 5 1 2 2 3]
[0 0 0 0 0 0 0 1 2 1 0 1 2 0 0 1]
[0 0 0 0 0 0 0 1 1 0 0 2 0 2 1 2]
[0 0 0 0 0 0 0 1 2 0 1 2 0 1 2 2]
[0 0 0 0 0 0 0 2 3 1 1 3 1 2 2 5]]

However, we can also get these blocks from the Biadjacency matrix, 𝐵. The top left is 𝐵𝐵𝑇 , and
bottom right is 𝐵𝑇 𝐵:

7

[19]: C = B@B.T
print(C)

[[5 4 2 1 2 2 1]
[4 6 3 1 2 3 1]
[2 3 5 1 2 1 0]
[1 1 1 1 0 1 0]
[2 2 2 0 3 1 1]
[2 3 1 1 1 3 1]
[1 1 0 0 1 1 1]]

However, this is not an adjacency matrix of a (simple) graph:

[20]: G7_1 = nx.from_numpy_array(C)
nx.draw(G7_1, **opts)

But we can convert it to one:

[21]: C[C>0]=1 # set everything to 0 or 1
np.fill_diagonal(C,0) # Set diagonal entries to 0
print(C)

8

[[0 1 1 1 1 1 1]
[1 0 1 1 1 1 1]
[1 1 0 1 1 1 0]
[1 1 1 0 0 1 0]
[1 1 1 0 0 1 1]
[1 1 1 1 1 0 1]
[1 1 0 0 1 1 0]]

[22]: G7_2 = nx.from_numpy_array(C)
nx.draw(G7_2, **opts)

We could have used the networkx function projected_graph (taking input a bipartite graph and
one of the two sets of vertices) does this for us:

[23]: G_V1 = nx.projected_graph(H, Actors)
nx.draw(G_V1, **opts)

9

Here is the projection on to 𝑉2.

[24]: G_V2 = nx.projected_graph(H, Foci)
nx.draw(G_V2, **opts)

10

Finished here Thursday

11

	CS4423-Networks : Lecture 8 [\color{green}{\text{Final version}}]
	Colourings and Computations
	Modules for this notebook
	Our small affiliation network
	Bipartite graphs in networkx
	Drawing
	2-colouring

	Adjacency Matrices
	The Biadjacency Matrix

	Projections

