Name:
E-mail:

Andrew Hayes
a.hayesl8@universityofgalway.ie CT331 2023-10-21

1D: 21321503

Assignment 1: Procedural Programming with C

1

Question 1

1.1 Part (A): Code
#include <stdio.h>
int main() {
int my int;
int* my int pointer;
long my long;
double * my double pointer;
char ** my char_pointer pointer;
printf("The size of my int is %lu bytes\n", sizeof(my int));
printf("The size of my int pointer is %lu bytes\n", sizeof(my int pointer));
printf("The size of my long is %lu bytes\n", sizeof(my long));
printf("The size of my double pointer is %lu bytes\n", sizeof(my double pointer));
printf("The size of my char pointer pointer is %lu bytes\n", sizeof(my char pointer pointer));
}
Listing 1: questionl.c
E"llll[ll:l['i-_'_' Para = 2 nments
Figure 1: Console Output of questionl.c
1.2 Part (B): Comments

The amount of memory allocated to variables of difterent types in C is determined at compile-time, and is dependent on the
architecture of the machine for which it is being compiled and the compiler used.

On my machine, using GCC, an int is allocated 4 bytes. This is the usual amount allocated on both 32-bit and 64-bit
systems (my machine being of the latter kind), although older 32-bit systems used 2 bytes for an int (the same amount as
for a short). 4 bytes is used even on 64-bit machines to maintain backwards compatibility with older 32-bit architectures.

An int* (a pointer to a variable of type int) is allocated 8 bytes on my machine. This is because that my machine has a
64-bit architecture, and therefore an address in memory is represented using 64 bits (8 bytes). If this were compiled for a
32-bit machine, the size of an pointer would be 4 bytes since addresses are 32-bit.

A long is allocated 8 bytes on my machine. This is because my machine is 64-bit and a long is typically 8 bytes in length
on such machines. On 32-bit machines, a long is typically 4 bytes.

The size of a pointer to a double is the same as the size of any other pointer on the same machine; on 64-bit machines,
pointers are 8 bytes, and on 32-bit machines, they are 4 bytes. The type of data to which a pointer points has no effect on
the size of the pointer, as the pointer is just a memory address.

A pointer to a char pointer is the same size as any other pointer: 8 bytes on a 64-bit machine and 4 bytes on a 32-bit
machine. Note: it might be more intuitive to refer to a “character pointer pointer” as a pointer to a string in certain
situations, as strings are character arrays, and an array variable acts as a pointer to the first element in the array.

mailto://a.hayes18@universityofgalway.ie

20

21

22

23

24

25

26

27

28

29

40

41

42

2 Question 2

// returns the number of elements in the list
int length(listElement* list);

// push a new element onto the head of a list and update the list reference using side effects
void push(listElement** list, char* data, size_t size);

// pop an element from the head of a list and update the list reference using side effects
listElement* pop(listElement** 1list);

// enque a new element onto the head of the list and update the list reference using side effects
void enqueue(listElement** list, char* data, size_t size);

// dequeue an element from the tail of the list
listElement* dequeue(listElement* list);

Listing 2: My Additions to linkedList.h

// returns the number of elements in the list
int length(listElement* list) {

int length = 0;

listElement* current = list;

// traversing the list and counting each element
while(current !'= NULL){

length++;

current = current->next;

return length;

// push a new element onto the head of a list and update the list reference using side effects
void push(listElement** 1list, char* data, size_t size) {

// create the new element

listElement* newElement = createEl(data, size);

// handle malloc errors

if (newElement == NULL) {
fprintf(stderr, "Memory allocation failed.\n");
exit (EXIT_FAILURE);

// make the the new element point to the current head of the list
newElement->next = *list;

// make the list reference to point to the new head element
*list = newElement;

// pop an element from the head of a list and update the list reference using side effects
// assuming that the desired return value here is the popped element, as is standard for POP operations
listElement* pop(listElement** 1list) {

// don't bother if list is non existent

if (*list == NULL) { return NULL; }

// getting reference to the element to be popped
listElement* poppedElement = *list;

43

44

45

47

48

49

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

78

79

// make the the second element the new head of the list -- this could be NULL, so the list would be
— NULL also
*#list = (*list)->next;

// detach the popped element from the list
poppedElement->next = NULL;

return poppedElement;

// enque a new element onto the head of the list and update the list reference using side effects
// essentially the same as push
void enqueue(listElement** list, char* data, size_t size) {

// create the new element

listElement* newElement = createEl(data, size);

// handle malloc errors

if (newElement == NULL) {
fprintf(stderr, "Memory allocation failed.\n");
exit (EXIT FAILURE);

// make the the new element point to the current head of the list
newElement->next = *list;

// make the list reference to point to the new head element
*1ist = newElement;

// dequeue an element from the tail of the list by removing the element from the list via side effects,
— and returning the removed item
// assuming that we want to return the dequeued element rather than the list itself, as enqueue returns
— nothing and uses side effects, so dequeue should also use side effects
listElement* dequeue(listElement* list) {
// there are three cases that we must consider: a list with 0 elements, a list with 1 element, & a
— list with >=2 elements

// don't bother if list is non existent
if (list == NULL) { return NULL; }

// if there is only one element in the list, i.e. the head element is also the tail element, just
— returning this element
// this means that the listElement pointer that was passed to this function won't be updated
// ideally, we would set it to NULL but we can't do that since "list’ is a pointer that has been
— passed by value, so we can't update the pointer itself. we would need a pointer to a pointer to
— have been passed
if (list->next == NULL) {
return list;

// traversing the list to find the second-to-last element
listElement* current = list;
while (current->next->next '= NULL) {

current = current->next;

// get reference to the element to be dequeued
listElement* dequeuedElement = current->next;

100

101

20

21

22

23

24

26

27

28

29

// make the penultimate element the tail by removing reference to the old tail

current->next = NULL;

return list;

Listing 3: My Additions to linkedList.c

// test length function
printf("Testing length()\n");
int 1 length = length(1l);

printf("The length of 1 is %d\n\n", 1 length);

// test push
printf("Testing push()\n");

push(&l, "yet another test string", sizeof("yet another test string"));

traverse(l);
printf("\n\n");

// test pop

printf("Testing pop()\n");
listElement* popped = pop(&l);
traverse(l);

printf("\n\n");

// Test delete after

printf("Testing deleteAfter()\n");

deleteAfter(l);
traverse(l);
printf("\n");

// test enqueue
printf("Testing enqueue()\n");

enqueue (&1, "enqueued test string", sizeof("enqueued test string"));

traverse(l);
printf("\n");

// test dequeue
printf("Testing dequeue()\n");
dequeue(l);

traverse(l);

printf("\n");

printf("\nTests complete.\n");

Listing 4: My Additions to tests.c

gramming Paradigms/ ignmentl/

final stri

Figure 2: Console Output for Question 2

3 Question 3

#ifndef CT331 ASSIGNMENT LINKED LIST
#define CT331_ASSIGNMENT LINKED LIST

typedef struct listElementStruct listElement;

//Creates a new linked list element with given content of size
//Returns a pointer to the element
listElement* createEl(void* data, size_t size, void (*printFunction)(void*));

//Prints out each element in the list
void traverse(listElement* start);

//Inserts a new element after the given el
//Returns the pointer to the new element
listElement* insertAfter(listElement* after, void* data, size_t size, void (*printFunction)(void*));

//Delete the element after the given el
void deleteAfter(listElement* after);

// returns the number of elements in the list
int length(listElement* list);

// push a new element onto the head of a list and update the list reference using side effects

20

21

22

23

24

25

26

27

28

29

40

41

42

43

44

45

46

47

void push(listElement** 1list, void* data, size_t size, void (*printFunction) (void*));

// pop an element from the head of a list and update the list reference using side effects
listElement* pop(listElement** list);

// enque a new element onto the head of the list and update the list reference using side effects
void enqueue(listElement** list, void* data, size_t size, void (*printFunction)(void*));

// dequeue an element from the tail of the list
listElement* dequeue(listElement* list);

#endif

Listing S: genericLinkedList.h

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include "genericlLinkedList.h"

typedef struct listElementStruct{
void* data;
void (*printFunction) (void*);
size_t size;
struct listElementStruct* next;
} listElement;

//Creates a new linked list element with given content of size
//Returns a pointer to the element
listElement* createEl(void* data, size_t size, void (*printFunction)(void*)) {
listElement* e = malloc(sizeof(listElement));
if(e == NULL){
//malloc has had an error
return NULL; //return NULL to indicate an error.
}
void* dataPointer = malloc(sizeof(void)*size);
if(dataPointer == NULL){
//malloc has had an error
free(e); //release the previously allocated memory
return NULL; //return NULL to indicate an error.
}
strcpy(dataPointer, data);
e->data = dataPointer;

e->printFunction = printFunction;

e->size = size;
e->next = NULL;
return e;

//Prints out each element in the list
void traverse(listElement* start){
listElement* current = start;
while(current !'= NULL){
current->printFunction(current->data);
// printf("%ss\n", current->data);
current = current->next;

//Inserts a new element after the given el

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

100

101

102

103

104

105

106

107

108

//Returns the pointer to the new element
listElement* insertAfter(listElement* el, void* data, size_t size, void (*printFunction) (void*)){
listElement* newEl = createEl(data, size, printFunction);
listElement* next = el->next;
newEl->next = next;
el->next = newEl;
return newEl;

//Delete the element after the given el
void deleteAfter(listElement* after){
listElement* delete = after-=>next;
listElement* newNext = delete->next;
after->next = newNext;
//need to free the memory because we used malloc
free(delete->data);
free(delete);

// returns the number of elements in the list
int length(listElement* 1list) {

int length = 0;

listElement* current = list;

// traversing the list and counting each element
while(current != NULL){

length++;

current = current->next;

return length;

// push a new element onto the head of a list and update the list reference using side effects
void push(listElement** list, void* data, size_t size, void (*printFunction) (void*)) {

// create the new element

listElement* newElement = createEl(data, size, printFunction);

// handle malloc errors

if (newElement == NULL) {
fprintf(stderr, "Memory allocation failed.\n");
exit (EXIT_FAILURE);

// make the the new element point to the current head of the list
newElement->next = *list;

// make the list reference to point to the new head element
*1ist = newElement;

// pop an element from the head of a list and update the list reference using side effects
// assuming that the desired return value here is the popped element, as is standard for POP operations
listElement* pop(listElement** 1list) {

// don't bother if list is non existent

if (*list == NULL) { return NULL; }

// getting reference to the element to be popped
listElement* poppedElement = *list;

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

// make the the second element the new head of the list -- this could be NULL, so the list would be
— NULL also
*#list = (*list)->next;

// detach the popped element from the list
poppedElement->next = NULL;

return poppedElement;

// enque a new element onto the head of the list and update the list reference using side effects
// essentially the same as push
void enqueue(listElement** list, void* data, size_t size, void (*printFunction)(void*)) {

// create the new element

listElement* newElement = createEl(data, size, printFunction);

// handle malloc errors

if (newElement == NULL) {
fprintf(stderr, "Memory allocation failed.\n");
exit (EXIT FAILURE);

// make the the new element point to the current head of the list
newElement->next = *list;

// make the list reference to point to the new head element
*1ist = newElement;

// dequeue an element from the tail of the list by removing the element from the list via side effects,
— and returning the removed item
// assuming that we want to return the dequeued element rather than the list itself, as enqueue returns
— nothing and uses side effects, so dequeue should also use side effects
listElement* dequeue(listElement* list) {
// there are three cases that we must consider: a list with 0 elements, a list with 1 element, & a
— list with >=2 elements

// don't bother if list is non existent
if (list == NULL) { return NULL; }

// if there is only one element in the list, i.e. the head element is also the tail element, just
— returning this element
// this means that the listElement pointer that was passed to this function won't be updated
// ideally, we would set it to NULL but we can't do that since "list’ is a pointer that has been
— passed by value, so we can't update the pointer itself. we would need a pointer to a pointer to
— have been passed
if (list->next == NULL) {
return list;

// traversing the list to find the second-to-last element
listElement* current = list;
while (current->next->next '= NULL) {

current = current->next;

// get reference to the element to be dequeued
listElement* dequeuedElement = current->next;

163

164

165

166

167

20

21

22

23

24

26

27

28

29

40

41

42

43

44

45

46

47

48

49

// make the penultimate element the tail by removing reference to the old tail
current->next = NULL;

return list;

Listing 6: genericLinkedlList.c

#include <stdio.h>
#include "tests.h"
#include "genericLinkedList.h"

// functions to print out different data types
// a more professional design might be to put these in the genericLinkedlList header file but i only need
— these for testing purposes
void printChar(void* data) {
printf("%c\n", *(char*) data);

void printStr(void* data) {
printf("%ss\n", (char*) data);

void printInt(void* data) {
printf("sd\n", *(int*) data);

void runTests(){
printf("Tests running...\n");

listElement* 1 = createEl("Test String (1).", sizeof("Test String (1)."), printStr)
//printf("%s\n%p\n", l->data, l->next);

//Test create and traverse

traverse(l);

printf("\n");

//Test insert after

printf("Testing insertAfter()\n");

listElement* 12 = insertAfter(l, "another string (2)", sizeof("another string (2)"), printStr)
insertAfter(12, "a final string (3)", sizeof("a final string (3)"), printStr)

traverse(l);

printf("\n");

// test length function

printf("Testing length()\n");

int 1 length = length(1);

printf("The length of 1 is %d\n\n", 1 length);

// test push

printf("Testing push()\n");

push(&l, "yet another test string", sizeof("yet another test string"), printStr)
traverse(l);

printf("\n\n");

// test pop

printf("Testing pop()\n");
listElement* popped = pop(&l);
traverse(l);

printf("\n\n");

// Test delete after
printf("Testing deleteAfter()\n");

60

61

62

63

64

65

66

67

68

69

70

71

72

73

T4

75

76

77

78

79

deleteAfter(l);
traverse(l);
printf("\n");

// test enqueue

printf("Testing enqueue()\n");

enqueue (&1, "enqueued test string", sizeof("enqueued test string"), printStr);
traverse(l);

printf("\n");

// test dequeue
printf("Testing dequeue()\n");
dequeue(l);

traverse(l);

printf("\n");

printf("Testing pushing different data types\n");
int myint = 42;

push(&l, &myint, sizeof(myint), printInt);

char mychar = 'c';

push(&l, &mychar, sizeof(mychar), printChar);
traverse(l);

printf("\n\n");

printf("\nTests complete.\n");

Listing 7: tests.c

10

amming Paradigms/ ignments / ignment

esting in
t String

string

Testing length

string

a final st

d test string
String

Figure 3: Console Output for Question 3

4 Question 4

4,1 Partl

Any algorithm for traversing a singly linked list in reverse will always first require traversing the list forwards, and will therefore
be at least somewhat less efficient than a forwards traversal. One of the simplest ways to traverse a linked list in reverse is to use a
recursive function.

void reverse traverse(listElement* current){
if (current == NULL) { return; }
reverse traverse(current->next);
current->printFunction(current->data);

Listing 8: Recursive Function to Traverse a Singly Linked List in Reverse
This is quite ineflicient as it requires that the function call for each node persists on the stack until the last node is reached, using
alot of stack memory. Another approach would be to iteratively reverse the linked list, by making some kind of data structure,
linked list or otherwise, that contains the data of the original linked list but in reverse, and then iterating over that forwards.
This would likely be more efficient in terms of memory & computation.

Because traversing a linked list in reverse always requires traversing it forwards first, any reverse algorithm will take at least twice
as much memory & computation as traversing it forwards, which is O(n). It will also require that some way of storing the data
in reverse in memory, either explicitly with a data, like in the iterative approach, or in the same manner as the recursive approach,
wherein the data is stored in reverse by the nested structure of the function calls: as each function call returns, the call structure

11

is iterated through in reverse. Therefore, we also have at least O(n) memory usage, as we have to store some sort of reverse data
structure.

4.2 Part?2

The simplest way in which the structure of a linked list could be changed to make backwards traversal less intensive is to change
it from a singly linked list to a doubly linked list, i.e. instead of each node in the list containing a pointer to just the next node,
make each node contain a pointer to both the next node & the previous node. The backwards traversal of a doubly linked list
is no more intensive than the forwards traversal of a linked list. The drawback of using a doubly linked list is that it requires
slightly more memory per node than a singly linked list, as you’re storing an additional pointer for every node.

12

	Question 1
	Part (A): Code
	Part (B): Comments

	Question 2
	Question 3
	Question 4
	Part 1
	Part 2

