Annotated slides from Wednesday

CS4423: Networks

Lecture 7: Permutations and Bipartite
Networks

School of Mathematical and Statistical Sciences, University of Galway

Week 4, Lecture 1 (Wed, 5 Feb 2025)

These slides are by Niall Madden. Elements are based on “A First Course in Network Theory” by Estrada and

Knight. Also AC’s notes...
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Thanks for completing the survey! Bipartite Graphs (again)

Graph Connectivity m Projections
Permutation matrices [ Colouring

m Connected graphs m Bipartite graphs
Connected Components Exercise(s)

For further reading, see Section 2.4 of A First Course in Network Theory
(Knight).

Slides are at:
https://www.niallmadden.ie/2425-CS4423
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Thanks for completing the survey!

Here is some of the data we collected:

® Only Murders in the Building 6 ]
® Breaking Bad 16 —
@ The Penguin 5 ]
® Succession 2 -
® squid Game *"' .
@ The Bear 8 ]
® The Boys 6 [
@ Better Call Saul 8 S
@ Night Agent 6
® DrWho 4
]
@ s it Cake? 6
|
0 5 10 15
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Thanks for completing the survey!

Here is what it looks like as a graph:
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Its order is 37, and size is 81; we'll return to this later...
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Graph Connectivity

» A graph/network is connected if there is a path between
every pair of nodes.

» If the graph is not connected, we say it is disconnected.

» We now know how to check if a graph is connected by looking
at powers of its adjacency matrix. However, that is not very
practical for large networks.

> However, we can determine if a graph is connected, but just
looking at the adjacency matrix, providing we have ordered
the nodes properly.
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Permutation matrices

We know that the structure of a network is not changes}by
relabelling its nodes. Sometimes, it is is useful to relabel them in

order to expose certain properties, such as connectivity.
Swap lubels

Example: o} 226
ﬂ ® j:

Ca
Since we think of the nodes as all being numbered from 1 to n,
this is the same as permuting the numbers of some subset of the
nodes.
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Permutation matrices

When working with the adjacency matrix of a graph, such a
permutation is expressed in terms of a permutation matrix, P:
this is a 0 — 1 matrix (a.k.a. a "Boolean” or “binary” matrix),
where there is a single 1 om every row and column.

If the nodes of a graph G (with adjacency matrix A) are listed as
entries in a vector, g, then

» Pgq is a permutation of the nodes, and

> is the adjacency matrix of the graph with that node
permutation applied.
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Permutation matrices Connected graphs

Permutation matrices are important when studying graph
connectivity because...

FACT!

A graph with adjacency matrix A is disconnected if and only if
there is a permutation matrix P such that

. /X O

where O represents the zero matrix with the same number of
rows as X and the same number of columns as Y.
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Permutation matrices Connected graphs

Example: From Eovlior - To Swop [abels of
noder 92 & 4 :
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Connected Components

If a network is not connected, then we can divide it into
components which are connected.

The number of connected components is the number of blocks in
the permuted adjacency matrix:
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Bipartite Graphs (again)

One reason we did the survey is that the resulting data set is a
good example of a bipartite graph: nodes represent either people
or programmes that they watch, with an edge between a person
and a programme that they watch.

So the graph must be bipartite.
Such a graph is called an affiliation network;

4
n  Social  sciomean
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Bipartite Graphs (again)

Here is a subgraph of our survey, of nd size 24, based
—T

on 7 randomly chosen people:
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Bipartite Graphs (again)
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This is the adjacency matrix:
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Bipartite Graphs (again)

That version of the adjacency matrix is not very insightful. But

ordering the nodes so that people are listed first we get the matrix:
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Bipartite Graphs (again)
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