

JAVA RMI

 Remote Method Invocation (RMI)
– This is a Java-Based mechanism for distributed
object computing.
– RMI enables the distribution of work to other
Java objects residing in other processes or on
other machines.
– The objects in one Java Virtual Machine (JVM)
are allowed to seamlessly invoke methods on
objects in a remote JVM.
– To call a method of a remote object we must
first get a reference to that object.

Distributed Systems Lectures 1 University of Galway

JAVA RMI

– This reference may be obtained:
 From the registry name facility.
 By receiving the reference as an argument or return
value of a method call.

– Clients can call a remote object in a server that
itself is a client of another server.
– Parameters of method calls are passed as
serialised objects.
 Types are not truncated - therefore, object-oriented
polymorphism is supported

 Parameters are passed by value (deep copy) -
therefore object behaviour can be passed

Distributed Systems Lectures 2 University of Galway

JAVA RMI

– The Java Object Model is still supported with
distributed (remote) objects.
– A reference to a remote object can be passed
to or returned from local and remote objects.
– Remote object references are passed by
reference - therefore the whole object is not
always downloaded:
 Objects that implement the Remote interface are
passed as a remote reference.

 Other objects are passed by value (using object
serialisation).

Distributed Systems Lectures 3 University of Galway

JAVA RMI

Distributed Systems Lectures 4 University of Galway

JAVA RMI

– The client obtains a reference for a remote
object by calling:
 Naming.lookup(//URL/registered name)
 A method which returns a reference to another
remote object.

–Methods of the remote object may then be
called by the client:
 This call is actually to the stub which represents the
remote object.

 The stub packages the arguments (marshalling) into
a data stream (to be sent across the network).

Distributed Systems Lectures 5 University of Galway

JAVA RMI

–On the implementation side:
 The skeleton unmarshals the argument, calls the
method, marshals the return value and sends it back.

 The stub unmarshals the return value and returns it
to the caller.

– The RMI layer sits on top of the JVM and this
allows it to use the following functionality:
 Java Garbage Collection of Remote Objects.
 Java Security - a security manager may be set for
the server.

 Java Class Loading.

Distributed Systems Lectures 6 University of Galway

JAVA RMI

» Steps to creating an RMI application
 Define the interfaces to your remote objects.
 Implement the remote object classes.
 Write the main client and server programs (some
examples follow).

 Create the stub & skeleton classes by running the
rmic compiler on the remote implementation classes.

 Start the rmiregistry (if not already started).
 Start the server application.
 Start client (which obtains some initial object refs.)
 The client application/applet may then call object
methods in the remote (server) program.

Distributed Systems Lectures 7 University of Galway

JAVA RMI

» Example Program

// Remote Object has a single method that is passed
// the name of a country and returns the capital city.
import java.rmi.*;

public interface CityServer extends Remote
{
String getCapital(String Country) throws

RemoteException;
}

Distributed Systems Lectures 8 University of Galway

JAVA RMI

» Server Implementation
import java.rmi.*;
import java.rmi.server.*;
public class CityServerImpl

extends UnicastRemoteObject
implements CityServer

{
// constructor is required in RMI
CityServerImpl() throws RemoteException
{
super(); // call the parent constructor

}

Distributed Systems Lectures 9 University of Galway

JAVA RMI

// Remote method we are implementing!
public String getCapital(String country) throws

RemoteException
{

System.out.println("Sending return string now
- country requested: " + country);
if (country.toLowerCase().compareTo(“usa")
== 0)
return "Washington";

else if
(country.toLowerCase().compareTo(“ireland")
== 0)
return "Dublin";

Distributed Systems Lectures 10 University of Galway

JAVA RMI

else if
(country.toLowerCase().compareTo(“france")
== 0)
return "Paris";
return "Don't know that one!";

}

// main is required because the server is standalone
public static void main(String args[])
{
try
{

Distributed Systems Lectures 11 University of Galway

JAVA RMI

// First reset our Security manager
System.setSecurityManager(new
RMISecurityManager());
System.out.println("Security manager set");

// Create an instance of the local object
CityServerImpl cityServer = new
CityServerImpl();
System.out.println("Instance of City Server

created");

// Put the server object into the Registry

Distributed Systems Lectures 12 University of Galway

JAVA RMI

Naming.rebind("Capitals", cityServer);
System.out.println("Name rebind completed");
System.out.println("Server ready for
requests!");

}
catch(Exception exc)
{
System.out.println("Error in main - " +
exc.toString());

}
}

}

Distributed Systems Lectures 13 University of Galway

JAVA RMI

» Client Implementation
public class CityClient
{
public static void main (String args[])
{

CityServer cities = (CityServer)
Naming.lookup(“//localhost/Capitals”);

try {
String capital = cities.getCapital(“USA”);
System.out.println(capital); }

catch (Exception e) {}
} }

Distributed Systems Lectures 14 University of Galway

JAVA RMI

» Class RemoteException
– No distributed system can mask
communication failures:
 Method semantics should include failure possibilities.
 Every RMI remote method must declare the
exception RemoteException in its throw clause.

 This exception is thrown when method invocation or
return fails.

 The Java compiler requires failures to be handled
(no choice here).

Distributed Systems Lectures 15 University of Galway

JAVA RMI

» Implementing a Remote Object
– Implementation class usually extends the RMI
class UnicastRemoteObject:
 This indicates that the implementation class is used
to create a single (nonreplicated) remote object that
uses RMI's default sockets based transport for
communication.

– If you choose to extend a remote object from a
nonremote class:
 You need to explicitly export the remote object by
calling the method
UnicastRemoteObject.exportObject().

Distributed Systems Lectures 16 University of Galway

JAVA RMI

» Security Manager
– The main method of the service first needs to
create and install a security manager:
 Either the RMISecurityManager or one that you have
defined yourself.

 A security manager needs to be running so that it
can guarantee that the classes loaded do not
perform "sensitive" operations.

– If no security manager is specified, no class
loading for RMI classes, local or otherwise, is
allowed.

Distributed Systems Lectures 17 University of Galway

JAVA RMI

» Making Code Available
–Make classes available via a web server (or
your classpath):
 E.g. copy them into your public html directory.

– Alternatively, you could have compiled your
files directly into your public html directory:
 javac -d ~des/public_html City*.java
 rmic -d ~des/public_html CityServerImpl

– The files generated by rmic (in this case) are:
 CityServerImpl_Stub.class
 CityServerImpl_Skel.class

Distributed Systems Lectures 18 University of Galway

JAVA RMI

» Poylmorphic Distributed Computing
– Ability to recognise (at runtime) the actual
implementation type of a particular interface.
–We will use example of a remote object that is
used to compute arbitrary tasks:
 Client sends task object to compute server.
 Compute server runs task and returns result.
 RMI loads task code dynamically in server.

– This example shows polymorphism on the
server - it will also work on the client e.g.:
 Server returns a particular interface implementation.

Distributed Systems Lectures 19 University of Galway

JAVA RMI

» The Task
– Simple interface that defines an arbitrary task
to compute:

public interface Task extends Serializable
{

Object run();
}

Distributed Systems Lectures 20 University of Galway

JAVA RMI

» Define a Remote Interface

import java.rmi.*;

public interface Compute extends Remote
{

Object runTask(Task t)
throws RemoteException;

}

Distributed Systems Lectures 21 University of Galway

JAVA RMI

» Notes on the Compute Interface
– A task may create a Remote object on the
server and return a reference to that object:
 The Remote object will be garbage collected when
the returned reference is dropped (assuming no one
else is handed a copy of the reference).

– A task may create a Serializable object and
return a copy of that object:
 The original object will be locally garbage collected
when the Task ends.

– If the task creates an object that is neither a
marshalling exception will be thrown.

Distributed Systems Lectures 22 University of Galway

JAVA RMI

» Implementation
– As in the previous example, for the peer-to-
peer compute server implementation:
 Extend the UnicastRemoteObject class.
 Implement methods of remote interface.
 Create and install a security manager.
 Create remote object and bind in a name facility.

–On the client side:
 Create tasks to be executed.
 Lookup the compute service by name.
 Send tasks to compute service and print results.

Distributed Systems Lectures 23 University of Galway

JAVA RMI

» The Compute Server
import java.rmi.*;
import java.rmi.server.*;
public class ComputeServer extends
UnicastRemoteObject implements Compute

{
public ComputeServer()

throws RemoteException {}
public Object runTask(Task t) {

return t.run();
}
// …

Distributed Systems Lectures 24 University of Galway

JAVA RMI

» The main Method

public static void main(String args[])
{

System.setSecurityManager(
new RMISecurityManager());

try {
ComputeServer cs = new ComputeServer();
Naming.rebind(“Computer”, cs);

} catch (Exception e) { // Exception Handling }
}

Distributed Systems Lectures 25 University of Galway

JAVA RMI

» Task to Compute PI
public class Pi implements Task
{

private int places;
public Pi (int places) {

this.places = places;
}
public Object run() {

// Compute Pi
return result;

}
}

Distributed Systems Lectures 26 University of Galway

JAVA RMI

» Task to Compute a FFT
public class FFT implements Task
{

public FFT (args …) {
// set FFT args …

}
public Object run() {

// Compute the FFT
return result;

}
}

Distributed Systems Lectures 27 University of Galway

JAVA RMI

» The Client
Compute comp = (Compute) Naming.Lookup(
“//www.it.nuigalway.ie/Computer);

Pi pi = new Pi(100);
FFT fft = new FFT(args…);

Object piResult = comp.runTask(pi);
Object fftResult = comp.runTask(fft);

// Print Results ...

Distributed Systems Lectures 28 University of Galway

www.it.nuigalway.ie/Computer

JAVA RMI

» Conclusion
– RMI is flexible and allows us to:

 Pass objects (both Remote and Serializable) by
exact type rather than declared type

 Download code to introduce extended functionality in
both client and server

 However…it is Java only and it has been superseded
by REST and SOAP as the de-facto standards for
communicating with remote services

 But…RMI is still worth learning to help understand
concepts around distributed objects and distributed
systems architecture

Distributed Systems Lectures 29 University of Galway

