ARTIFICIAL INTELLIGENCE:
ITS ROOTS AND SCOPE

Evervthing must have a beginning, 1o speak in Sanchean phrase; and that beginning must
be linked to something that went before. Hindus give the world an elephant to support it,
but they make the elephant stand upon a tortoise. Invention, it must be humbly admitted,
does not consist in creating out of void, but out of chaos; the materials must, in the first
place, be afforded. . . .

—MARY SHELLEY, Frankenstein

Artificial Intelligence: An Attempted Definition

|||||

Artificial intelligence (Al} may be defined as the branch of computer science that is
concerned with the automation of intelligent behavior This definition is particularly
appropriate to this book 1n that 1t emphasizes our conviction that Al 1s a part of computer
science and, as such, must be based on sound theoretical and applied principles of that
field. These principles include the data structures used in knowledge representation, the
algorithms needed to apply that knowledge, and the languages and programming tech-
niques used in their implementation.

However, this definition suffers from the fact that intelligence itself is not very well
defined or understood. Although most of us are certain that we know inielligent behavior
when we see it, it 18 doubtful that anyone could come close to defining intelligence in a
way that would be specific enough to help in the evaluation of a supposedly mtelligent
computer program, while still capturing the vitality and complexity of the human mind.

Thus the problem of defining artificial intelligence becomes one of defining intelligence
itself: 1s intelligence a single faculty, or 1s it just a name for a collection of distinct and
unrelated abilities? To what extent 1 mntelligence learned as opposed to having an a priori
existence? Exactly what does happen when learning occurs? What s creativity? What is
intuition? Can intelligence be inferred from observable behavior, or does it require
evidence of a particular internal mechanism? How 1s knowledge represented in the nerve
tissue of a living being, and what lessons does this have for the design of intelligent
machines? What is self-awareness; what role doees it play in intelligence? Furthermore, is
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it necessary to pattern an intelligent computer program after what s known about human
intelligence, or is a strict “engineering” approach to the problem sufficient? Is it even
possible to achieve mtelligence on a computer, or does an mtelligent enfity require the
richness of sensation and experience that might be found only in a biological existence?

These are unanswered questions, and all of them have helped to shape the problems and
solution methodologies that constitute the core of modern Al In fact, part of the appeal of
artificial intelligence 1s that 1t offers a unique and powerful tool for exploring exactly these
questions. Al offers a medium and a test-bed for theories of intelligence: such theories may
be stated in the language of computer programs and consequently tested and verified
through the execution of these programs on an actual computer.

For these reasons, our initial definition of artificial intelligence seems to fall short of
unambiguously defining the field. If anything, it has only led to further questions and the
paradoxical nofion of a fieid of study whose major goals include tfs own definition. But
this difficulty 1n arriving at a precise defimttion of Al is entirely approprate. Artificial
intelligence 1s still a young disciphine, and its structure, concerns, and methods are less
clearly defined than those of a more mature science such as physics.

Artificial intelligence has always been more concerned with expanding the capabilities
of computer science than with defining its limits. Keeping this exploration grounded in
sound theoretical principles 1s one of the challenges facing Al researchers in general and
this book 1n particular.

Because of its scope and ambition, artificial mntelligence defies simple definition. For
the time being, we will simply define it as the collection of problems and methodologies
studied by artificial intelligence researchers. This definition may seem silly and meaning-
less, but it makes an important point: artificial mtelligence, ke every science, is a human
endeavor, and perhaps, 1s best understood in that coniext.

There are reasons that any science, Al included, concerns itself with a certain set of
problems and develops a particular body of techniques for approaching these problems. In
Chapter 1, a short history of artificial intelligence and the people and assumptions that
have shaped it will explain why certain sets of questions have come to dominate the field
and why the methods discussed in this book have been taken for their solution.
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Al: EARLY HISTORY
AND APPLICATIONS
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Al men by nature desire to know . . .

~—ARISTOTLE, Opening sentence of the Metaphysics

Hear the rest, and you will marvel even more at the crafts and resources [ have contrived.
Greatest was this: in the former times if a man fell sick he had no defense against the
sickness, neither healing food nor drink, nov unguent; but through the lack of drugs men
wasted away, until I showed them the blending of mild simples wherewith they drive out all
manner of diseases. . . .

it swwas I who made visible to men's eves the flaming signs of the sky that were before dim.
50 much for these. Beneath the earth, man s hidden blessing, copper, iron, silver, and
aoid—will anyone claim to have discovered these before I did? No one, [ am very sure, who
wants to speak truly and to the purpose. One brief word will tell the whole story: all arts
shat mortals have come from Prometheus,

— AESCHYLUS, Prometheus Bound

1.1 From Eden to ENIAC: Attitudes toward
Intelligence, Knowledge, and Human Artifice
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Prometheus speaks of the fruits of his fransgression against the gods of Olympus: his
purpose was not merely to steal fire for the human race but also to enlighten humanity
through the gift of intelligence or nous: the rational mind. This intelligence forms the
foundation for all of human technology and ultimately all human civilization. The work of
Aeschylus, the classical Greek dramatist, illustrates a deep and ancient awareness of the
extraordinary power of knowledge. Artificial intelligence, in its very direct concern for
Frometheus’s gift, has been applied to all the areas of his legacy—medicine, psychology,

mology, astronomy, geology-—and many areas of scientific endeavor that Aeschylus could
not have imagmed.
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Though Prometheus’s action freed humanity from the sickness of ignorance, 1t also
earned him the wrath of Zeus. Outraged over this theft of knowledge that previocusly
belonged only to the gods of Olympus, Zeus commanded that Prometheus be chamed to a
barren rock to suffer the ravages of the elements for eternity. The notion that human efforts
to gain knowledge constitute a transgression against the laws of God or nature is deeply
ingrained in Western thought. It is the basis of the story of Eden and appears in the work
of Dante and Milton. Both Shakespeare and the ancient Greek tragedians portrayed
intellectual ambition as the cause of disaster. The belief that the desire for knowiedge must
ultimately lead to disaster has persisted throughout history, enduring the Renaissance,
the Age of Enlightenment, and even the scientific and philosophical advances of the
nineteenth and twentieth centuries. Thus, we should not be surprised that artificial
intelligence inspires so much controversy in both academic and popular circles.

indeed, rather than dispelling this ancient fear of the consequences of mtellectual
ambition, modern technology has only made those comsequences seem likely, even
imminent. The legends of Prometheus, Eve, and Faustus have been retold in the language
of technological society. In her introduction to Frankenstein, subtitled, interestingly
enough, The Modern Prometheus, Mary Shelley writes:

Many and long were the conversations between Lord Byron and Shelley to which I was a devout
and silent listener. During one of these, various philosophical doctrines were discussed, and
among others the nature of the principle of life, and whether there was any probability of its ever
being discovered and communicated. They talked of the experiments of Dr. Darwin (I speak not
of what the doctor really did or said that he did, but, as more t0o my purpose, of what was then
spoken of as having been done by him), who preserved a piece of vermicelli in a glass case till
by some extraordinary means it began to move with a voluntary motion. Not thus, after all, would
life be given. Perhaps a corpse would be reanimated; galvanism had given token of such things:
perhaps the component parts of a creature might be manufactured, brought together, and endued
with vital warmth (Butler 199).

Mary Shelley shows us the extent to which scientific advances such as the work of
Darwin and the discovery of electricity had convinced even nonscientists that the workings
of nature were not divine secrets, but could be broken down and understood systematically.
Frankenstein’s monster is not the product of shamanistic incantations or unspeakable
tfransactions with the underworld: it is assembled from separately “manufactured™ com-
ponents and infused with the vital force of electricity. Although nineteenth-century science
was inadequate to realize the goal of understanding and creating a fully intelligent agent,
it affirmed the notion that the mysteries of life and intellect might be brought into the light
of scientific analysis.

i.1.1 A Brief History of the Foundations for Al

By the time Mary Shelley finally and perhaps irrevocably joined modern science with the
Promethean myth, the philosophical foundations of modern work in artificial intelligence
had been developing for several thousand years. Although the moral and cultural issues
raised by artificial intelligence are both interesting and important, our introduction is more
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properly concerned with Al’s intellectual henitage. The logical starting point for such a
history is the genius of Aristotle, or as Dante in the Divine Comedy refers to him, “the
master of thern that know”. Aristotle wove together the isights, wonders, and fears of the
early Greek tradition with the careful analysis and discipiined thought that were to become
the standard for more modern science.

For Aristotle, the most fascinating aspect of nature was change. In his Physics, he
defined his “philosophy of nature” as the “study of things that change™. He distinguished
between the matter and form of things: a sculpture is fashioned from the materia/ bronze
and has the form of a human. Change occurs when the bronze is molded to a new form.
1The matter/form distinction provides a philosophical basis for modern notions such as
svmbolic computing and data abstraction. In computing (even with numbers) we are
manipulating patterns that are the forms of electromagnetic material, with the changes of
form of this material representing aspects of the solution process. Abstracting the form
from the medium of 1its representation not only allows these forms to be manipulated
computationally but also provides the promise of a theory of data structures, the heart of
modern computer science.

In his Metaphysics, beginning with the words “All men by nafure desire to know?”,
Arnstotle developed a science of things that never change, mcluding his cosmology and
theology. More relevant to artificial intelligence, however, was Aristotle’s epistemology or
znalysis of how humans “know” their world, discussed in his Logic. Aristotle referred fo
logic as the “instrument” (organon), because he felt that the study of thought itself was at
the basis of all knowledge. In his Logic, he mvestigated whether certain propositions can
.. be said to be “true” because they are related to other things that are known to be “true”™.
? Thus if we know that “all men are mortal” and that “Socrates 15 a man”, then we can
. comclude that “Socrates 1s mortal”. This argument 1s an example of what Aristotle referred
%2 as a syllogism using the deductive form modus ponens. Although the formal axiomatiza-
tion of reasoning needed another two thousand years for its full flowering in the works
of Gottlob Frege, Bertrand Russell, Kurt Godel, Alan Turing, Alfred Tarski, and others, its
moots may be traced to Aristotle.

Renaissance thought, building on the Greek tradition, mitiated the evolution of a
drfferent and powerful way of thinking about humanity and its relation to the natural world.
Science began to replace mysticism as a means of understanding nature. Clocks and,
aventually, factory schedules superseded the rhythms of nature for thousands of city
dweeilers. Most of the modern social and physical sciences found their origin in the notion
tsat processes, whether natural or artificial, could be mathematically analyzed and
umderstood. In particular, scientists and philosophers realized that thought itself, the way
#mat knowledge was represented and manipulated in the human mind, was a difficult but
zesential subject for scientific study.

Perhaps the major event in the development of the modern world view was the
Lopernican revolution, the replacement of the ancient Earth-centered model of the
wmrverse with the idea that the Earth and other planets are actually in orbits around the sun.
&fter centunies of an “obvious” order, 1n which the scientific explanation of the nature of
the cosmos was conststent with the teachings of religion and common sense, a drastically
frtfferent and not at all obvious model was proposed to explain the motions of heavenly
modies. For perhaps the first time, our ideas about the world were seen as fundamentally

e, T

-‘-“""\:\'-“.-\.“ ey e e T Y
B LS PR TR TR TR TS TR TR
R L R T i

= R
A

—rrrrr. r . - wear

CHAPTER 1/ Al EARLY HISTORY AND APPLICATIONS 5




distinct from that world’s appearance. This split between the human mund and its
surrounding reality, between ideas about things and things themselves, 1s essential to the
modern study of the mind and its organization. This breach was widened by the writings
of Galileo, whose scientific observations further confradicted the “obvious”™ truths about
the natural world and whose development of mathematics as a tool for describing that
world emphasized the distinction between the world and our ideas about it. It 15 out of this
breach that the modern notion of the mind evolved: introspection became a common motif
in literature, philosophers began to study epistemology and mathematics, and the
systematic application of the scientific method rivaled the senses as tools for understanding
the worid.

In 1620, Francis Bacon’s Novum Organun offered a set of search techniques for this
emerging scientific methodology. Based on the Aristotelian and Platonic idea that the
“form” of an entity was equivalent to the sum of 1ts necessary and sufficient “features”,
Bacon articulated an algorithm for determining the essence of an entity. First, he made an
organized collection of all instances of the enfity, enumerating the features of each in a
table. Then he collected a similar list of negative instances of the entity, focusing especially
on near instances of the entity, that 1s, those that deviated from the “form” of the entity by
single features, Then Bacon attempts—this step is not totally ¢lear—to make a systematic list
of all the features essential to the entity, that is, those that are common to all positive
instances of the entity and missing from the negative instances.

It 15 mteresting to see a form of Francis Bacon’s approach to concept learning reflected
in modern Al algorithms for Version Space Search, Chapter 10.2. An extension of Bacon’s
algorithms was also part of an Al program for discovery learning, suitably calied Bacon
(Langley et al. 1981). This program was able to induce many physical laws from
collections of data related to the phenomena. It is also interesting to note that the question
of whether a general purpose algorithm was possible for producing scientific proofs
awaited the challenges of the early twentieth century mathematician Hilbert (his Ent-
scheidungsproblem) and the response of the modern genius of Alan Turing (his Turing
Machine and proofs of computability and the haltving problem); see Davis et al. (1976).

Although the first calculating machine, the abacus, was created by the Chinese n the
twenty-sixth century BC, further mechanization of algebraic processes awaited the skilis
of the seventeenth century Europeans. In 1614, the Scots mathematician, John Napier,
created logarithms, the mathematical transformations that allowed multiplication and the
use of exponents to be reduced to addition and multplication. Napier also created his bones
that were used to represent overflow values for arithmetic operations. These bones were
fater used by Wilhelm Schickard (1592-1635), a German mathematician and clergyman of
Tibingen, who in 1623 invented a Calculating Clock for performing addition and subtrac-
tion. This machine recorded the overflow from its calculations by the chiming of a ciock.

Another famous calculating machine was the Pascaline that Blaise Pascal, the French
philosopher and mathematician, created in 1642. Although the mechanisms of Schickard
and Pascal were limited {o addition and subtraction—including carries and borrows-—they
showed that processes that previously were thought to require human thought and skll
could be fully automated. As Pascal later stated in his Pensees (1670), “The arithmetical
machine produces effects which approach nearer to thought than all the actions of
animals”.

[ — fprmm——— —_ (R e ———— e e e R —

PART I ARTIFICIAL INTERELLIGENCE TS ROOTH ANMD 5C0OF




ey

e
ELH o

2ot s L I £t
e ST
R e L B H
S B L S A LN A T

Pascal’s successes with calcuiating machines inspired Gottiried Wilhelm von Letbniz
in 1694 to complete a working machine that become known as the Leibniz Wheel.
It integrated a moveable carriage and hand crank to drive wheels and cylinders that
performed the more compiex operations of multiplication and division. Leibniz was also
fascinated by the possibility of an automated logic for proofs of propositions. Returning to
Bacon’s entity specification algorithm, where concepts were characterized as the collection
of themr necessary and sufhcient features, Leibniz conjectured a machine that could
calculate with these features to produce logically correct conclusions. Leibmz (1887} also
envistoned a machine, reflecting modern 1deas of deductive inference and proof, by which
the production of scientific knowiedge could become automated, a calculus for reasoning,

The seventeenth and eighteenth centuries also saw a great deal of discussion of epistemo-
logical issues; perhaps the most influential was the work of Rene Descartes, a central
figure in the development of the modern concepts of thought and theories of mind. In his
Meditations, Descartes (1680) attempted to find a basis for reality purely through
mirospection. Systematically rejecting the input of his senses as untrustworthy, Descartes
was forced to doubt even the existence of the physical world and was left with only the
reality of thought; even his own existence had to be justified in terms of thought: “Cogito ergo
sum’ {1 think, therefore I am). After he established his own existence purely as a thinking
entity, Descartes mferred the existence of God as an essential creator and ultimately
reasserted the reality of the physical universe as the necessary creation of a benign God.

We can make two observations here: first, the schism between the mind and the physical
world had become so complete that the process of thinking could be discussed in isofation
from any specific sensory wnput or worldly subject matter; second, the connection between
mind and the physical world was so tenuous that it required the intervention of a benign
{zod to support reliable knowledge of the physical world! This view of the duality between
the mind and the physical world underlies all of Descartes’s thought, including his
development of analytic geometry. How else could he have unified such a seemingly
wotidly branch of mathematics as geometry with such an abstract mathematical framework
zz algebra?

Why have we included this mind/body discussion in a book on artificial mteliigence?
There are two consequences of this analysis essential to the Al enterprise:

i. By attempting to separate the mind from the physical world, Descartes and related
thinkers established that the structure of 1deas about the world was not necessarily
the same as the structure of their subject matter. This underlies the methodology of
Al, along with the fields of epistemology, psychology, much of higher mathem-
atics, and most of modern literature: mental processes have an existence of therwr
own, obey their own laws, and can be studied in and of themselves.

! -

Once the mind and the body are separated, philosophers found 1 necessary to find
a way to reconnect the two, because interaction between Descartes mental, res
cogitans, and physical, res extensa, is essential for human existence.

Although millions of words have been written on this mind—body problem, and
ous solutions proposed, no one has successfully explained the obvious interactions
ween mental states and physical actions while affirming a fundamental difference
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between them. The most widely accepted response to this problem, and the one that
provides an essential foundation for the study of Al holds that the mind and the body are
not fundamentally different entities at all. On this view, mental processes are indeed
achieved by physical systems such as brains (or computers). Mental processes, like
physical processes, can ultimately be characterized through formal mathematics. Or, as
acknowledged in his Leviathan by the 17th century English philosopher Thomas Hobbes
(1651), “By ratiocination, | mean computation”.

1.1.2 Al and the Rationalist and Empiricist Traditions

Modern research 1ssues in artificial inteiligence, as in other scientific disciplines, are
formed and evolve through a combination of historical, social, and cultural pressures. Two
of the most promunent pressures for the evolution of Al are the empiricist and rationalist
traditions in philosophy.

The rationalist tradition, as seen in the previous section, had an early proponent 1n Plato,
and was continued on through the writings of Pascal, Descartes, and Leibniz. For the
rationalist, the external world 1s reconstructed through the clear and distinct 1deas of a
mathematics. A criticism of this dualistic approach 1s the forced disengagement of
representational systems from their field of reference. The 1ssue 18 whether the meaning
attributed to a representation can be defined independent of its application conditions. If
the world 1s different from our beliefs about the world, can our created concepts and
symbeols still have meaning?

Many Al programs have very much of this rationalist flavor. Early robot planners, for
example, would describe their application domain or “world” as sets of predicate calculus
statements and then a “plan” for action would be created through proving theorems about
this “world” (Fikes et al. 1972, see also Section 8.4). Newell and Sitmon’s Physical Symbol
Svstem Hypothesis (Introduction to Part 1I and Chapter 17) 1s seen by many as the
archetype of this approach in modern Al Several critics have commented on this
rationalist bias as part of the failure of Al af solving complex tasks such as understanding
human languages (Seaﬂe 1980, Winograd and Flores 1986, Brooks 1991a).

Rather than affirming as “real” the world of clear and distinct ideas, empiricisis
continue to remind us that “nothing enters the mind except through the senses”. This
constraint leads to further questions of how the human can possibly perceive general
concepts or the pure forms of Plato’s cave (Plato 1961). Aristotle was an early empiricist,
emphasizing in his De Adnima the limitations of the human perceptual system. More
modern empiricists, especially Hobbes, Locke, and Hume, emphasize that knowledge
must be explained through an introspective but empirical psychology. They distinguish
two types of mental phenomena, perceptions on one hand, and thought, memory, and
imagination on the other. The Scots philosopher, David Hume, for example, distinguishes
between impressions and ideas. Impressions are lively and vivid, reflecting the presence
and existence of an external object and not subject to voluntary control. Ideas, on the other
hand, are less vivid and detailed and more subject to the subject’s voluntary control.

(iven this distinction between impressions and ideas, how can knowledge arise? For
Hobbes, Locke, and Hume the fundamental explanatory mechanism 1s association.

................
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Particular perceptual properties are associated through repeated experience. This repeated
association creates a disposition in the mind fo associate the corresponding ideas, A
fundamental property of this account is presented with Hume’s skepticism. Hume’s purely
descriptive account of the origins of ideas cannot, he claims, support belief 1n causality.
Even the use of logic and induction cannot be rationally supported tn this radical empiricist
epistemology.

In An Inquiry Concerning Human Understanding (1748), Hume’s skepticism extended
to the analysis of miracles. Although Hume didn’t address the nature of miracles directly,
he did guestion the testimony-based belief in the miraculous. This skepticism, of course,
was seen as a direct threat by believers in the bible as well as many other purveyors of
religious traditions. The Reverend Thomas Bayes was both a mathematician and a minister.
One of his papers, called Essay towards Solving a Problem in the Doctrine of Chances
(1763) addressed Hume’s questions mathematically. Bayes” theorem demonstrates form-
ally how, through learning the correlations of the effects of actions, we can determine the
probability of their causes.

The associational account of knowledge plays a significant role n the development of
Al representational structures and programs, for example, in memory organization with
semantic networks and MOPS and work in natural language understanding {(see Sections
7.0, 7.1, and Chapter 14). Associational accounts have important infiuences ot machine
learning, especially with connectionist networks (see Sections 10.6, 10.7, and Chapter 11).
Associationlsim also plays an important role in cognitive psychology including the schemas
of Bartlett and Piaget as well as the entire thrust of the behaviorist tradition (Luger 1994).
Finally, with Al tools for stochastic analysis, including the Bayesian belief network (BBN)
and its current extensions to first-order Turing-complete systems for stochastic modeling,
associational theortes have found a sound mathematical basis and mature expressive
power. Bayesian tools are important for research including diagnostics, machine learning,
and natural language understanding {see Chapter S and Section 9.3).

[mmanue] Kant, a German philosopher trained in the rationalist tradition, was strongly
mfluenced by the writing of Hume. As a result, he began the modern synthesis of these two
traditions. Knowledge for Kant contains two collaborating energies, an a priori component
coming from the subject’s reason along with an a posterion component coming from active
experience. Experience 1s meaningiul only through the contribution of the subject. Without
zn active organizing form proposed by the subject, the world would be nothing more than
passing transitory sensations. Fmally, at the level of judgement, Kant claims, passing
images or representations are bound together by the active subject and taken as the diverse
appearances of an identity, of an “object”. Kant’s realism began the modern enterprise of
pswvchologists such as Bartlett, Brunner, and Piaget. Kant’s work influences the modern Al
enterprise of machine learning (Part 1V) as well as the confinuing development of a
constructivist epistemology (see Chapter 17).

1.1.3  The Development of Formal Logic

{snre thinking had come to be regarded as a form of computation, its formalization and
#vemiual mechanization were obvious next steps. As noted in Section 1.1.1, Gottfried
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Wilhelm von Letbniz, with his Calculus Philosophicus, introduced the first system of
formal logic as well as proposing a machine for automating its tasks (Leibniz 1887).
Furthermore, the steps and stages of this mechanical solution can be represented as
movement through the states of a tree or graph. Leonhard Euler, in the eighteenth century,
with his analysis of the “connectedness” of the bridges joining the riverbanks and islands
of the city of Konigsberg (see the introduction to Chapter 3}, introduced the study of
representations that can abstractly capture the structure of relationships in the world as well
as the discrete steps within a computation (Euler 1735).

The formalization of graph theory also afforded the possibility of state space search, a
major conceptual tool of artificial intelligence. We can use graphs to model the deeper
structure of a problem. The nodes of a stafe space graph represent possible stages of a
problem solufion; the arcs of the graph represent inferences, moves in a game, or other
steps 1n a problem solution. Solving the problem 1s a process of searching the state space
graph for a path to a solution {Introduction to Part II and Chapter 3). By describing the
entire space of problem solutions, state space graphs provide a powerful tool for measuring
the structure and complexity of problems and analyzing the efficiency, correctness, and
generality of solution strategies.

As one of the originators of the science of operations research, as well as the designer
of the first programmable mechanical computing machines, Charles Babbage, a nineteenth
century mathematician, may also be considered an early practitioner of artificial intelli-
gence {Morrison and Morrison 1961). Babbage’s difference engine was a special-purpose
machine for computing the values of certain polynomial functions and was the forerunner
of his analvtical engine. The analytical engine, designed but not successfully constructed
during his lifetime, was a general-purpose programmable computing machine that
presaged many of the architectural assumptions underlying the modern computer.

[n describing the analytical engine, Ada Lovelace (1961), Babbage’s friend, supporter,
and collaborator, said:

We may say most aptly that the Analytical Engine weaves algebraical patterns just as the Jacquard
loom weaves flowers and leaves. Here, 1t seems to us, resides much more of originality than the
difference engine can be fairly entitled to claim.

Babbage’s inspiration was his desire to apply the technology of his day to lhiberate
humans from the drudgery of making arithmetic calculations. In this sentiment, as well as
with his conception of computers as mechanical devices, Babbage was thinking in purely
nineteenth century terms. His analytical engine, however, also included many meodern
notions, such as the separation of memory and processor, the store and the mill 1n
Babbage’s terms, the concept of a digttal rather than analog machine, and programmability
based on the execution of a series of operations encoded on punched pasteboard cards. The
most strniking feature of Ada Lovelace’s description, and of Babbage’s work in general, 1s
its treatment of the “patterns™ of algebraic relationships as entities that may be studied,
characterized, and finally implemented and manipulated mechanically without concern for
the particular values that are finally passed through the mill of the calculating machine.
This is an example 1implementation of the “abstraction and manipulation of form” first
described by Arnistotle and Leibniz.
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The goal of creating a formal language for thought alsc appears in the work of George
Boole, another nineteenth-century mathematician whose work must be included in any
discussion of the roots of artificial inteiligence (Boole 1847, 1854). Although he made
contributions fo a number of areas of mathematics, his best known work was in the
mathematical formalization of the laws of logic, an accomplishment that forms the very
heart of modern computer science. Though the role of Boolean algebra in the design of
logic cireuitry 1s well known, Boele’s own goals m developing his system scem closer to
those of contemporary Al researchers. In the first chapter of 4n Investigation of the Laws

of Thought, on which are founded the Mathematical Theories of Logic and Probabilities,
Boole (1854) described his goals as

to investigate the fundamental laws of those operations of the mind by which reasoning is
performed: to give expression to them in the symbolical language of a Calculus, and upon this
foundation to establish the science of logic and instruct 1ts method; ...and finally to collect from
the various clements of truth brought to view 1n the course of these inquiries some probable
intimations concerning the nature and constitution of the human mind.

The greatness of Boole’s accomplishment is 1 the extraordmary power and simplicity
of the system he devised; three operations, “AND" (denoted by * or A}, “OR” {denoted by
= or v), and “NOT” (denoted bv =), formed the heart of his logical caiculus. These
operations have remained the basis for all subsequent developments in formal logic,
mcluding the design of modern computers. While keeping the meaning of these symbols
wearly identical to the corresponding aigebraic operations, Boole noted that “the Symbols
o1 logic are further subject to a special law, to which the symbols of quantity, as such, are
not subject”. This law states that for any X, an element in the algebra, X#X=X (or that once
something 1s known to be true, repetition cannot augment that knowledge). This led to the
characteristic restriction of Boolean values to the only two numbers that may satisfy this
agquation: | and 0. The standard definitions of Boolean multiplication {AND) and addition
R follow from this insight.

Boole’s system not only provided the basis of binary arithmetic but also demonstrated
that an extremely simple formal system was adequate to capture the full power of logic.
This assumption and the system Boeole developed to demonstrate 1t form the basis of ali
madern efforts to formalize logic, from Russell and Whitchead’s Principia Mathematica
i whitehead and Russell 1950), through the worle of Turing and Gdodel, up to modern
automated reasoning systems.

Gottlob Frege, in his Foundations of Arithmetic (Frege 1879, 1884), created a
mathematical spectfication language for describing the basis of anthmetic m a clear and
rrecise tashion. With this fanguage Frege formalized many of the 1ssues first addressed by
Anistotle’s Logic. Frege’s language, now called the first-order predicate calculus, offers a
5ol for describing the propositions and truth value assignments that make up the elements
of mathematical reasoning and describes the axiomatic basis of “meaning” for these
gxpressions. The formal system of the predicate calculus, which includes predicate
symbols, a theory of functions, and quantiied variables, was intended to be a language for
describing mathematics and its philosophical foundations, It also plays a fundamental role
m creating a theory of representation for artificial intelligence (Chapter 2). The first-order
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predicate calculus offers the tools necessary for automating reasoning: a language for
expressions, a theory for assumptions related to the meaning of expressions, and a
logically sound calculus for inferring new true expressions.

Whitehead and Russell’s (1950) work 15 particularly important to the foundations of Al
in that their stated goal was to derive the whole of mathematics through formal operations
on a collection of axioms. Although many mathematical systems have been constructed
from basic axioms, what is interesting is Russell and Whitehead’s commitment to
mathematics as a purely formal system. This meant that axioms and theorems would be
treated solely as strings of characters: proots would proceed solely through the application
of well-defined rules for manipulating these strings. There would be no rehance on
intuition or the meaning of theorems as a basis for proofs. Every step of a proof followed
from the strict application of formal (syntactic) rules to either axioms or previously proven
theorems, even where tradittonal proofs might regard such a step as “obvious”. What
“meaning” the theorems and axioms of the system might have 1n relation to the world
would be independent of thewr logical derivations. This treatment of mathematical
reasoning in purely formal (and hence mechanical) terms provided an essential basis for
its automation on physical computers. The logical syntax and formal rules of inference
developed by Russell and Whitehead are still a basis for automatic theorem-proving
systems, presented in Chapter 13, as well as for the theoretical foundations of artificial
intetligence.

Alfred Tarski 1s another mathematician whose work 1s essential to the foundations of
Al. Tarski created a theory of reference wherein the well-formed formulae of Frege or
Russell and Whitehead can be said to refer, in a precise fashion, to the physical world
(Tarski 1944, 1956; see Chapter 2). This msight underlies most theories of formal
semantics. In his paper The Semantic Conception of Truth and the Foundation of Semanfics,
Tarski describes his theory of reference and truth value relationships. Modem computer
scientists, especially Scoftt, Strachey, Burstall (Burstall and Darlington 1977), and Plotkin
have related this theory to programming languages and other specifications for computing.

Although 1n the eighteenth, nineteenth, and early twentieth centuries the formalization
of science and mathematics created the intellectual prerequisite for the study of artificial
intelligence, 1t was not unii the twenfieth cenfury and the infroduction of the digital
computer that Al became a viable scientific discipline. By the end of the 1940s electronic
digital computers had demonstrated their potential to provide the memory and processing
power required by ntelligent programs. It was now possible fo implement tormal reasoning
systems on a computer and empirically test thewr sufficiency for exhibiting mtelligence. An
essential component of the science of artificial intetligence 1s this commitment to digital
computers as the vehicle of choice for creating and testing theories of mtelligence.

Digital computers are not merely a vehicle for testing theories of intelligence. Their
architecture also suggests a specific paradigm for such theories: intelligence 1s a form of
information processing. The notion of search as a problem-solving methodology, for
example, owes more to the sequential nature of computer operation than it does to any
biological model of intelligence. Most Al programs represent knowledge in some formal
language that 1s then manipulated by algorthms, honoring the separation of data and
program fundamental to the von Neumann style of computing. Formal logic has emerged
as an important representational tool for Al research, just as graph theory plays an
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wgispensable role in the analysis of problem spaces as well as providing a basis for
%ﬁ*mamiﬂ networks and similar models of semantic meanmng. These techniques and

formalisms are discussed in detait throughout the body of this text; we mention them here
W eznphamze the symbmtzc: relatmnsmp between the digital computer and the theoretical

.-\.-\.

*%e often forget that the tools we create for our own purposes tend to shape our
copception of the world through their structure and limitations. Although seemingly
resrictive, this interaction 1s an essenfial aspect of the evolution of human knowledge: a
w] {and scientific theories are ultimately only tools) 1s developed to solve a particular
_g&m@% m. As 1t 15 used and refined, the tool itself seems to suggest other applications,
Eading to new questions and, ultimately, the development of new tools.

1.4 The Turing Test

©Jme of the earliest papers to address the question of machine mtelligence specifically in
mastion to the modern digital computer was written 1n 1950 by the British mathematician
&zn Turing, Computing Machinery and Intelligence (Turing 1950) remains timely in both
me assessment of the arguments against the possibility of creating an 1ntelligent computing
mechme and 1ts answers to those arguments. Turing, known mainly for his contributions to
ine theory of computability, considered the question of whether or not a machine could
zcgrally be made to think. Noting that the fundamental ambiguities 11 the question itself
sackzat 1s thinking? what 1s a machine?) precluded any rational answer, he proposed that the
aszstion of intelligence be replaced by a more clearly defined empinical test.

1he Turing test measures the performance of an allegedly intelligent machine against
s of a human being, arguably the best and only standard for intelligent behavior. The
sesr. which Turing called the imitation game, places the machine and a human counterpart
am ooms apart from a second human being, referred to as the interrogator (Figure 1.1).

T miterrogator 1s not able to see or speak directly to either of them, does not know which
gy 15 actually the machine, and may communicate with them solely by use of a textual
dizwpoe such as a terminal. The mterrogator is asked to distinguish the computer from the
rzmen being solely on the basis of their answers to questions asked over this device. If the
mimrrogator cannot distinguish the machine from the human, then, Turing argues, the
msshine may be assumed to be intelligent,

B+ 1solating the mterrogator from both the machine and the other human participant,
dee 2251 ensures that the interrogator will not be biased by the appearance of the machine
@ amy mechanical property of 1ts voice. The mterrogator 1s free, however, to ask any
=W¢§é@ﬁs no matter how devious or indirect, in an effort to uncover the computer’s
ey F{}I' examnple, the interrogator may ask both subjects to perform a rather involved
srmirmetnic calculation, assuming that the computer will be more likely to get it correct than
e mmnan; to counter this strategy, the computer will need to know when it should fail to
:ﬁﬁﬁ a correct answer to such problems in order to seem like a human. To discover the
mmman s identity on the basis of emotional nature, the interrogator may ask both subjects
e rzspond to a poem or work of art; this strategy will require that the computer have
ampwledee concerning the emotional makeup of human beings.
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Figure 1.1 The iuring test,

The important features of Turing’s test aye:

1. It attempts to give an objective notion of mtelligence, 1.e., the behavior of a known
mtelligent being in response to a particular sef of questions. This provides a
standard for determining intelligence that avoids the mevitable debates over its
“true” nature.

2. It prevents us from being sidetracked by such confusing and currently unanswer-
able questions as whether or not the computer uses the appropriate internal
processes or whether or not the machine 18 actually conscious of its actions.

3. It eliminates any bias in favor of living organisms by forcing the interrogator to
focus solely on the content of the answers to questions.

Because of these advantages, the Turing test provides a basis for many of the schemes
actually used to evaluate modern Al programs. A program that has potentially achieved
imtetligence 1 some area of expertise may be evaluated by comparing its performance on
a given set of problems to that of a human expert. This evaluation technique 15 just a
vartation of the Turing test: a group of humans are asked to blindly compare the
performance of a computer and a human being on a particular set of problems. As we will
see, this methodology has become an essential tool in both the development and
verification of modern expert systems.

The Tuning test, in spite of its intuitive appeal, is vulnerable to a number of justifiable
criticisms. One of the most important of these is aimed at its bias toward purely symbolic
problem-solving tasks. It does not test abilities requiring perceptual skill or manual
dexterity, even though these are important components of human intelligence. Conversely,
1t 15 sometimes suggested that the Turing test needlessly constrains machine intelligence to
fit a human mold. Perhaps machine intelligence is simply different from human mtelli-
gence and trying to evaluate it in human terms 1s a fundamental mistake. Do we really wish
a machine would do mathematics as slowly and inaccurately as a human? Shouldn’t an
intelligent machine capitalize on 1ts own assets, such as a large, fast, reliable memory,
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rather than trying to emulate human cognition? In fact, a number of modern Al
sractitioners (e.g., Ford and Haves 1995) see responding to the full challenge of Turing’s
sest as a mistake and a major distraction to the more important work at hand: developing
ezneral theories to explain the mechanisms of inteiligence in humans and machines and
sroiving those theories to the development of tools to solve specific, practical problems.
Adrhough we agree with the Ford and Hayes concerns 1n the large, we still see Turing’s test
a5 an important component in the verification and validation of modern Al software.

Turing also addressed the very feasibility of constructing an intelligent program on a
grgial computer. By thinking in terms of a specific model of computation {an electronic
awscrete state computing machine), he made some well-founded conjectures concerning
the storage capacity, program complexity, and basic design philosophy required for such a
system. Finally, he addressed a number of moral, phiiosophical, and scientific obyjections
m» the possibility of constructing such a program in terms of an actual technology. The
zeader 18 referred to Turing’s article for a perceptive and still relevant summary of the
dehate over the possibility of intelligent machines.

Two of the objections cited by Turing are worth considering further. Lady Lovelaces
tirfection, first stated by Ada Lovelace, argues that computers can only do as they are toid
amd consequently cannot perform original (hence, intelligent) actions. This objection has
hecome a reassuring 1f somewhat dubious part of contemporary technological folklore.
Expert systems (Section 1.2.3 and Chapter 8), especially i the area of diagnostic
seasoning, have reached conclusions unanticipated by their designers. Indeed, a number of
remearchers feel that human creativity can be expressed in a computer program,.

The other related objection, the Argument from Informality of Behavior, asserts the
mmpossibility of creating a set of rules that will tell an individual exactly what to do under
awery possible set of circumstances. Certainly, the flexibility that enables a biological
zetiigence to respond to an almost infinite range of situations in a reasonable if not
macessarily optimal fashion is a hallmark of mtelligent behavior. While it 1s true that the
zomol structure used in most traditional computer programs does not demonstrate great
Bexibility or onginality, 1t 1s not true that all programs must be written n this fashion.
imdzed, much of the work m Al over the past 25 years has been to develop programming
tamguages and models such as production systems, object-based systems, network
zepresentations, and others discussed 1n this book that attempt to overcome this deficiency.

mgn} modern Al programs CGHSISt of a collection ot mc:}dular components, or rules of

'''''

w the :tructure of a particular problem instance. Pattern matchers allow general rules to
zppdy over a range of instances. These systems have an extreme flexibility that enables
meianively small programs to exhibit a vast range of possible behaviors in response to
aettening problems and situations.

Whether these systemns can ultimately be made to exhibit the fexibility shown by a
fmrmz organism is still the subject of much debate. Nobel laureate Herbert Simon has
srpued that much of the originality and variability of behavior shown by living creatures is
gz 1o the richness of their environment rather than the complexity of their own internal
geograms. In The Sciences of the Artificial, Simon (1981) describes an ant progressing
mf«aﬁcmmusly along an uneven and cluttered stretch of ground. Although the ant’s path seems

re complex, Simon argues that the ant’s goal 1s very simple: to return to its colony as
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quickly as possible. The twists and turns in 1ts path are caused by the obstacies 1t
encounters on its way. Simon concludes that

An ant, viewed as a behaving system, 1s quite simple. The apparent complexity of ifs behavior
over time 18 largely a reflection of the complexity of the environment i which it finds itself,

This tdea, 1f ultimately proved to apply to organisms of higher intelligence as well as to
such simple creatures as insects, constitutes a powerful argument that such systems are
relatively simple and, consequently, comprehensible. It is interesting to note that 1f one
applies this idea to humans, 1t becomes a strong argument for the importance of culture
the forming of intelligence. Rather than growing in the dark like mushrooins, intelligence
seems 10 depend on an inferaction with a switably rich environment. Culture 1s just as
important in ¢reating humans as human beings are in creating culture, Rather than
denigrating our intellects, this idea emphasizes the miracuious richness and coherence of
the cuitures that have formed out of the lives of separate human beings. In fact, the 1dea
that intelligence emerges tfrom the interactions of individual elements of a society 1s one
of the insights supporting the approach to Al technology presented in the next section.

1.1.5 Biological and Social Models of Intelligence: Agents Theories

So far, we have approached the problem of building intelligent machines from the
viewpoint of mathematics, with the implicit belief of logical reasoning as paradigmatic of
intelligence 1tself, as well as with a commitment to “objective” foundations for logical
reasoning. This way of looking at knowledge, language, and thought reflects the rationalist
tradition of western philosophy, as it evolved through Plato, Galileo, Descartes, Leibniz,
and many of the other philosophers discussed earlier in this chapter. {t also reflects the
underlying assumptions of the Turing test, particularly its emphasis on symbolic reasoning
as a test of mtelhgence, and the behef that a straightforward comparison with human
behavior was adequate to confirming machine intelligence.

The reliance on logic as a way of representing knowledge and on logical inference as
the primary mechanism for intelligent reasoning are so dominant 1n Western philosophy
that their “truth” often seems obvious and unassailabie. It 18 no surprise, then, that
approaches based on these assumptions have dominated the science of artificial intelli-
gence from 1ts inception through to the present day.

The latter half of the twentieth century has, however, seen numerous challenges o
rationalist philosophy. Various forms of philosophical relativism question the objective
basis of language, science, society, and thought itself. Ludwig Wittgensteins later
phitosophy (Wittgenstein 1953}, has forced us to reconsider the basis on meaning in both
natural and formal languages. The work of Godel, Nagel and Newman (19538), and Turing
has cast doubt on the very foundations of mathematics itself. Post-modern thought has
changed our understanding of meaning and value in the arts and society. Artificial
intelligence has not been immune to these crificisms; indeed, the dithculties that Al has
encountered mn achieving its poals are often taken as evidence of the failure of the
rationalist viewpoint ( Winograd and Flores 1986, Lakoff and Johnson 1999).

16
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Two philosophical traditions, that of Wittgenstein (1953) as well as that of Husser]
(1970, 1972) and Hetdegger (1962}, are central to this reappraisal of the Western
philosophical tradition. In his later work, Wittgenstein questioned many of the assumptions
of the rationalist tradition, including the foundations of Janguage, science, and knowledge.
Natural language was a major focus of Wittgenstein's analysis: he challenged the notion
that human language dertved 1ts meaning from any sort of objective foundation.

For Wittgenstein, as well as the speech act theorv developed by Austin (1962) and his
followers (Grice 1975, Searle 1969), the meaning of any utterance depends on its being
situated 1n a human, cultural context. Our understanding of the meaning of the word
“chair”, for example, 1s dependent on having a physical body that conforms to a sitting
posture and the cultural conventions for using chairs. When, for examplie, is a large, flat
rock a chair? Why 1s it odd to refer to the throne of England as a chair? What js the
difference between a human being’s understanding of a chair and that of a dog or cat,
incapable of sitting in the human sense? Based on his aftacks on the foundations of
meaning, Wittgenstein argued that we should view the use of language in terms of choices
made and actions taken in a shiffing cuitural context. Wittgenstein even extended his
criticisms to science and mathematics, arguing that they are just as much social constructs
as 1s language use.

Husserl (1970, 1972), the father of phenomenoclogy, was committed to abstractions as
rooted in the concrete Lebenswelt or life-world: a rationalist model was very much
secondary to the concrete world that supported it. For Husserl, as well as for his student
Heidegger (1962), and their proponent Merieau-Ponty (1962), intelligence was not
knowing what was true, but rather knowing how to cope in a world that was constantly
changing and evolving. Gadamer (1976) also contributed to this fradition. For the
existenfialist/phenomenelogist, inteiligence 1s seen as survival in the world, rather than as
a set of logical propositions about the world (combined with some inferencing scheme).

Many authors, for example Dreyfus and Dreyfus (1985) and Winograd and Flores
(1986), have drawn on Wittgenstein’s and the Husserl/Heidegger work i their crificisms
of Al. Although many Al practitioners continue developing the rational/logical agenda,
also known as GOFAI or Good Old Fashioned Al, a growing number of researchers in
the field have incorporated these criticisms into new and exciting models of inteiligence.
[n keeping with Wittgenstem’s emphasis on the anthropological and cultural roots of
knowledge, thev have turned to social, sometimes referred to as situated, models of
intelligent behavior for thetr inspiration.

As an example of an alternative to a logic-based approach, research in connectionist
learning (Section 1.2.9 and Chapter 11) de-emphasizes logic and the functioning of the
rational mind in an effort to achieve inteiligence by modeling the architecture of the
physical brain. Neural models of intelligence emphasize the brain’s ability to adapt to
the world in which it 1s situated by modifying the relationships between individual
neurons. Rather than representing knowledge in explicit logical sentences, they capture it
implicitly, as a property of patterns of relationships.

Another biologically based model of intelligence takes its inspiration from the
processes by which entire species adapt to their surroundings. Work in artificial life and
genetic algorithms (Chapter 12) applies the principles of biological evolution to the
problems of finding solutions to difficult problems. These programs do not solve problems
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by reasoning logicaily about them; rather, they spawn populations of competing candidate
solutions and drive them to evolve ever better solutions through a process patterned atter
biological evolution: poor candidaie solutions tend to die out, while those that show the
promise for solving a problem survive and reproduce by constructing new solutions out of
components of their successful parents.

Social systems provide another metaphor for intelligence in that they exhibit global
behaviors that enabie them to solve problems that would confound any of their individual
members. For exampie, although no individual could accurateily predict the number of
loaves of bread to be consumed in New York City on a given day, the entire system of New
York bakeries does an excellent job of keeping the city stocked with bread, and doing so
with munimal waste. The stock market does an excellent job of setting the relative values
of hundreds of companies, even though each individual investor has only himited
knowledge of a few companies. A final example comes from modern science. Individuals
located in universities, industry, or government environments focus on common problems.
With conferences and journals as the main communication media, problems 1important to
society at large are attacked and solved by individual agents working semi-independently,
although progress in many mstances 1s also driven by funding agencies.

These examples share two themes: first, the view of intelligence as rooted 1n culture and
society and, as a consequence, emergent. The second theme is that intelligence is refiected
by the collective behaviors of large numbers of very simple interacting, semi-autonomous
individuals, or agents. Whether these agents are neural cells, individual members of a
species, or a single person in a society, their interactions produce inteiligence.

What are the main themes supporting an agent-oriented and emergent view of
intelligence? They include:

1. Agents are autonomous or semi-autonomous. That 1s, each agent has certain
responsibilities in problem solving with little or no knowledge of either what other
agents do or how they do it. Each agent does its own independent piece of the
problem solving and either produces a result itself {does something} or reports
resuits back to others in the community {(conmumunicating agent).

-

Agents are “situated.” Each agent is sensitive to its own surrounding environment
and (usually) has no knowledge of the full domain of ail agents. Thus, an agent’s
knowledge 1s limited to the tasks to hand: “the-file-I’'m-processing” or “the-wall-
next-to-me” with no knowledge of the total range of files or physical constraints 1n
the problem solving task.

3. Agents are interactional. That is, they form a collection of individuals that
cooperate on a particular task. In this sense they may be seen as a “society” and, as
with human society, knowledge, skills, and responsibiiities, even when seen as
collective, are distributed across the population of individuals.

4. The society of agents is structured. In most views of agent-oriented problem
solving, each individual, although having its own unique environment and skill set,
will coordinate with other agents in the overall problem solving. Thus, a final
solution will not only be seen as collective, but also as cooperative.

18
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5. Finally, the phenomenon of intelligence in this environment is “emergent.”
Although individual agents are seen as possessing sets of skills and responsibilities,
the overall cooperative result can be viewed as greater than the sum of 1ts individual
contributors. Intelligence is seen as a phenomenon resident 1 and emerging from
a society and not just a property of an individual agent.

Based on these observations, we define an agent as an element of a society that can
perceive {(often limited) aspects of its environment and affect that enviromment either
directly or through cooperation with other agents. Most intelligent solutions require a
variety of agents. These include rote agents, that simply capture and communicate pieces
of information, coordination agents that can support the interactions between other agents,
search agents that can examine muitipie pieces of information and return some chosen bit
of it, learning agents that can examine collections of information and form concepts or
generalizations, and decision agents that can both dispatch tasks and come to conciusions
in the light of limited information and processing. Going back to an older definition of
mtelligence, agents can be seen as the mechanisms supporting decision making in the
context of limited processing resources.

The main requisifes for designing and building such a society are:

1. structures for the representation of information,
2. strategies for the search through alternative solutions, and

3. the creation of architectures that can support the interaction of agents.

The remaining chapters of our book, especially Section 7.4, include prescriptions for the
construction of support tools for this society of agents, as well as many examples of agent-
based problem solving.

Our preliminary discussion of the possibility of a theory of autornated inteliigence 18 1
no way intended to overstate the progress made to date or mimimize the work that lies
ahead. As we emphasize throughout this text, it 1s important to be aware of our limitations
and to be honest about our successes. For example, there have been only timited resuits
with programs that in any interesting sense can be said to “learn.” Our accomplishments
modeling the semantic complexities of a natural ianguage such as English have also
heen very modest. Even fundamental issues such as organizing knowledge or fully
managing the complexity and correctness of very large computer programs (such as large
wnowledge bases) require considerable further research. Knowledge-based systems,
imough they have achieved marketable engineening successes, stili have many limitations
= the quality and generality of their reasoning. These include their inability to perform
commonsense reasoning or to exhibit knowledge of rudimentary physical reality, such as
miyw things change over time.

But we must maintain a reasonable perspective. It 1s easy to overlook the accomplish-
zeents of artificial intelligence when honestly facing the work that remains. In the next
szcnion, we establish this perspective through an overview of several areas of arfificial
ampeiiigence research and development.
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1.2 Overview of Al Application Areas

The Analvtical Engine has no pretensions whatever to originate anyvthing. It can do
whatever we know how to order if to perform.

—ADA BYRON, Countess of Lovelace

I'm sorry Dave, I can t lef you do that.

—HaL 9000 mn 2001 4 Space Odyssey by Arthur C. Clarke

We now return to our goal of defining artihcial intelligence through an examination of the
ambitions and accomplishments of workers i the field. The two most fundamental
concerns of Al researchers are knowledge representation and search. The first of these
addresses the problem of capturing in a language, i.e., one suitable for computer
manipulation, the full range of knowledge required for intelligent behavior. Chapter 2
introduces predicate caiculus as a language for describing the properties and relationships
among objects in problem domains that require qualitative reasoning rather than arthmetic
calculations for their solutions, Later, Part TH discusses the tools that artificial intelligence
has developed for representing the ambiguities and complexities of areas such as
commonsense reasoning and natural language understanding. Chapters 15 and 16 demon-
strate the use of LISP and PROLOG to implement these representations.

Search 1s a problem-solving technique that systematically explores a space of problem
states, 1.e., successive and alternative stages 1n the problem-solving process. Examples of
problem states might inciude the different board configurations in a game or intermediate
steps 1n a reasoning process. 1his space of alternative solutions 1s then searched to find an
answer. Newell and Simon (1976) have argued that this 1s the essential basis of human
problem solving. Indeed, when a chess player examines the effects of different moves or a
doctor considers a number of alternative diagnoses, they are searching among alternatives.
The implications of this model and techniques for its implementation are discussed in
Chapters 3, 4, 6, and 17.

Like most sciences, Al is decomposed into a number of subdisciplines that, while
sharing an essential approach to problem solving, have concerned themselves with
different applications. In this section we outline several of these major application areas
and their confributions fo artificial intelligence as a whole.

i.2.1  Game Plaving

Much of the early research in state space search was done using common board games
such as checkers, chess, and the 15-puzzie. In addition to their inherent intellectual appeal,
board games have certain properties that made them ideal subjects for this early work.
Most games are played using a well-defined set of rules: this makes it easy to generate the
search space and frees the researcher from many of the ambiguities and complexities
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inherent in less structured problems. The board configurations used in playing these games
are easily represented on a computer, requiring none of the complex formalisms needed to
capture the semantic subtleties of more complex problem domains. As games can be easily
played, testing a game-playing program presents no financial or ethical burden. State space
search, the paradigm underlying most game-playing research, is presented in Chapters 3
and 4.

Games can generate extremely large search spaces. These are large and complex
enough to require powerful techniques for determining what alternatives to explore in the
problem space. These techniques are called Aeuristics and constitute a major area of Al
research. A heuristic 1s a useful] but potentially fallible problem-solving strategy, such as
checking to make sure that an unresponsive appliance is plugged in before assuming that
it 18 broken or to castle in order to try and protect your King from capture in a chess game.
Much of what we commonly call intetligence seems to reside 1n the heuristics used by
humans to solve problems.

Because most of us have some experience with these simple games, it is possible o
devise and test the effectiveness of our own heuristics. We do not need to find and consult
an expert in some ¢soteric problem area such as medicine or mathematics (chess 1s an
obvious exception to this ruie). For these reasons, games provide a rich domain for the
study of heuristic search. Chapter 4 introduces heuristics using these simpie games;
Chapter 8 extends their application to expert systems. Game-playing programs, in spite of
their simplicity, offer their own challenges, including an opponent whose moves may not
be deterministically anticipated, Chapters 5 and 8. This presence of the opponent further
complicates program design by adding an element of unpredictability and the need to
consider psychological as well as tactical factors in game strategy.

1.2.2  Automated Reasoning and Theorem Proving

We could argue that automatic theorem proving i1s the oldest branch of artificial
mielligence, tracing its roots back through Newell and Stmon’s Logic Theorist (Newell and
Simon 19634) and General Problem Solver (Newell and Simon 19635), through Russel
anid Whitehead’s efforts to treat all of mathematics as the purely formal derivation of
theorems from basic axtoms, to its origins in the writings of Babbage and Leibniz. In any
case, it has certainly been one of the most fruitful branches of the field. Theorem-proving
research was responsible for much of the early work in formalizing search algorithms and
developing formal representafion languages such as the predicate calcuius (Chapter 2) and
the logic programming language PROLOG (Chapter 15).

Most of the appeal of automated theorem proving lies in the rigor and generality of
logic. Because it 15 a formal system, logic lends itself to automation. A wide variety of
problems can be attacked by representing the problem description and relevant background
mformation as logical axioms and treating problem instances as theorems to be proved.
This insight 1s the basis of work in automatic theorem proving and mathematical reasoning
systems (Chapter 13).

Unfortunately, early efforts at writing theorem provers failed to develop a system that
could consistently solve complicated problems. This was due to the ability of any
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reasonably complex logical system fo generate an infinite number of provable theorems:
without powerful techniques (heuristics) to guide their search, automated theorem provers
proved large numbers of irrelevant theorems before stumbling onto the correct one. In
response {o this inefiiciency, many argue that purely formal, syntactic methods of guiding
search are inherently incapable of handling such a huge space and that the only alternative
1 to rely on the informal, ad hoc strategies that humans seem o use in solving problems.
This 1s the approach underlying the development of expert systems (Chapter 8), and it has
proved to be a fruitful one.

Still, the appeal of reasoning based in formal mathematical logic 1s too strong to ignore.
Many important problems such as the design anad verification of logic circuits, verification
of the correctness of computer programs, and control of complex systems seem to respond
to such an approach. In addition, the theorem-proving conununity has enjoyed success in
devising powerful solution heuristics that rely solely on an evaluation of the syntactic form
of a logical expression, and as a result, reducing the complexity of the search space without
resorting to the ad hoc techniques used by most human problem solvers.

Another reason for the continued interest in automatic theorem provers is the realization
that such a system does not have to be capable of independently solving exiremely
complex problems without human assistance. Many modern theorem provers function as
inteliigent assistants, letting humans perform the more demanding tasks of decomposing a
large probiem into subprobiems and devising heuristics for searching the space of possible
proois. The theorem prover then performs the simpler but still demanding task of proving
lemmas, verifying smaller conjectures, and completing the formal aspecis of a proof
outlined by 1ts human associate {Boyer and Moore 1979, Bundy 1988, Veroft 1997).

1.2.3  Lxpert Sysiems

One major insight gained from early work in problem solving was the importance of
domain-specific knowledge. A doctor, for example, is not effective at diagnosing 1iiness
solely because she possesses some innate general problem-solving skill; she 1s effective
because she knows a lot about medicine. Similarly, a geologist 15 effective at discovering
mineral deposits because he is able to applv a good deal of theoretical and empirical
knowledge about geology to the problem at hand. Expert knowledge 1s a combination of a
theoretical understanding of the problem and a collection of heuristic probiem-solving
rules that experience has shown to be effective in the domain. Expert systems are
constructed by obtaining this knowledge from a human expert and coding it into a form
that a computer may apply to similar problems.

This reliance on the knowledge of a human domain expert for the system’s problem
solving strategies 1s a major feature of expert systems. Although some programs are
written in which the designer 1s also the source of the domain knowledge, it is far more
typical to see such programs growing out of a collaboration between a domain expert such
as a doctor, chemist, geologist, or engineer and a separate artificial inteiligence specialist.
The domain expert provides the necessary knowledge of the problem domain through a
general discussion of her problem-solving methods and by demenstrating those skilis on a
carefully chosen set of sample problems. The Al specialist, or knowledge engineer, as
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expert systems designers are often known, 1s responsible for implementing this knowledge
in a program that is both effective and seemingly intelligent 1n its behavior. Once such a
program has been written, it is necessary to refine its expertise through a process of giving
it example problems to solve, letting the domain expert criticize 1ts behavior, and making
any required changes or modifications to the program’s knowledge. This process is
repeated until the program has achieved the desired level of performance.

One of the earliest systems to exploit domain-specific knowledge 1n problem solving
was DENDRAL, developed at Stanford in the late 1960s (Lindsay et al. 1980). DENDRAL
was designed to infer the structure of organic molecules from their chemical formulas and
mass spectrographic information about the chemical bonds present in the molecules.
Because organic molecules tend to be very large, the number of possible structures for
these molecules tends to be huge. DENDRAL addresses the problem of this large search
space by applving the heuristic knowledge of expert chemists to the structure elucidation
problem. DENDRATs methods proved remarkably effective, routinely finding the correct
structure out of millions of possibilities after only a few trials. The approach has proved so
successful that descendants of the system are used in chemical and pharmaceutical
laboratories throughout the world.

Whereas DENDRAL was one of the first programs to effectively use domam-specific
knowledge to achieve expert level problem-solving performance, MY CIN established the
methodology of contemporary expert systems (Buchanan and Shortliffe 1984). MYCIN
uses expert medical knowledge to diagnose and prescribe treatment for spinal meningifis
] and bacterial infections of the blood.
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MY CIN, developed at Stanford in the mid-1970s, was one of the first programs to
3 address the problems of reasoning with uncertain or incomplete information. MYCIN
g; provided clear and logical explanations of its reasoning, used a control structure
appropriate to the specific problem domain, and identified criteria to reliably evaluate its
performance. Many of the expert system development technigues currently 1n usc were
. first developed in the MYCIN project (Chapter 8).

% Other classic expert systems include the PROSPECTOR program for determining the
-f? probable location and type of ore deposifs based on geological information about a site
‘-i (Duda et al. 1979a, 197958), the INTERNIST program for performing diagnosis in the area
of internal medicine, the Dipmeter Advisor for interpreting the results of oil well drilling
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logs (Smith and Baker 1983), and XCON for configuring VAX computers. XCON was
developed in 1981, and at one time every VAX sold by Digital Equipment Corporation was
configured by that software. Numerous other expert systems are currently solving
problems in areas such as medicine, education, business, design, and science (Waterman
1986, Durkin 1994).

“ It is interesting to note that most expert systems have been written for relatively
speclalized, expert level domains. These domains are generally well studied and have
clearly defined problem-solving strategies. Problems that depend on a more loosely
gefined notion of “common sense” are much more difficult to solve by these means. In
spite of the promise of expert systems, if would be a mistake to overestimate the ability of
this technology. Current deficiencies include:
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1. Dafficulty 1n capturing “deep” knowledge of the problem domaimn. MYCIN, for
example, lacks any real knowledge of human physiology. [t does not know what
blood does or the function of the spinai cord. Folklore has it that once, when
selecting a drug for treatment of meningitis, MY CIN asked whether the patient was
pregnant, even though it had been told that the patient was male. Whether this
actually occurred or not, 1t does illustrate the potential narrowness of knowledge in
cxpert systems.

2. Lack of robustness and flexibility. If humans are presented with a problem instance
that they cannot solve immediately, they can generally return to an examination of
first principles and come up with some strategy for attacking the problem. Expert
systems generally lack this ability.

3. Inability to provide deep explanations. Because expert systems lack deep know-
ledge of their problem domains, their explanations are generally restricted to a
description of the steps they took in finding a solution. For example, they often
cannot tell “why™ a certain approach was taken.

4. Difhceulties 1n versfication. Though the correctness of any large computer system
15 difficult to prove, expert systems are particularly difficult 1o verify. This 1s a
serious problem, as expert systems technology is being applied to critical
applications such as air traffic control, nuclear reactor operations, and weapons
SYS{CHIS.

5. Liitle learning from experience. Current expert systems are handcrafted; once the
system 1s completed, its performance will not improve without further attention
from its programmers, leading to doubts about the intelligence of such systems.

In spite of these limitations, expert systems have proved their value in a number of
important applications. It is hoped that these limitations will only encourage the student to
pursue this important branch of computer science. Expert systems are a major topic in this
text and are discussed in Chapters 7 and 8.

1.2.4  Natural Language Understanding and Semantics

One of the long-standing goals of artificial intelligence is the creation of programs that are
capable of understanding and generating human language. Not only does the ability to use
and understand natural language seem to be a fundamental aspect of human mtelligence,
but also its successful automation would have an incredible impact on the usability and
effectiveness of computers themselves. Much effort has been put nto writing programs
that understand natural language. Although these programs have achieved success within
restricted contexts, systems that can use natural language with the fiexibility and generality
that characterize human speech are beyond current methodoelogies.

Understanding natural language involves much more than parsing sentences into their
individual parts of speech and looking those words up 1n a dictionary. Real understanding
depends on extensive background knowledge about the domain of discourse and the
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idtoms used in that domain as well as an ability to apply general confextual knowledge to
resolve the omissions and ambiguities that are a normal part of human speech.

Constder, for example, the difficulties in carrying on a conversation about baseball with
an individual who understands English but knows nothing about the rules, players, or
mstory of the game. Could this person possibly understand the meaning of the sentence:
“%ith none down 1n the top of the ninth and the go-ahead run at second, the manager called
s relief from the bull pen”? Even though all of the words in the sentence may be
individually understood, this sentence would be gibberish to even the most intelligent
non-baseball fan.

The task of collecting and organizing this background knowledge in such a way that it
mav be applied to language comprehension forms the major problem in automating natural
amgnage understanding. Responding to this need, researchers have developed many of the
wehniques for structuring semantic meaning used throughout artificial intelligence
iChapters 7 and 14).

Because of the tremendous amounts of knowledge required for understanding natural
language, most work is done in well-understood, specialized problem areas. One of the
gariiest programs to exploit this “micro world” methodology was Winograd’s SHRDLU, a
natural language system that could “converse” about a simple configuration of blocks of
different shapes and colors (Winograd 1973). SHRDLU could answer queries such as
“what color block is on the blue cube?” as well as plan actions such as “move the red
mwramid onto the green brick”. Problems of this sort, involving the description and
manipulation of simple arrangements of blocks, have appeared with surprising frequency
m Al research and are known as “blocks world” problems.

In spite of SHRDLUs success in conversing about arrangements of biocks, its methods
siid not generalize from that domain. The representational techniques used in the program
were too simple {o capture the semantic organization of richer and more complex domains
w1 3 useful way. Much of the current work in natural language understanding is devoted
#z finding representational formalisms that are general enough to be used in a wide range
@i applications yet adapt themselves well to the specific structure of a given domain.
A number of different techniques (many of which are extensions or modifications of
sgmmantic networks) are explored for this purpose and used in the development of programs
ther can understand natural language in constrained but interesting knowledge domains.
rimaily, 1n current research (Marcus 1980, Manning and Schutze 1999, Jurafsky and
Sdartin 2000) stochastic models, describing how words and language structures “occur” in
wse. are employed to characterize both syntax and semantics. Full compuiational under-
sanding of language, however, remains beyond the current state of the art.

.25 Modeling Human Performance

Azhough much of the above discussion uses human intelligence as a reference point in
considening artificial intelligence, 1t does not follow that programs should pattern
wemselves after the organization of the human mind. Indeed, many Al programs are
¢mgineered to solve some useful problem without regard for their similarities to human
mental architecture. Even expert systems, while deriving much of their knowledge from
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human experts, do not really attempt to simulate human internal mental problem solving
processes. If performance 1s the only criterion by which a system will be judged, there may
be liftle reason to attempt to stmulate human problem-solving methods; in fact, programs
that take nonhuman approaches to solving probiems are ofien more successful than their
human counterparts. Still, the design of systems that explicitly model aspects of human
performance 1s a fertile area of research in both artificial intelligence and psychology.
Human performance modeling, in addition to providing Al with much of its basic
methodology, has proved to be a powerful tool for formulating and testing theories of
human cognition. The problem-solving methodologies developed by computer scientists
have given psychologists a new metaphor for exploring the human mind. Rather than
casting theories of cognition in the vague language used in early research or abandoning
the problem of describing the inner workings of the human mind entirely (as suggested by
the behaviorists), many psychologisis have adopted the language and theory of computer
science to formulate models of human intelligence. Not only do these techniques provide
a new vocabulary for describing human intelligence, but also computer implementations
of these theories offer psychologists an opportunity to empirically test, critique, and refine
their 1deas (Luger 1994). Further discussion of the relationship between artificial and
human intelligence is found throughout this book and is summarized in Chapter 17.

1.2.6  Planning and Robotics

Research in planning began as an effort to design robots that could perform their tasks with
some degree of flexibility and responsiveness to the outside world. Briefly, planning
assumes a robot that is capable of performing certain atomic actions. It attempts to find a
sequence of those actions that will accomplish some higher-level task, such as moving
across an obstacle-filied room.

Planning is a difficult problem for a number of reasons, not the least of which 1s the size
of the space of possible sequences of moves. Even an extremely simple robot is capable of
generating a vast number of potential move sequences. Imagine, for example, a robot that
can move forward, backward, right, or left, and consider how many different ways that
robot can possibly move around a room. Assume also that there are obstacles 1n the room
and that the robot must select a path that moves around them in some efficient fashion,
Writing a program that can intelligently discover the best path under these circumstances,
without being overwheimed by the huge number of possibilities, requires sophisticated
techniques for representing spatial knowledge and controlling search through possible
environments.

One method that human beings use 0 planming 1s kierarchical problem decomposition.
[f you are planning a trip from Albuguerque to London, you will generally treat the
problems of arranging a flight, getting to the airport, making airline connections, and
finding ground transportation in London separately, even though they are all part of a
bigger overall plan. Each of these may be further decomposed into smaller subproblems
such as finding a map of the city, negotiating the subway system, and finding a decent pub,.
Not only does this approach effectively restrict the size of the space that must be searched,
but also allows saving of frequently used subplans for future use.
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% hiie humans plan cffortiessty, creating a computer program that can do the same is a
difonlt challenge. A seemingly simple task such as breaking a problem nto independent
suorabiems actually requires sophisticated heuristics and extensive knowledge about the
piwgning domain. Determining what subplans should be saved and how they may be
wpmzralized for future use 1s an equally difficult problem,

X robot that blindly performs a sequence of actions without responding to changes in
#m smvironment or being able fo detect and correct errors in its own plan could hardly be
—— sudered intelligent. Often, a robot will have to formulate a plan based on incomplete

smrmanon and correct its behavior as i1t executes the plan. A robot may not have adequate
semsors 1o locate all obstacles 1n the way of a projected path. Such a robot must begin
AN thmugh the room based on what 1t has “percetved” and correct its path as other
sharacies are detected. Organizing plans in a fashion that allows response to changing
pemyrorinental conditions is a major problem for planning (Lewis and Luger 2000).

E@&g%ﬁ robotics was one of the research areas in Al that produced many of the insights
a-:rerzt ﬂmented problem solving (Seutmn [.1.5). Frustrated by both the com-

&Eﬁ{}rlthmb for tradltmﬂa plamlmg, researchers, including Agre and Chapman
ﬁ*w’*ﬁfg and Brooks (1991a), restated the larger problem in terms of the interaction of
amainiple semi-autonomous agents. Each agent was responsible for its own portion of the
mmskdern task and through their coordination the larger solution would emerge.

Pianning research now extends well beyond the domains of robotics, to include the
e ?'mziaﬂ mf any c:}mplex set of tasks and goals. Mmdem planners are app}ied to agents

Languages and Environments for Al

%itﬁs - ot the most impﬂrtant by-pmducts of artificial intelligence research have been

ﬁa%%’%ﬁ‘pmﬂ methadmiﬂgy, the tandency of search algorithms to generate huge spaces, and
. e @uiSiculty of predicting the behavior of heurnistically driven programs, Al programmers
- Sz been forced to develop a powerful set of programming methodologies.

Programming  environments include knowledge-structuring techniques such as
- gierr-oriented programming. High-level languages, such as LISP and PROLOG (Part
- %% which support modular development, help manage program size and complexity.
- T packages allow a programmer to reconstruct the execution of a complex algorithm
~ ’-’*-‘f it pmssible to unravel the {:Dmpiexitieg of heuristic search. Without such tools and

‘%ﬁ s ﬂt these techniques are now standard tools for software engineering and have
- Gk relationship to the core of Al theory. Others, such as object-oriented programming,
e of significant theoretical and practical interest. Finally, many Al algorithms are also
g bezilt in more traditional computing languages, such as C++ and Java.,
"~ The languages developed for artificial intelligence programming are intimately bound
- aw e theoretical structure of the field. We cover both LISP and PROLOG in this book and
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prefer to remain apart from religious debates over their relative ments. Rather, we adhere
to the adage “a good worker knows all her tools.” The language chapters (15 and 16)
discuss the advantages of each language for specific programming tasks.

1.2.8  Machine Learning

Learning has remained a challenging area for Al. The importance of learning, however, is
beyond question, particularly as this ability 1s one of the most important components of
intelligent behavior. An expert system may perform extensive and costly computations to
sotve a problem. Uniike a human being, however, if 1t is given the same or a sumilar
problem a second time, 1t usually does not remember the solution. It performs the same
sequence of computations again. This 1s true the second, third, fourth, and every time it
solves that problem—hardly the behavior of an intelitgent problem solver. The obvious
solufion to this problem 1s for programs to learn on their own, either from experience,
analogy, examples, or by being “told” what to do.

Although learning 1s a difficult area, there are several programs that suggest that it 18
not 1impossiblie. One stnking program is AM, the Automated Mathematician, designed to
discover mathematical laws (Lenat 1977, 1982). Initially given the concepts and axioms of
set theory, AM was able to induce such mimportant mathematical concepts as cardinality,
integer arithmetic, and many of the results of number theory. AM conjectured new
theorems by modifying its current knowledge base and used heuristics to pursue the “best”
of a number of possible alternative theorems. More recently, Cotton et al. {(2000) designed
a program that automatically invents “interesting” integer sequences.

Early influential work includes Winstons research on the induction of structural
concepts such as “arch” from a set of examples in the blocks world (Winston 1975a). The
ID3 algorithm has proved successful in learning general patterns from examples {(Quinlan
19864a). Meta-DENDRAL lcarns rules for interpreting mass spectrographic data in organic
chemistry from examples of data on compounds of known structure. Teiresias, an inteili-
pent “front end” for expert systems, converts high-level advice into new rules for its
knowledge base (Davis 1982). Hacker devises plans for performing blocks world manipu-
tations through an iterative process of devising a plan, testing it, and correcting any flaws
discovered in the candidate plan (Sussman 1975). Work in explanation-based learning has
shown the effectiveness of prior knowledge in learning (Mitchell et al. 1986, Delong and
Mooney 1986). There are also now many important biological and soctological models of
learning; we review these in the connectionist and emergent learning chapters (11 and 12).

The success of machine learning programs suggests the existence of a set of general
learning principles that will allow the construction of programs with the ability to learn in
realistic domains. We present several approaches to learning in Part IV,

1.2.9  Alternative Representations: Neural Nets and Genetic Algorithms

Most of the techniques presented i this Al book use explicitly represented knowledge and
carefully designed search algorithms to implement intelligence. A very different approach
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seas 10 butld intelligent programs using models that paraliel the structure of neurons in
swe human brain or the evolving patterns found in genetic algorithms and artificial life.

A simple schematic of a neuron (Figure 1.2) consists of a cell body that has a number
wf tranched protrusions, called dendrifes, and a single branch called the axon. Dendrites
meerve signals from other neurons. When these combined impulses exceed a certain
dreshold, the neuron fires and an impulse, or spike, passes down the axon. Branches at the
=m of the axon form synapses with the dendrites of other neurons. The synapse 1s the point
¥ contact between neurons; synapses may be either excitatory or inhibitory, either adding
aw the total of signals reaching the neuron or subtracting from that total.

1his description of a neuron 1s excessively simple, but it captures those features that are
zeienant 1o neural models of computation. In parficular, each computational unit computes
s function of its inputs and passes the result along to connected units in the network:
g Gnal results are produced by the paralle! and distributed processing of this network of
megrai connections and threshold weights.

Mzural architectures are appealing mechanisms for implementing intelligence for a
wgember of reasons. Traditional Al programs can be brittle and overly sensitive to noise.
arman mitelligence 1s much more flexible and good at interpreting noisy input, such as 3
muce 1 a darkened room or a conversation at a noisy party. Neural architectures, because
dmes capture knowledge in a large number of fine-grained units distributed about a
meework, seem to have more potential for partially matching noisy and incomplete data.

With genetic algorithms and artificial life we cvolve new probiem solutions from
mponents of previous solutions. The genetic operators, such as crossover and mutation,

awsen 11ke their genetic equivalents in the natural world, work to produce, for each new
meraiion, ever better potential problem solutions. Artificial life produces its new

wemzration as a function of the “quality” of 1ts neighbors in previous generations.

Both neural architectures and genetic algorithms provide a natural model for parallel-
emm. because each neuron or segment of a solution is an independent unit, Hillis (1985) has
smeemented on the fact that humans get faster at a task as they acquire more knowledge,
wizie computers tend to slow down. This slowdown 1s due fo the cost of sequentially
wegrching a knowledge base; a massively paraliel architecture like the human brain would
s satfer from this problem. Finally, something is intrinsically appealing about approach-
smg the problems of intelligence from a neural or genetic point of view. After all, the

ammved prain achieves mtelligence and it does so using a neural architecture. We present
meersl networks, genetic algorithms, and artificial life, in Chapters 11 and 12.
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-igure 1.2 A simplified diagram of a neuron, from Crick and Asanuma {1986).
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1.2.10 Al and Philosophy

In Section 1.1 we presented the philosophical, mathematical, and sociological roots of
artificial intelligence. It is important to realize that modern Al is nof just a product of this
rich intellectual tradition but also contributes to it.

For example, the questions that Turing posed about intelligent programs reflect back on
our understanding of intelligence itself. What 1s intelligence, and how is i1t described? What
1s the nature of knowledge? Can knowledge be represented? How does knowledge in an
application area relate to problem-solving skill in that domain? How does knowing what is
true, Aristotle’s theoria, relate to knowing how to perform, his praxis?

Answers proposed to these questions make up an important part of what Al researchers
and designers do. In the scientific sense, Al programs can be viewed as experimenis. A
design 1s made concrete in a program and the program is run as an experiment. The
program designers observe the results and then redesign and rerun the experiment. In this
manner we can determine whether our representations and algorithms are sufficient models
of intelligent behavior. Newell and Simon (1976) proposed this approach to scientific
understanding in their 1976 Turing Award lecture (Part VII). Newell and Simon (1976) also
propose a stronger model for intelligence with their physical symbol system hypothesis: the
necessary and sufficient condition for a physical system to exhibit intelligence is that it be
a physical symbol system. We take up in Part VII what this hypothesis means in practice as
well as how 1t has been criticized by many modern thinkers.

A number of Al application areas also open up deep philosophical 1ssues. In what sense
can we say that a computer can understand natural language expressions? To produce or
understand a language requires interpretation of symbols. It 1s not sufficient to be abie to
say that a string of symbols 15 well formed. A mechanism for understanding must be able
to Impute meaning or interpret symbols in context. What 1s meaning? What 1s mterpreta-
tion? In what sense does interpretation require responsibility?

Simtlar philosophical issues emerge from many Al application areas, whether they be
building expert systems to cooperate with buman problem solvers, designing computer
vision systems, or designing algorithms for machine learning. We look at many of these
1Issues as they come up in the chapters of this book and address the general issue of
relevance to philosophy again tn Part VIL

1.3 Artificial Intelligence—A Summary

We have attempted to define artificial ntelligence through discussion of its major areas of
research and application. This survey reveals a young and promising field of study whose
primary concern is finding an effective way to understand and apply intelligent problem
solving, planning, and communication skills to a wide range of practical problems. In spite
of the variety of problems addressed in artificial intelligence research, a number of
important features emerge that seem common to all divisions of the field; these mclude:

1, The use of computers to do reasoning, pattern recognition, learning, or some other
form of inference.
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