
CS4423-W05-2

February 13, 2025

Table of Contents

0.1 Reminders:

0.2 Modules for this notebook

1 Again we ask: How many trees are there?

2 Random Trees

3 Graph and Tree Traversal

3.1 Depth First Search (DFS)

3.2 Breadth First Search (BFS)

3.3 Alternative Implementations (Extra: will skim in class)

3.3.1 Node attributes

3.3.2 Implement DFS

3.3.3 Implement BFS

4 Graph Diameter

4.1 Breadth First Search for Distance

5 BFS for Distance

5.1 Variants

6 Code Corner

6.1 Pruefer codes in ‘networkx’

6.2 Setting node attributes

7 Exercises

CS4423-Networks: Lecture 10 [Draft]

Week 5, Lecture 2: BFS and Graph Diameter

Niall Madden, School of Mathematical and Statistical Sciences
University of Galway

This Jupyter notebook, and PDF and HTML versions, can be found at
https://www.niallmadden.ie/2425-CS4423/#Week05

1

This notebook was written by Niall Madden, adapted from notebooks by Angela Carnevale.

0.0.1 Reminders:

Dates and Deadlines
* Assignment 1: 5pm Tuesday 25th February * Class Test: 14:00, Thursday 6th March (Week
8) * Assignment 2: Week 10 or 11 (will discuss in class)

0.0.2 Modules for this notebook

Today, we’ll default to a light gree colour for nodes. It is specified in RGBA mode: three HEX
digits specifying the mix of Red, Green and Blue, and an Alpha channel determining opacity. For
more see

[1]: import networkx as nx
import numpy as np
opts = { "with_labels": True, "node_color": ('#0f0',.9) } # show labels; nodes␣

↪are opaic green

0.1 Again we ask: How many trees are there?
In Lecture 9 we learned about Cayley’s Formula: There are exactly 𝑛𝑛−2 distinct (labelled) trees
on the 𝑛-element vertex set 𝑋 = {0, 1, 2, … , 𝑛 − 1}, if 𝑛 > 1.
And we learned about Prüfer codes: * A tree on 𝑛 nodes can be represented uniquely by a list if
length 𝑛 − 2 where entries in the list are node labels: that is, each is an integer in the range 0 to
𝑛 − 1. * Every Prüfer code generates a unique tree (and we have a bijection between tress and
codes).

We won’t go through it in class, but here is the procedure for turning a code intro a tree as a
Python function:

[2]: def pruefer_to_tree(code):
initialize graph and defects
n = len(code) + 2
tree = nx.empty_graph(n)
d = n*[1]
for y in code:

d[y] += 1

add edges
for y in code:

x = d.index(1)
tree.add_edge(x, y)
d[x]-=1; d[y]-=1;

final edge
e = [x for x in tree if d[x] == 1]
tree.add_edge(*e)
return tree

2

https://en.wikipedia.org/wiki/RGBA_color_model

Let’s check it works:

[3]: T1 = pruefer_to_tree([0,0,3,3,3,4,4,4])
nx.draw(T1, **opts)

Since we have now shown that there is a bijection between labeled trees and Prüfer codes, we can
prove Cayley’s Theorem easily: * A tree with 𝑛 nodes has a Prüfer code of length 𝑛 − 2. * There
are 𝑛 choices for each entry in the code. * So there are 𝑛𝑛−2 possible codes for a tree with 𝑛 nodes
* So there are 𝑛𝑛−2 possible trees with 𝑛 nodes.

0.2 Random Trees
We can ask networkx to produce a random tree with a given number of nodes:

[4]: n = 6
T2a = nx.random_labeled_tree(n)
nx.draw(T2a, **opts)

3

However, are can also construct a random tree on 𝑛 nodes from a random Prüfer code of length
𝑛 − 2.

[5]: code = np.random.randint(n, size=n-2)
print(f"code={code}")

code=[4 0 2 4]

[6]: T2b = pruefer_to_tree(code)
nx.draw(T2b, **opts) # not intended to be the same as the one above

4

0.3 Graph and Tree Traversal
Often one has to search through a network to check properties of nodes (e.g., finding the node with
largest degree). For large unstructured networks, this could be challenging. Fortunately, there are
simple and efficient algorithms: * Depth First Search: DFS * Breadth First Search: BFS

0.3.1 Depth First Search (DFS)

DFS works by starting at a root node, and travelling as far along one of its branches as it can, then
returning the the last unexplored branch.

The main data structure we’ll need is a stack, also called a “Last In First Out (LIFO) queue”.
It has two operations: * S.push(x): pushes x onto the top of the stack (We’ll use the extend()
method) * y=S.pop(): pops/removes the item from the top of the stack and stores it in ‘y

DFS: Given a rooted tree 𝑇 with root 𝑥, visit all nodes in the tree. Start with an empty stack, S:
* S.push(x) * while 𝑆 ≠ ∅: * y = S.pop() * visit(y) * S.push(y.children)

Let’s create a tree to try this:

[7]: T3a = nx.Graph()
T3a.add_nodes_from(range(10))
T3a.add_edges_from([(0,1), (0,2), (2,3), (3,4), (1,5), (0,6),(0,7),(7,8),(7,9)])

5

https://en.wikipedia.org/wiki/Depth-first_search
https://en.wikipedia.org/wiki/Breadth-first_search
https://en.wikipedia.org/wiki/Stack_(abstract_data_type)

nx.draw(T3a, **opts)
print(f"Edges of T6 are {T3a.edges()}")

Edges of T6 are [(0, 1), (0, 2), (0, 6), (0, 7), (1, 5), (2, 3), (3, 4), (7, 8),
(7, 9)]

Now try the algorithm

[8]: T = T3a.copy()
x = 0
S = [x]
while len(S) > 0:

y = S.pop()
S.extend(T[y])
T.remove_node(y)
print(y, S)

0 [1, 2, 6, 7]
7 [1, 2, 6, 8, 9]
9 [1, 2, 6, 8]
8 [1, 2, 6]

6

6 [1, 2]
2 [1, 3]
3 [1, 4]
4 [1]
1 [5]
5 []

0.3.2 Breadth First Search (BFS)

BFS works by starting at a root node, and explores all the neighbouring nodes (“Level 1”) first.
Next it searches their neighbours (“Level 2”), etc.

The main data structure we’ll need is a [queue](https://en.wikipedia.org/wiki/Queue_(abstract_data_type),
also called a “First In First Out (FIFO) queue”. It has two operations: * Q.extend(l): adds the
items in the list l to the end of Q * y=S.pop(0): pops/removes the first item from queue, and
stores it in ‘y

BFS: Given a rooted tree 𝑇 with root 𝑥, visit all nodes in the tree. Start with an empty list/queue,
Q: * Q.push(x) * while 𝑄 ≠ ∅: * y = Q.pop(0) * visit(y) * Q.push(y.children)

Let’s test it:

[9]: T = T3a.copy()
x = 0
Q = [x]
while len(Q) > 0:

y = Q.pop(0)
Q.extend(T[y])
T.remove_node(y)
print(y, Q)

0 [1, 2, 6, 7]
1 [2, 6, 7, 5]
2 [6, 7, 5, 3]
6 [7, 5, 3]
7 [5, 3, 8, 9]
5 [3, 8, 9]
3 [8, 9, 4]
8 [9, 4]
9 [4]
4 []

Many questions on networks concerning distance and connectivity can be answered by a versatile
strategy involving a subgraph which is a tree, and then searching that. Such a tree is called a
spanning tree of the underlying graph.

0.3.3 Alternative Implementations (Extra: will skim in class)

(This bit will be skimmed in class; can jump to Section 4).

Both DFS and BFS are more like strategies, rather than specific algorithms. Different problems

7

might require different implementations. Sometimes, the stack, or the queue don’t have to be made
explicitly:

• In a recursive implementation, DFS can make use of the (Python) interpreter’s function call
stack.

• BFS can take advantage of the fact that some types of lists in a (Python) for loops are largely
organized as queues.

Node attributes In networkx one can assign attributes to nodes, such as the node’s colour.

In order to keep track of which nodes have already been visited, we maintain for each node an
attribute "seen" that is initially False, and becomes True when the DFS/BFS visits the node.

In networkx, the attributes of a node x in a graph G are kept in a dictionary G.nodes[x].

[10]: n = 10
T3b = nx.random_labeled_tree(n)
nx.draw(T3b, **opts)

[11]: TT = T3b.copy()
for x in TT:

TT.nodes[x]['seen'] = False

8

print(TT.nodes())

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

Check a specific attribute:

[12]: print(TT.nodes('seen'))

[(0, False), (1, False), (2, False), (3, False), (4, False), (5, False), (6,
False), (7, False), (8, False), (9, False)]

Implement DFS Implement DFS recursively on a tree with root x as a function:

[13]: def dfs(tree, x):
print(x, end=', ')
tree.nodes[x]['seen'] = True
for z in tree[x]:

if not tree.nodes[z]['seen']:
dfs(tree, z)

Test it:

[14]: TT = T3b.copy()
nx.set_node_attributes(TT, False, 'seen') # same as for loop above
dfs(TT, 0)

0, 7, 4, 6, 9, 1, 8, 3, 5, 2,

Implement BFS Implement BFS on a tree recursively

[15]: TT = T3b.copy()
nx.set_node_attributes(TT, False, 'seen') # same as for loop above

[16]: Q = [3]
TT.nodes[3]['seen'] = True
for y in Q:

print(y, end=', ')
for z in TT[y]:

if not TT.nodes[z]['seen']:
Q.append(z)
TT.nodes[z]['seen'] = True

3, 8, 1, 5, 9, 2, 4, 6, 7, 0,

0.4 Graph Diameter
• A natural problem arising in many practical applications is the following: Given a pair of

nodes 𝑥, 𝑦, find one or all the paths from 𝑥 to 𝑦 with the fewest number of edges possible.

9

• This is a somewhat complex measure on a network (compared to, say, statistics on node
degrees). And we will need a more complex procedure, that is, an algorithm, in order to solve
such problems systematically.

Let’s start with a proper definition.

Definition. Let 𝐺 = (𝑋, 𝐸) be a simple graph and let 𝑥, 𝑦 ∈ 𝑋. Let 𝑃(𝑥, 𝑦) be the set of all paths
from 𝑥 to 𝑦. Then:

• The distance 𝑑(𝑥, 𝑦) from 𝑥 to 𝑦 is

𝑑(𝑥, 𝑦) = min{𝑙(𝑝) ∶ 𝑝 ∈ 𝑃(𝑥, 𝑦)},

the shortest possible length of a path from 𝑥 to 𝑦, and a shortest path from 𝑥 to 𝑦 is a path
𝑝 ∈ 𝑃 (𝑥, 𝑦) of length 𝑙(𝑝) = 𝑑(𝑥, 𝑦).

• The diameter diam(𝐺) of the network 𝐺 is the length of the longest shortest path between
any two nodes,

diam(𝐺) = max{𝑑(𝑥, 𝑦) ∶ 𝑥, 𝑦 ∈ 𝑋}.

Examples (done on board): what are the diameters of these graphs? 1. 𝐾5 2. 𝑘3,3 3. 𝑃5 4. 𝐶8

0.4.1 Breadth First Search for Distance

We now consider the following problem: Given a node 𝑥 ∈ 𝑋 in a graph 𝐺, what are the distances
𝑑(𝑥, 𝑦) for all nodes 𝑦 ∈ 𝑋?

We know that it is possible to answer this question by looking at sums of powers of the adjacency
matrix. But that is extremely expensive. Also, it does not give you the paths (automatically).

Better: use BFS.

• BFS provides a systematic procedure for finding these distances, and the shortest paths
through which they are realized.

• We will start by describing how BFS works for graph traversal.

In order to describe the algorithm step by step, let’s recall that a node 𝑦 a neighbour (or friend)
of node 𝑥, if {𝑥, 𝑦} is an edge, and let’s denote by

𝑁(𝑥) = {𝑦 ∈ 𝑋 ∶ {𝑥, 𝑦} ∈ 𝐸}

the set of all neighbours of node 𝑥.
The algorithm works through the network layer by layer, starting with the given vertex 𝑥 at layer
0 and all its friends at layer 1. It then finds the friends of the friends at layer 2, and so on, until
every node that can be reached from 𝑥 by a path has been recorded, taking care that no node
gets recorded twice.

We’ll exploit the fact that the layer of a node then corresponds to its distance from the given node
𝑥.
In practice, for simple graph traversal, the layers do not need to be made explicit.

We need an example of a network to work with. For a chance, let’s load one from an adjacency file.
Syntax: for each line in the file, the first listed node is a neighbour of all the others in that row.

10

[17]: !cat bfs.adj

A B C D E
B C F
C F
D G H
E H
F I
G I J
H J
K I J

[18]: G4 = nx.read_adjlist("bfs.adj")
nx.draw(G4, **opts)

We set the seen attribute to False:

[19]: nx.set_node_attributes(G4, False, 'seen') # same as for loop above
print(G4.nodes['A']) # check

{'seen': False}

11

Initialise an empty queue, then add A to it, and set its seen attribute to True:

[20]: Q = []
Q.append('A')
G4.nodes['A']['seen'] = True
print(f"Q={Q}")

Q=['A']

Now check 𝑁(𝐴)

[21]: list(G4.neighbors('A'))

[21]: ['B', 'C', 'D', 'E']

Add neighbours of 𝐴 to Q:

[22]: for y in G4.neighbors('A'):
Q.append(y)
G4.nodes[y]['seen'] = True

No neighbours of A have been seen yet,
but we'll need to add this check to the generic step of the algorithm

print(Q)

['A', 'B', 'C', 'D', 'E']

[23]: node = 'B'
for y in G4.neighbors(node):

if not G4.nodes[y]['seen']:
Q.append(y)
G4.nodes[y]['seen'] = True

print(Q)

['A', 'B', 'C', 'D', 'E', 'F']

[24]: node = 'C'
for y in G4.neighbors(node):

if not G4.nodes[y]['seen']:
Q.append(y)
G4.nodes[y]['seen'] = True

print(Q)

['A', 'B', 'C', 'D', 'E', 'F']

… and so on, until there are no more nodes to be processed.

Here is how to do it in a loop:

12

[25]: # 1. initialize
nx.set_node_attributes(G4, False, 'seen') # same as for loop above

G4.nodes['A']['seen'] = True
Q = ['A']

2. loop
for node in Q:

for y in G4.neighbors(node):
if not G4.nodes[y]['seen']:

Q.append(y)
G4.nodes[y]['seen'] = True

3. output result
print(f"Q = {Q}")

Q = ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K']

When this process is formulated as an algorithm, we use an explicit queue (FIFO buffer) to keep
track of the node whose neighbors are currently under consideration.

It can be shown that this version of the algorithm in the common case of a sparse network has
complexity 𝑂(𝑛), which is as good as one could hope for.

0.5 BFS for Distance
Breadth First Search for Distance. Given a simple graph 𝐺 = (𝑋, 𝐸) and a vertex 𝑥 ∈ 𝑋,
determine 𝑑(𝑥, 𝑦) for all nodes 𝑦 ∈ 𝑋.

1. [Initialize.] Suppose that 𝑋 = {𝑥0, 𝑥1, … , 𝑥𝑛−1} and that 𝑥 = 𝑥𝑗. Set 𝑑𝑖 ←⟂ (undefined) for
𝑖 = 0, … , 𝑛−1. Set 𝑑𝑗 ← 0 and initialize a queue 𝑄 ← (𝑥𝑗).

2. [Loop.] While 𝑄 ≠ ∅:
• pop node 𝑥𝑘 off 𝑄
• for each neighbor 𝑥𝑙 of 𝑥𝑘 with 𝑑𝑙 =⟂:

– push 𝑥𝑙 onto 𝑄 and set 𝑑𝑙 ← 𝑑𝑘 + 1.
3. [Stop.] Return the array (𝑑0, … , 𝑑𝑛−1).

Note how in this version of BFS, in contrast to the simple version, a node is visited (setting its 𝑑
attribute) immediately when it is pushed onto 𝑄, rather than later when it pops off 𝑄.

[26]: nx.set_node_attributes(G4, None, 'd')
x = 'B' #starting BFS at vertex B
G4.nodes[x]['d'] = 0 # and setting its distance to 0
Q = []
Q.append(x)
print(Q)

['B']

13

https://en.wikipedia.org/wiki/Sparse_network

[27]: while len(Q)>0:
x = Q.pop(0)
for y in G4.neighbors(x):

if G4.nodes[y]['d'] is None: # checking if the distance is undefined
G4.nodes[y]['d'] = G4.nodes[x]['d'] + 1 # if so, define using␣

↪previous
Q.append(y)

print(f"{x} : {Q}")

B : ['A', 'C', 'F']
A : ['C', 'F', 'D', 'E']
C : ['F', 'D', 'E']
F : ['D', 'E', 'I']
D : ['E', 'I', 'G', 'H']
E : ['I', 'G', 'H']
I : ['G', 'H', 'K']
G : ['H', 'K', 'J']
H : ['K', 'J']
K : ['J']
J : []

[28]: print([G4.nodes[x]['d'] for x in G4])

[1, 0, 1, 2, 2, 1, 3, 3, 2, 4, 3]

0.5.1 Variants

BFS is an extremely versatile algorithm, which applies in many different situations and can be
adapted to produce additional information on a network.

For example, BFS run on a node 𝑥 in a network 𝐺 = (𝑋, 𝐸) determines the connected component
of 𝑥 in 𝐺 (as the set of all nodes that get a distance value assigned).

With little more work (and an additional array) BFS can produce a spanning tree (or shortest
path tree). Here, whenever node 𝑥𝑙 is pushed onto 𝑄, it is assigned the current node 𝑥𝑘 (in the
additional array) as its predecessor on a shortest path from 𝑥𝑗 to 𝑥𝑙. The subgraph of the network
consisting of these edges is a tree. As a tree, it has exactly one path between the given node 𝑥 and
any of its vertices 𝑦 and, by construction, this path is a shortest path between 𝑥 and 𝑦.

[29]: nx.set_node_attributes(G4, None, 'd')
x = 'A' # start with vertex A
G4.nodes[x]['d'] = 0 # set its distance to 0
Q = [] # initialise a queue Q
Q.append(x) # push x in Q

nx.set_edge_attributes(G4, False, 'seen')

[30]: while len(Q)>0:
x = Q.pop(0) # pop a vertex from the queue

14

for y in G4.neighbors(x):
if not G4.nodes[y]['d']: # undefined?

G4.nodes[y]['d'] = G4.nodes[x]['d'] + 1 # set distance
Q.append(y) # push in queue
G4.edges[x, y]['seen'] = True # set relevant edge to seen

print(x, ": ", Q)

A : ['B', 'C', 'D', 'E']
B : ['C', 'D', 'E', 'A', 'F']
C : ['D', 'E', 'A', 'F']
D : ['E', 'A', 'F', 'G', 'H']
E : ['A', 'F', 'G', 'H']
A : ['F', 'G', 'H']
F : ['G', 'H', 'I']
G : ['H', 'I', 'J']
H : ['I', 'J']
I : ['J', 'K']
J : ['K']
K : []

[31]: print(G4.edges())

[('A', 'B'), ('A', 'C'), ('A', 'D'), ('A', 'E'), ('B', 'C'), ('B', 'F'), ('C',
'F'), ('D', 'G'), ('D', 'H'), ('E', 'H'), ('F', 'I'), ('G', 'I'), ('G', 'J'),
('H', 'J'), ('I', 'K'), ('J', 'K')]

[32]: sub = [e for e in G4.edges if G4.edges[e]['seen']]
subset of edges 'seen' while visiting the graph

[33]: pos = nx.spring_layout(G4)
nx.draw(G4, **opts, pos=pos)

15

[34]: nx.draw(G4.edge_subgraph(sub), **opts, pos=pos)

16

Or, one could highlight the spanning tree inside the graph by using, say, red as color for the
spanning edges (and blue for the rest).

[35]: colors = ['red' if G4.edges[e]['seen'] else 'blue' for e in G4.edges]
nx.draw(G4, edge_color = colors, with_labels = True, width=2.0, pos=pos)

17

• Of course, in order to find distances, or shortest paths between all pairs of nodes 𝑥 and 𝑦 in
a network, one can perform BFS for each of the nodes 𝑥 ∈ 𝑋 in turn.

• As an exercise in a future assignment, you will see more in detail an implementation of BFS
aimed at constructing a spanning tree.

• The algorithm and its variants also works on directed networks, but the results then will have
to be interpreted in the context of directed networks.

More about BFS can be found in [Newman, Section 10.3].

0.6 Code Corner
Here we summarise any new Python or networkx functions/syntax we met today, or some functions
that might be useful. This section is not covered in class.

0.6.1 Pruefer codes in ‘networkx’

Make a tree (for a change, just by defining the edges)

[36]: edges = [(0, 3), (1, 3), (2, 3), (3, 4), (4, 5)]
TCCa = nx.Graph(edges)
nx.draw(TCCa, **opts)

18

[37]: code = nx.to_prufer_sequence(TCCa) # get the Pruefer code
print(code)

[3, 3, 3, 4]

[38]: TCCb = nx.from_prufer_sequence(code) # get tree from Pruefer code
nx.draw(TCCb, **opts)

19

0.6.2 Setting node attributes

These are the same:

[39]: TT = TCCb.copy()
nx.set_node_attributes(TT, False, 'seen')

[40]: for x in TT:
TT.nodes[x]['seen'] = False

Finished here Thursday

0.7 Exercises
1. Find the diameters of the following graphs:

1. 𝐾𝑚,𝑛 for 𝑚, 𝑛 > 0
2. 𝐾𝑛 for 𝑛 > 0
3. 𝑃𝑛, for 𝑛 > 1
4. 𝐶𝑛. for 𝑛 > 2
5. The Petersen Graph

2. (Q1(b)+(d) from 2023/2024 Exam). Consider the graph on the nodes 𝑎, 𝑏, 𝑐, … , ℎ, with edges
𝑎 − 𝑏, 𝑎 − 𝑐,

20

𝑏 − 𝑐, 𝑏 − 𝑑, 𝑏 − 𝑒,
𝑐 − 𝑒,
𝑑 − 𝑒, 𝑑 − 𝑓 ,
𝑒 − 𝑓 , 𝑒 − 𝑔, and
𝑔 − ℎ.

• Use BFS to find the shortest distance between 𝑎 and all other nodes;
• Use BFS, starting at 𝑎, to construct a spanning tree of the graph.

21

	Reminders:
	Modules for this notebook
	Again we ask: How many trees are there?
	Random Trees
	Graph and Tree Traversal
	Depth First Search (DFS)
	Breadth First Search (BFS)
	Alternative Implementations (Extra: will skim in class)

	Graph Diameter
	Breadth First Search for Distance

	BFS for Distance
	Variants

	Code Corner
	Pruefer codes in `networkx'
	Setting node attributes

	Exercises

