
Getting Started with Mac OS X/Linux Command Terminal

Ziheng Yang Asif Tamuri
University College London European Bioinformatics Institute
Updated March 2015

What is a Command Terminal?
In the good old days, users interacted with computers
through a command window. This is a text-based
window for typing commands and receiving text-based
output (see screen shot above). Mouse and menu do not
work here but the command line is a powerful interface
and is very convenient for running certain programs.

How do I start a Command Terminal?
On Mac OS X, you can open the Terminal from
Applications>Utilities>Terminal. Alternatively, you can
use the Spotlight search in the top-right corner by
searching for the keyword ‘terminal’.

Commands for manipulating directories (cd,
md)
The OS X or Unix file system consists of a number of directories and sub-directories arranged
hierarchically. The root directory is /. When I start the command terminal, I should be in my home
directory. This may be /Users/ziheng/ or /home/ziheng, etc., depending on the system setup.
The command prompt may show the current (working) directory, as follows: potto:~ ziheng$.
Here I am user ‘ziheng’ on a machine called ‘potto’, and I am in my home directory (which is
indicated by the tilde symbol ~). The dollar symbol $ is the command prompt.

Use cd to change directory. You can use an absolute path containing the entire directory structure.
An absolute path starts with a backslash, which means we begin from the root of the file system.
Without the leading backslash, the directory is relative to your working directory. The tilde
character (~) represents your home directory. Thus no matter where you are,
cd /
will take you to the root directory, and
cd
or
cd ~
will take you to your home directory. Also
cd ~/test
will take you to the test directory inside your home directory.

 1

cd ..
moves up a level to the parent
directory.

The command pwd prints the current
(working) directory.

To make a new directory called test
in the current directory, type
mkdir test

Getting directory listings (ls)
To list the contents of a directory, type ls
ls -l
The option -l means a long listing. The output may look like the following.

Each line provides the file’s permissions (which we explain later), the owner (ziheng) and group
(staff) of the file, the size of the file in bytes, the date and time the file was last modified and,
finally, the filename.

Wildcards
The special characters * and ? can be used as wildcards when you specify file or directory names.
The asterisk * means any number of any characters while ? means one character of any kind. Thus
ls te*
will list all the files and directories that start with “te”.
ls *.txt
lists all files that end with .txt (the text files).

Copying and deleting files
The commands cp and rm are for copying and removing files.

 2

cp test1.txt test2.txt
ls -lF
rm test2.txt
ls -lF

Wildcards and relative paths can be used
together. Suppose I have two directories test and test2 in my home directory, and I am
currently in test. Then the first command below will copy all files in the test folder that have
the string fish in their names into the test2 folder, and the second command will delete all files
in test2 that end with .txt.

cp *fish* ../test2/
ls –l ../test2/
rm ../test2/*.txt
ls –l ../test2/

Viewing files on the screen

cat test1.txt
less test1.txt
less ../test2/test1.txt

The command cat shows the content of the file on the screen. This works for plain text files only.
If the file is binary (executables and picture files are for example binary files), rubbish and noise
will pop up. The command less does the same as cat but allows forward and backward
movement within the file using the arrow and page-up/down keys.

Running programs from the command line
Programs are executable files. You run the program by typing the file name at the command line.
The following will run a program called BPP, which is in the bin/ directory under my home
account:
~/bin/bpp

File permissions
drwxr-xr-x 2 ziheng users 4096 Mar 10 14:43 b/
-rw-r--r-- 1 ziheng users 15889 Mar 10 14:43 test1.txt
-rw-r--r-- 1 ziheng users 358 Mar 10 14:43 z.bat

The above shows the output from the ls -lF command.
In the first column above, d means a directory while dash (-) means a file. The next 9 fields
specify the file permissions, in which r, w, x, mean readable, writable, and executable while a dash
(-) means no permission. The 9 fields are in three blocks, for user (owner), group and other (world),
respectively. Thus for the file test1.txt, rw- means the user can read and write but not execute
the file, r-- means the group can read but not write or execute, while r-- means that other
(everyone with an account on the system) can read the file but can’t write or execute it. In other
words, test1.txt is readable by everybody (user, group and other), writable by owner only, and
is not executable. Note that you need executable permission to move (cd) into a directory.

 3

 4

Sometimes the file is an executable program, but you can’t run it if its permission is not set
correctly. This happens often when files are transferred across platforms. In that case you use the
chmod (change mode) command to set the permissions. The following makes program1
executable by user (owner) and group.
chmod ug+x program1

A few tips

 Use forward-slash / to specify folders on OS X or UNIX. Use back-slash \ on Windows.
 Commands and file and directory names are case-sensitive on OS X or UNIX, while they are

case-insensitive on Windows (MS-DOS).
 Given that different fields on the command line are separated by spaces, it is in general a good

practice to avoid using spaces or other strange symbols in file names.

Getting help
Use the command man to view the manual page for any particular command.
man cp

Common useful Windows/Unix commands
Windows UNIX/OSX Function
cd cd Change directory (folder)
md or mkdir md or mkdir make a new directory
dir ls List files and directories
copy file1 file2 cp file1 file2 Make a copy of file1 and name it file2
ren file1 file2 mv file1 file2 Rename file1 as file2
move file1 file2
del rm delete (remove) files
rd rmdir remove an empty directory
time time date and time mean different things in windows

and unix
date date
exit exit exit
help man help or manual
more more show file a screen a time
type cat show file
,
,

,
,

Use the Up & Down arrow keys (and) to
cycle through past commands. Then use and
 or Ctrl- and Ctrl- to move around to
edit.

Tab Tab The Tab key completes file or folder names
> > redirection: screen output will go into file
< < redirection: keyboard input will come from file
| | pipe: output from one program will be input to

the next program
Esc Esc Cancel command
Ctrl-C Ctrl-C terminate job
 nice +20 mb run a job at low priority
 nice +20 mb & & places the job at the background
 Ctrl-Z pause a foreground job
 bg place the paused jot at the background

Operating System

What is an operating system?

An operating system (OS) is a program that acts as an interface between the user and the computer

hardware and controls the execution of all kinds of programs. OS is responsible for the

management and coordination of activities and the sharing of the resources of the computer.

Figure 1. A typical example of an OS

Five of the most common operating systems for personal computers, smart phones and tablets

are

 Microsoft Windows

 Apple macOS

 Linux

 Google Android

 Apple iOS.

Common command line OS commands include:

1) View the contents of a directory

2) Change from one directory to another

3) Create and delete directories

4) Create file in a directory

5) Change from one drive to another

6) Copy files

7) Rename files

8) Delete files

9) Delete a directory

The Command Prompt

Command prompt or DOS prompt look like as follows.

C:\>_

The flashing underscore next to the command prompt is called the cursor. The cursor shows where

the command you type will appear.

Typing a Command

This section explains how to type a command at the command prompt and demonstrates the "Bad

command or file name" message.

Commands are not case sensitive (i.e., you can type the commands either in upper or lower case

letters)

Type the following command and hit Enter. If you make a typing mistake, press the

BACKSPACE key to erase the mistake, and then try again.

C:\> h

The following message appears:

Bad command or file name

The "Bad command or file name" message appears when you type something that MSDOS does

not recognize. Because h is not a valid MS-DOS command, MS-DOS displays the "Bad command

or file name" message.

Now, type the following command at the command prompt:

C:\> ver

The following message appears on your screen:

Microsoft Windows [Version 10.0.19042.1110]

1) Viewing the Contents of a Directory
In this section, you will view the contents of a directory by using the dir command. The

dir command stands for "directory."

C:\> dir

A list similar to the following appears:

Volume in drive C has no label.

Volume Serial Number is 6CC5-3E92

Directory of C:\

03/06/2021 04:30 AM <DIR> 3DP

03/06/2021 05:07 AM <DIR> AMD

03/06/2021 04:29 AM <DIR> Dell

05/12/2021 12:03 PM <DIR> gurobi751

07/29/2021 01:19 AM <DIR> gurobi912

07/29/2021 01:27 AM <DIR> Intel

07/29/2021 05:03 PM <DIR> logs

12/07/2019 10:14 AM <DIR> PerfLogs

07/30/2021 06:22 PM <DIR> Program Files

07/29/2021 05:20 PM <DIR> Program Files (x86)

05/13/2021 02:24 PM <DIR> Python39

03/06/2021 01:57 PM <DIR> Users

07/22/2021 06:15 PM <DIR> Windows

 0 File(s) 0 bytes

 13 Dir(s) 152,262,991,872 bytes free

This is called a directory list. A directory list is a list of all the files and subdirectories that a

directory contains. In this case, you see all the files and directories in the main or root directory of

your drive. All the files and directories on your drive are stored in the root directory.

Shahid
Typewriter

Shahid
Typewriter
A name holder for multiple files.

Shahid
Typewriter

Shahid
Underline

Shahid
Underline

2) Changing Directories
Look at the list on your screen. All the names that have < 𝑫𝑰𝑹 > beside them are

directories. You can see a list of the files in another directory by changing to that directory,

and then using the dir command again. In this case, you will change to the Windows

directory.

Use the following commands and see the results.

C:\> CD windows

C:\Windows> dir

If you do not see a line in the directory list indicating that you have a directory named

Windows, type the following at the command prompt:

C:\Windows> dir /s Windows

You will see a message that includes a line such as the following:

Directory of C:\WINDOWS

3) Change from one directory to another

To change enter another directory (i.e., ABC), type the following command and hit enter.

C:\Windows>CD ABC

Note: Make sure the ABC directory exists within windows directory. You can use any other

directory name that exists within the window directory.

C:\Windows\ABC>

To leave the directory, type the CD with double dots. For example, to leave the ABC

directory type use the following command and press enter.

C:\Windows\ABC>CD..

Output:

C:\Windows>

Shahid
Typewriter

Shahid
Typewriter
S is used for search

Shahid
Typewriter

Shahid
Typewriter

Shahid
Typewriter

If you are at ABC directory i.e, C:\Windows\ABC> and you want to go direct/jump to C

(root) directory, use the following command.

C:\Windows\ABC>CD\

Output:

C:\>

To view the contents of a directory one screen at a time, type the following command.

C:\> dir /p

One screen of information appears. At the bottom of the screen, you will see the following

message:

Press any key to continue . . .

To view the next screen of information, press any key on your keyboard. Repeat this step

until the command prompt appears at the bottom of your screen.

When you typed the dir command this time, you included the /p switch after the command.

A switch modifies the way MS-DOS carries out a command. Generally, a switch consists

of a forward slash (/) that is followed by one or more letters or numbers. When you used

the /p switch with the dir command, you specified that MS-DOS should pause after it

displays each screen of directory list information. The p actually stands for "page".

Another helpful switch you can use with the dir command is the /w switch. The /w switch

indicates that MS-DOS should show a wide version of the directory list.

To view the contents of a directory in wide format, type the following command and press

enter.

C:\> dir /w

The directory list appears, with the filenames listed in wide format. Note that only

filenames are listed. No information about the files' size or date and time of creation

appears.

Shahid
Underline

Shahid
Underline

Shahid
Underline

Shahid
Typewriter
P stand for pause after each screen

Shahid
Typewriter

Shahid
Typewriter

Shahid
Highlight

Shahid
Highlight

Shahid
Highlight

If the directory contains more files than will fit on one screen, you can combine the /p

and /w switches as follows:

C:\> dir /w /p or C:\> dir /p /w

4) Creating a Directory
Creating a directory is helpful if you want to organize related files into groups to make

them easy to find. Before you begin this section, make sure the command prompt looks

like the following:

C:\User\Username> in my case C:\User\Shahid>.

Go to desktop, using CD command as follows and hit enter:

C:\User\Shahid> CD Desktop

Output:

C:\User\Shahid\Desktop>

To create a directory, you will use the md command. The md command stands for "make

directory."

Type the following at the command prompt:

C:\User\Shahid\Desktop>md Professional_Skills

OR

C:\User\Shahid\Desktop>mkdir Professional_Skills

Where both md and mkdir stands for make directory. To test the directory, type the

following command.

C:\User\Shahid\Desktop>CD Professional_Skills

Output:

C:\User\Shahid\Desktop\Professional_Skills>

Shahid
Highlight

Shahid
Highlight

Shahid
Highlight

5) Deleting a Directory
If you no longer use a particular directory, you may want to delete it to simplify your

directory structure. Deleting a directory is also useful if you type the wrong name when

you are creating a directory and you want to delete the incorrect directory before creating

a new one.

Before you begin this section, make sure the command prompt looks like the following:

C:\User\Shahid\Desktop>

To delete a directory, use the rd command and press enter. The rd command stands for

"remove directory."

C:\User\Shahid\Desktop>rd Professional_Skills

To verify, use the following command and press enter.

C:\User\Shahid\Desktop>CD Professional_Skills

Output:

The system cannot find the path specified.

6) Creating a File in a Directory
Creating a file in a directory similar to creating a directory, except you have to provide the

file extension, like .txt, etc. But make sure the directory where you are going to create file

should be active:

For example, we first create a directory named “Professional Skills”, made it active and

then create a file named “CS.txt”. Type the following commands and press enter each time.

C:\User\Shahid\Desktop>mkdir Professional_Skills

C:\User\Shahid\Desktop>CD Professional_Skills

C:\User\Shahid\Desktop\Professional_Skills>

To create the file the general syntax is “fsutil file createNew <filename> <length>”, the

fsutill stands for file system utility. Type the following command and press enter.

Shahid
Highlight

Shahid
Highlight

Shahid
Highlight

Shahid
Highlight

Shahid
Highlight

Shahid
Highlight

Shahid
Highlight

Shahid
Highlight

Shahid
Highlight

C:\User\Shahid\Desktop\Professional_Skills> fsutil

file createnew CS.txt 1000

Where 1000 mean it will create 1 kb file.

You can also use copy con command. With copy con you can create file and write to the

file as well.

C:\User\Shahid\Desktop\Professional_Skills> Copy

con CS1.txt

This is a test file…

This command will create file CS1.txt and will write the text This is a test file…

Writing to a text file:

To write to the CS.txt file, type the echo command and press enter.

C:\User\Shahid\Desktop\Professional_Skills> echo

Welcome to our CS111 class 2021> CS.txt

Output:

The > operator delete the old text and write the new one, if you want to keep the previous

text use the append >> operator.

C:\User\Shahid\Desktop\Professional_Skills> echo

Today is our first class>> CS.txt

Shahid
Highlight

Shahid
Highlight

Output:

Renaming Files:

You may want to rename a file if the information in it changes or if you decide you prefer

another name.

To rename a file, you will use the ren command. The ren command stands for "rename."

When you use the ren command, you must include two parameters.

The first is the file you want to rename, and the second is the new name for the file. You

separate the two names with a space. The ren command follows this pattern:

ren oldname newname

Type the following command and press enter.

C:\User\Shahid\Desktop\Professional_Skills>ren

CS.txt CT1112.txt

Output:

Copying Files:

Copying files creates a duplicate of the original file and does not remove the original file.

This is useful for many reasons. For example, if you want to work on a document at home,

you can copy it from your computer at work to a floppy disk and then take the floppy disk

home.

Shahid
Highlight

Shahid
Highlight

Shahid
Highlight

Shahid
Highlight

Shahid
Typewriter
USB drive

Shahid
Typewriter

Shahid
Typewriter

Shahid
Typewriter

To copy a file, you will use the copy command. When you use the copy command, you

must include two parameters. The first is the location and name of the file you want to

copy, or the source. The second is the location to which you want to copy the file, or the

destination. You separate the source and destination with a space.

copy source destination

copy

c:\Users\Shahid\Desktop\Professional_Skills\CT1112.

txt C:\Users\Shahid\Desktop

This will copy the CT112.txt file to the Desktop. You will see the following output.

Output:

1 file(s) copied.

Deleting Files:

To delete a file, you will use the del command. The general syntax for deleting file is as

follows.

del file_name.extension

C:\Users\Shahid\Desktop> del CT1112.txt

This command will delete the CT1112.txt file from desktop.

Deleting multiple files:

To delete multiple files, use the following command and press enter.

C:\Users\Shahid\Desktop\Professional_Skills> del

*.txt

Deleting a directory:

To delete a directory, use the following command and press enter.

C:\Users\Shahid\Desktop> del Professional_Skills

Output:

Are you sure (Y/N)? Y

Shahid
Typewriter

Shahid
Highlight

Shahid
Highlight

Shahid
Highlight

Note: In this lecture we covered basic commands, there are many other commands for

learning use the Help and press enter.

C:\Users\Shahid\Desktop> Help

Output:

Exercise:

Practice all the above commands and Using your PC's terminal window, create a new

directory (aka folder) on your Desktop called Professional Skills. Make this folder your

active directory and make new subfolders called LaTeX, Python and Excel where you can

store your exercise files

Latex Lecture-2

1) Introduction

2) Registration

3) Starting a new project

4) Components of overleaf editor

5) Different options for new project

6) Searching in latex file

7) Best practice for article management

8) Reserved characters

9) Hot/shortcut keys

10) Preamble (Introduction)

11) Body (Introduction)

12) Real-time tracking feature

13) Compile timeout error

1. Introduction:

 LaTeX (pronounced LAY-tek) is a higher layer of the TeX programming language

specifically designed to create professionally formatted documents that include

complex mathematical expressions. Such documents include:

 Academic Journals

 Book

 Formal Letters

 Homework Assignment

 Poster

 Presentation

 Project/Lab Report

 Resume/CV

 LaTeX can be installed on your PC but most users now use cloud based applications

e.g. www.overleaf.com (free).

 Overleaf gives instant access to the LaTeX programming language and has an

extensive help environment.

 A LaTeX program has two parts: The Preamble containing packages or modules

of Tex code and the Body.

 All keyword commands begin with a backslash (\) and parameters or arguments

are passed using curly brackets ({}).

 Comments can be added using the % character. The program example below

contains two statements in the Preamble and three in the Body:

\documentclass[a4paper,12pt]{article} % Preamble section

\title{Hello world!}

http://www.overleaf.com/

\begin{document} % Body section

\maketitle

\end{document}

2. Registration:

 To start using Overleaf go to www.overleaf.com.

 If you don't have an account enter your e-mail address and set a password in the

corresponding boxes below Get started now, click Register and that's it, you will

be redirected to the project management page where you will be guided into how

to create a new project.

 If you already have an account, click Login in the upper right corner, then type in

your email and password and click the Login button (Figure 1).

Figure 1. Registering to overleaf

 Once you are logged in, you should see the Overleaf Project Management page it

will look like the Figure 2.

https://www.overleaf.com/signup

Figure 2. Overleaf Project Management

3. Starting a new project:

 To start a project, click on New Project. There are several option to start a new

project. The first two options are for creating a project from scratch, with a basic

setting.

 Blank Project

 Example Project

 Upload Project

 Import from GitHub

 Click on the Blank Project and you will see a text box where you should enter the

name of your new project

4. Components of overleaf editor:

9

Figure 3. An overview of the overleaf editor

1. Menu: The menu has the following main sections.

 Download (Source code (zip) and PDF files)

 Action (Copy and word count)

 Syn (Dropbox, Git, GitHub)

 Setting (Compiler, version, document name, version…., etc.)

 Help

2. Three icons:

 Create file: For creating a new file.

 Create folder: For creating a new folder

 Upload file: For uploading files (i.e., template, file, image, etc.)

3. Rename and delete project or file

4. View options: Latex format or rich text format

5. Recompile: The recompile results in an updated output

6. Download icon: This option allows you to download the PDF file.

7. Review: This option allows others (i.e., experts) to review a documents and give

feedback.

8. Share: This option let you to share your documents with other team members for

working in a common document.

9. Submit: This option let you to submit your article (. i.e., to the journal/conference, etc.)

10. Chat: When sharing with other colleagues, you can chat and discuss using the chat

option.

11. Sections/Caption: This option shows the main sections/label/caption of your

article/document, such as Introduction/Related work/Proposed work etc.

File panel

Source code

panel

Output PDF

file

1
2

3 4 5 6
7 8 9

10

11

5. Different options for new project:

A. Blank project: This option creates a project from the scratch with a basic layout as

shown (Source code) in the following Figure 3.

Figure 4. An overview of source code for a Blank Project

B. Example project: This option creates a new project with examples for different

sections. You need to change/edit the sections according to your needs. The

layout looks like shown in Figure 5.

Figure 5. An overview of source code for Example Project

C. Upload project: Most of the academic journals have specific format and they

provide a latex template (set of classes etc.). This option is for uploading the project

with specific layout. The following simple steps are used.

1) Search the specific template and download the latex package for the specific

journal. For example, considering the IEEE ACCESS journal, you can find

the latex template in their submission guideline. Click on the Latex to

download the template.

Figure 6. Latex template for IEEE ACCESS (An example)

2) Click on the upload project and upload the zip file, that you just

downloaded. The uploading window will look like Figure 7.

Figure 7. Upload Zip file of Latex template

Once you upload, you will see the designated template, for example in the

case of IEEE ACCESS, you will see the following layout.

Figure 8. Example of IEEE ACCESS template in latex

D. Import from GitHub project: You can import a project from GitHub repository.

But it’s a premium feature and would work for a trail with limited accessibility.

This option result in the following output message.

Figure 9. Importing a project from GitHub (output window)

E. Template: The template option let you to search online for specific templates and

use them. The template includes:

 Academic Journals

 Book

 Formal Letters

 Homework Assignment

 Poster

 Presentation

 Project/Lab Report

 Resume/CV

Click on any of the template and then click on the Show all Gallery Items, this will lead

you to the search option.

Figure 10. Illustration of searching options

For example, we want to search for IEEE Transactions on Smart Grid. It gives a bunch

of options for different transactions templates. Scroll down to find the desired the

templates.

6. Searching in latex file: You can search both in latex file and in the PDF

file using the Crtl+F key. For example, searching the abstract result the

following output.

Figure 11. Searching in latex

7. Best practice for article management:

- The best practice for managing article is to maintain the files (latex and bibliography) and

figures separately as shown in the Figure below.

- Keep the original version by remaining the article. This will help to get the original version

back; in case you need it.

- If you are using several images, a high resolution images may cause time-out error. For

images PDF files are recommended instead of PNG image.

Figure 12. Managing files (example)

8. Reserved characters: The following (Figure 13) shows the list of reserved characters and

how to print them if needed.

Figure 13. List of reserved words

9. Hot/shortcut keys: The hot/shortcut keys save the time, a list of such keys with detailed

description is given in Figure 14.

Figure 14. List of hot/shortcut keys with detailed description

10. Preamble: The preamble defines the type of document you are writing, the spoken language

you are writing in and the packages (modules) of Tex code you would like to use. Keywords are

case sensitive e.g. writing "Documentclass" below will return a syntax error.

 \documentclass{article} % package for formatting articles

\usepackage[utf8]{inputenc} % package for character encoding

 \usepackage[margin=25mm]{geometry} % package for formatting margins

\usepackage{natbib} % …formatting citations and

 bibliographies

 \usepackage{graphicx} % …formatting and numbering figures

 \usepackage{amsmath} % …formatting equations

 \usepackage{xcolor} % …text colours red, green, etc

 \title{Report Title}

 \author{Connor Adams, ID: 20379631}

\date{October 2020}

11. Body: The body of the program contains all of the printable text in addition to various

formatting commands.

\begin{document} % begin the printable document

\maketitle{title_CS1112} % place title here (title, author,date,…)

\tableofcontents % place "table of contents" here

 \pagebreak % place a page break here

12. Real-time tracking feature: Keep an up-to-date list of all of the things you need to work

through, without having to sift through out-of-date notes or dig out old emails.

It is a premium feature and need a payment; however, you can try a trail. A tracking example

with accept/reject option is shown in Figure 15.

Figure 15. Real-time tracking feature

13. Compile timeout error: Sometime the users experience the compile timeout error message

as shown in Figure 16. A default recompilation time for free version is set to 1 minute. If

your document takes more than a minute, overleaf will result in Time out error.

Possible reasons: There are several possible reasons for the Time out error; however, the

most common is the use of having many images with high resolutions. A list of the possible

reasons is as follows.

1. Large, High-resolution images: 600dpi/1200dpi etc.

2. Complicated TikZ or pgfplots drawings: TikZ (visualization tool) pgfplots package

3. mhchem: A package for chemical molecular formulas and equations

4. biblatex: Package that re-implement the bibliographic

5. Tracing/debugging calls: Records lots and lots of lines

6. Infinite loops: A package calling itself (recursion) causes the time out

7. Fatal compile errors blocking the compilation: Block the latexmk build process

8. Fair Use limits: Time out limit is 1 and 4 minutes for free and paid versions

9. Still stuck? Other system related issues or network traffic issue

Please visit the following URL to find more about the possible reasons for the Time out

error.

https://www.overleaf.com/learn/how to/Why_do_I_keep_getting_the_compile_timeout_error_message%3F

Figure 16. Example of compile time out error message

https://www.overleaf.com/learn/how-to/Why_do_I_keep_getting_the_compile_timeout_error_message%3F#Large.2C_High-resolution_images
https://www.overleaf.com/learn/how-to/Why_do_I_keep_getting_the_compile_timeout_error_message%3F#Complicated_TikZ_or_pgfplots_drawings
https://www.overleaf.com/learn/how-to/Why_do_I_keep_getting_the_compile_timeout_error_message%3F#mhchem
https://www.overleaf.com/learn/how-to/Why_do_I_keep_getting_the_compile_timeout_error_message%3F#biblatex
https://www.overleaf.com/learn/how-to/Why_do_I_keep_getting_the_compile_timeout_error_message%3F#Tracing.2Fdebugging_calls
https://www.overleaf.com/learn/how-to/Why_do_I_keep_getting_the_compile_timeout_error_message%3F#Infinite_loops
https://www.overleaf.com/learn/how-to/Why_do_I_keep_getting_the_compile_timeout_error_message%3F#Fatal_compile_errors_blocking_the_compilation
https://www.overleaf.com/learn/how-to/Why_do_I_keep_getting_the_compile_timeout_error_message%3F#Fair_Use_limits
https://www.overleaf.com/learn/how-to/Why_do_I_keep_getting_the_compile_timeout_error_message%3F#Still_stuck.3F
https://www.overleaf.com/learn/how

Exercise: Register to overleaf and practice the different options, discussed in the lecture.

Latex Lecture-3

1) Preamble

2) Body

3) Sections

4) Alignment text

5) Paragraphs and new lines

6) Fonts effects

7) List and its types

1. The preamble of a document:

The part of your .tex file before the \begin{document} point is called the preamble. In the

preamble, you define the type of document you are writing and the language, load extra

packages you will need, and set several parameters. For instance, a normal document

preamble would look like this:

Figure 1. Example of preamble

Description:

\documentclass[12pt, letterpaper]{article}

- Type of document (article.), the other options are given in Figure 2.

- Font size (12pt) and the paper size (letterpaper).

\usepackage[utf8]{inputenc}

- This is the encoding for the document UTF8 stands for Unicode Transformation Format

8-bit

\title{First document}
- This is the title

\author{Hubert Farnsworth}
- Here you put the name(s) of the author(s) and, as an optional parameter

\thanks{funded by the Overleaf team}

- This can be added after the name of the author, inside the braces of the title command. It

will add a superscript and a footnote with the text inside the braces. Useful if you need to

thank an institution in your article.

\date{February 2014}
- You can enter the date manually or use the command \today so the date will be updated

automatically at the time you compile your document.

Figure 2. Available options in the documentclass

2. The body of a document: The body of your document you can use the next commands

for the information to be printed as shown in the code.

\documentclass[12pt, letterpaper, twoside]{article}

\usepackage[utf8]{inputenc}

\title{First document}

\author{Hubert Farnsworth \thanks{funded by the Overleaf team}}

\date{February 2014}

\begin{document}

\begin{titlepage}

\maketitle

\end{titlepage}

In this document some extra packages and parameters
were added. There is an encoding package
and pagesize and fontsize parameters.

\end{document}

\begin{titlepage} \end{titlepage}
This declares an environment, a block of code with a specific behavior. In this case

whatever you include in this titlepage environment will appear in the first page of your

document.

\maketitle

This command will print the title, the author and the date.

3. Sections: The body consists of several sections and subsections, including special sections

such as the nomenclature, abstract, keywords etc., and normal sections such as

introduction, related work and so on. Sections and subsections are very easy to create.

\section{First level section}

\subsection{Second level section}

\subsubsection{Third level section}

\section*{Unnumbered section}

\paragraph{...}

\subparagraph{...}

3.1. Special sections:

 Nomenclature: The nomenclature requires the \usepackage{nomencl} with the

following command.

\makenomenclature

\nomenclature{Variable \quad {Description}} % \quad used for space
\nomenclature[VR]{\cup, \backslash, \odot}{\qquad Union,

subtraction and composition operations}

\printnomenclature

Output:

Figure 3. Example output for nomenclature output

 Abstract: Define the summery of your work and can be written using the following

command.

\begin{abstract}

Abstract text here…

\end{abstract}

 Keywords: The keywords are defined in their specific section. The following

command is used.

\begin{IEEEkeywords}

Keyword1, keyword2,….
\end{IEEEkeywords}

 Footnote: For the footnote use the \footnote{footnotes text here}command

 Page header: Use the package \usepackage{fancyhdr} as shown in the

following code.

\documentclass{article}

\usepackage[english]{babel}

\usepackage[utf8]{inputenc}

\usepackage{fancyhdr}

\pagestyle{fancy}

\fancyhf{}

\rhead{Overleaf}

\lhead{Guides and tutorials}

\rfoot{Page \thepage}

\begin{document}

\section{First Section}

Hello, here is some text without a meaning. This

text should show what a printed text will look like at

this place. If you read this text, you will get no information.

Really? Is there no information? Is there a difference between

this ...

\end{document}

Output:

Figure 4. Example output of page header

 Multiline commends: The percent sign (%) is used to comment a single line;

however, if multiple lines comments are required, use the package

\usepackage{comment} in preamble and follow the following syntax.

\begin{comment}

This document contains a lot of comments, none of them

will appear here, only this text.
\end{comment}

Syntax and commands for the different level of sections.

\section{First level section}

\subsection{Second level section}

\subsubsection{Third level section}

\section*{Unnumbered section}

Output:

Figure 5. Output example for different level of sections

4. Alignment text: The following command center align the text .

\begin{center}

Example 1: The following paragraph (given in quotes) is an

example of Center Alignment using the center environment.

``LaTeX is a document preparation system and document markup

language. LaTeX uses the TeX typesetting program for formatting

its output, and is itself written in the TeX macro language.

LaTeX is not the name of a particular editing program, but

refers to the encoding or tagging conventions that are used

in LaTeX documents".
\end{center}

Output:

Figure 6. Example out of center aligned text

5. Paragraphs: To start a new paragraph, you must leave a blank line in between. There's a

\par command that start a new paragraph, the code look like the following.

This is the text in first paragraph. This is the text in first

paragraph. This is the text in first paragraph. \par

This is the text in second paragraph. This is the text in second

paragraph. This is the text in second paragraph.

Output:

Figure 7. Example of a new paragraph through \par command

5.1. Paragraph Alignment (Text Justification): Paragraphs in LaTeX are fully

justified using the flush command environment. For instance, center, flushleft,

and flushright, for center, left, and right justifying the paragraph. The full

justifying (i.e., both left and right) requires the \usepackage{ragged2e} package.

The following two commands are used to illustrating a left and full justifying

paragraph.

Left justifying:

\begin{flushleft}

``LaTeX is a document preparation system and document markup

language. LaTeX uses the TeX typesetting program for formatting

its output, and is itself written in the TeX macro language.

LaTeX is not the name of a particular editing program, but refers

to the encoding or tagging conventions that are used in LaTeX documents".
\end{flushleft}

Output

Figure 8. Example of Left justifying paragraph

Full justifying: Note don’t forget to use the package \usepackage{ragged2e}

\begin{flushleft}

\justifying ``LaTeX is a document preparation system and document markup

language. LaTeX uses the TeX typesetting program for formatting

its output, and is itself written in the TeX macro language.

LaTeX is not the name of a particular editing program, but refers

to the encoding or tagging conventions that are used in LaTeX documents".
\end{flushleft}

Output

Figure 9. Example of full justifying paragraph

Summary of text alignment

5.2. Paragraph Indentation: By default, LATEX does not indent the first paragraph

of a section or a chapter. The paragraph indents is determined by \parindent.

The following code illustrates the indentation.

\setlength{\parindent}{4em}

\begin{document}

This is the text in first paragraph. This is the text in first

paragraph. This is the text in first paragraph. \par

This is the text in second paragraph. This is the text in second

paragraph. This is the text in second paragraph.

This is another paragraph, contains some text to test the paragraph

interlining, paragraph indentation and some other features. Also,

is easy to see how new paragraphs are defined by simply entering a

double blank space.

...

\end{document}

Output:

Figure 10. Example output of indentation

5.3. Paragraph spacing: The length parameter that characterizes the paragraph spacing

is \parskip, this determines the space between a paragraph and the preceding text.

 \setlength{\parindent}{4em} % Define this in preamble

 \setlength{\parskip}{1em}

\begin{document}

This is the text in first paragraph. This is the text in first

paragraph. This is the text in first paragraph. \par

This is the text in second paragraph...

\end{document}

Output:

Figure 11. Space in paragraphs

5.4. Line spacing: The line space is defined by three commands

\baselinestretch, \setlength{\baselineskip}{value}, and

\linespread{value} command. An example for the \baselinestretch is

illustrated below.

\renewcommand{\baselinestretch}{1.5} % define this in preamble

\begin{document}

This is the text in first paragraph. This is the text in first

paragraph. This is the text in first paragraph. \par

This is the text in second paragraph...

\end{document}

Output:

Figure 12. Illustration the line space

For the other two command, use their specific commands in the preamble. A list

of spacing value with the other two commands is given below.

Figure 13. Different line space for the value used in the other two commands

Table 1. Horizontal and vertical space commands

Command Type Description
\hspace{1cm}

Horizontal space

1 cm horizontal space

\hfill
Inserts a blank space that will stretch

accordingly to fill the space available.
\vspace{5mm}

Vertical space
5mm vertical space

\vfill fill the vertical space available

Figure 14. Additional commands for spacing

5.5. Line break: The following three commands are used for the line break.

\\ (two backslashes)

\newline

\hfill \break

Example code

\begin{document}

Something in this document. This paragraph contains no information

and its purposes is to provide an example on how to insert white

spaces and lines breaks.\\

When a line break is inserted, the text is not indented, there

are a couple of extra commands do line breaks. \newline

This paragraph provides no information whatsoever. We are exploring

line breaks. \hfill \break

And combining two commands

\end{document}

Output:

Figure 15. Line break example using three different commands

5.6. Page break: The \newpage command is used for a page break. Use the

\newpage command and test the result.

6. Fonts effects: The font effects such as italics, bold, underlined, or color words highlight

the main concept and can change the perception of the reader. An example of such effect

is given in the following.

Please note the color command requires the \usepackage{xcolor}

These are \textit{words in italics}.\\

These are also \emph{words in italics}.\\

These are \textbf{words in bold}.\\

These are \textsf{sans serif words}.\\

These are \textrm{roman words}.\\

These are \underline{underlined words}.\\

These are \textbf{\textit{words in bold and italics}}.\\

These are {\color{red}red coloured words}.\\

These are \textbf{\textcolor{blue}{blue coloured words}}.\\

These are \uppercase{words in capital letter}.\\

These are \MakeUppercase{{words in capital letter}}.\\

These are \lowercase{WORDS IN \textbf{SMALL} LETTER}.\\

These are also \MakeLowercase{WORDS IN \textbf{SMALL} LETTER}.

Output:

Figure 16. Example output of different font effects

Some more font effects:

7. Lists and their different types: Two types of list (i.e., unordered and ordered lists) are

commonly used in overleaf. The lists are defined through the \begin{...} command and

end with the \end{...} command with the environment variables itemize and

enumerate for the unordered and ordered lists.

7.1. Unordered list: Following code is used for the unordered list

Below is an example code of the \textbf{\textit{unordered list}}

\begin{itemize}

 \item List entries start with the command.

 \item Individual entries are indicated with a black dot, a so-called bullet.

 \item The text in the entries may be of any length.

\end{itemize}

Output:

Figure 17. Unordered list (example)

7.2. Ordered list: Example code for ordered list is given below.

Numbered (ordered) lists are easy to create:

\begin{enumerate}

 \item Items are numbered automatically.

 \item The numbers start at 1 with each use of the \texttt{enumerate}

 environment.

 \item Another entry in the list

\end{enumerate}

Output:

Figure 18. Ordered list (example)

7.3. Nested list: The following code illustrates an example of nested ordered and

unordered lists.

Code Output

\begin{enumerate}

 \item Level 1
 \begin{enumerate}

 \item Level 2

 \item Level 2

 \item Level 2
 \end{enumerate}

 \item Level 1

 \item Level 1
\end{enumerate}

\begin{enumerate}

 \item Level 1
 \begin{itemize}

 \item Level 2

 \item Level 2

 \item Level 2
 \end{itemize}

 \item Level 1

 \item Level 1
\end{enumerate}

 \item Level 1
 \begin{enumerate}

 \item [*]Level 2

 \item [*]Level 2

 \item [!]Level 2
 \end{enumerate}

 \item Level 1

 \item Level 1
\end{itemize}

Latex Lecture-4

1) Equations

2) Maths symbols

3) Subscript and superscript

4) Brackets and Parentheses

5) Fractions

6) Managing long equations

7) List of operators

8) Verbatim

9) Tables

10) Figures

11) Algorithms (Pseudocode)

12) Bibliography

1. Equations: Two writing modes for mathematical expressions: the inline math mode and

display math mode.

 Example code: A basic example for both modes is given in the following code.

\documentclass{article}

\begin{document}

The well known Pythagorean theorem \(x^2 + y^2 = z^2\) was

proved to be invalid for other exponents.

Meaning the next equation has no integer solutions:

\[x^n + y^n = z^n \]

\end{document}

Output:

Figure 1. Illustration of basic equation

1.1. Inline math mode:

 Inline math mode is used to write formulas that are part of a paragraph.

 You can use any of these "delimiters" to typeset your math in inline mode:

- \(...\)

https://www.overleaf.com/learn/latex/Brackets_and_Parentheses

- $...$

- \begin{math}...\end{math}.

Example:

Command Use

\(...\)

In physics, the mass-energy equivalence is stated

by the equation \(E=mc^2\), discovered in 1905 by Albert

Einstein.

$...$

In physics, the mass-energy equivalence is stated

by the equation $E=mc^2$, discovered in 1905 by Albert

Einstein.

\begin{math}...\end{math}

In physics, the mass-energy equivalence is stated

by the equation \begin{math}E=mc^2\end{math},

discovered in 1905 by Albert Einstein.

Output: All the three commands results in the similar output

Figure 2. Example output of inline equations

1.2. Display math mode:

 display math mode is used to write expressions that are not part of a paragraph,

and are therefore put on separate lines

 The displayed mode has two versions – numbered and un-numbered.

 Many math mode commands require the module \usepackage{amsmath} in the

preamble.

 Use one of these constructions to typeset math in display mode:

- \[...\]

- \begin{displaymath}...\end{displaymath}

- \begin{equation}...\end{equation}

Example

Command Use

- \[...\]
The mass-energy equivalence is described by the famous

equation discovered in 1905 by Albert Einstein.

\[E=mc^2\] % 1st example of unnumbered equation
\begin{displaymath}

...

\end{displaymath}

The mass-energy equivalence is described by the famous

equation discovered in 1905 by Albert Einstein.

\begin{displaymath}

E=m % 2nd Example of unnumbered equation

\end{displaymath}

\begin{equation}

...

\end{equation}

The mass-energy equivalence is described by the famous

equation (1) discovered in 1905 by Albert Einstein.

\begin{equation}

E=m % Example of numbered equation

\end{equation}

Output:

Figure 3. Example output of display math mode equations

2. Math symbols:

 Below is some common maths symbols shown in Figure-4.

 For detailed symbols please check the following links
- https://www.overleaf.com/learn/latex/List_of_Greek_letters_and_math_symbols
- https://www.math.uci.edu/~xiangwen/pdf/LaTeX-Math-Symbols.pdf

Figure 4. Common math symbols

https://www.math.uci.edu/~xiangwen/pdf/LaTeX-Math-Symbols.pdf

3. Subscript and superscript: The symbols _ and ^ are used for defining the subscripts and

superscripts, as given in the following example code.

\[a_1^2 + a_2^2 = a_3^2 \]

\[\sum_{i=1}^{\infty} \frac{1}{n^s}

= \prod_p \frac{1}{1 - p^{-s}} \]

Output:

Figure 5. Output for superscript and subscript

List of some subscript and superscript

Figure 6. List of different subscript and superscript

4. Brackets and Parentheses:

The brackets and parentheses can be manually set, where the size will adjust accordingly.

\[

F = G \left(\frac{m_1 m_2}{r^2} \right)

\]

Output:

Figure 7. Example output for parenthesis

https://www.overleaf.com/learn/latex/Brackets_and_Parentheses

A list of different parenthesis is given in the following figure

Figure 8. List of different types of parenthesis

Commands for the size of different types of parenthesis

Figure 9. Illustration of parenthesis size

5. Fractions: The appearance of the fraction may change depending on the context, example

code is and output is illustrated.

Fractions can be used alongside the text, for

example \(\frac{1}{2} \), and in a

mathematical display style like the one below:

\[\frac{1}{2}\]

Output:

Figure 10. Example of fraction

6. Managing long equations: There are multiple ways to manage long equations.

 Displaying long equations

 Splitting and aligning

 Displaying long equations

\begin{multline*}

p(x) = 3x^6 + 14x^5y + 590x^4y^2 +

19x^3y^3\\

- 12x^2y^4 - 12xy^5 + 2y^6 - a^3b^3

\end{multline*}

Output:

 Splitting and aligning

\begin{align*}

2x - 5y & = 8 \\

3x + 9y & = -12

\end{align*}

Output

7. List of operators

8. Verbatim: The \begin{verbatim} command prints text in monospaced font and

prints spaces, tabs, etc. verbatim. This can be used for displaying code snippets:

\begin{verbatim}

#include

Int main()

 {

 std::cout << "Hello, world";

 return 0;

 }

\end{verbatim}

Output:

Figure 11. Example output for illustrating

verbatim

9. Tables: The tabular command is used to typeset tables. This is an example of a table

and referral in the text to the table.

\begin{table}[h!]

\centering % centre the table on the page

\begin{tabular}{|c r l|} % c = cjt column, l = ljt column, etc.

\hline % insert a horizontal line

Col1 & Col2 & Col2 \\

\hline

A1 & B1 & C1 \\ % A1, A2, etc. are data

A2 & B2 & C2 \\

A3 & B3 & C3 \\

\hline

\end{tabular}

\caption{Table Caption}

\label{table:example}

\end{table}

Table \ref{table:example} is an example of referred table.

Output:

Figure 12. Illustration of Table

Alternative option: An easy way is to manage the table using the following online tool.

https://www.tablesgenerator.com/

https://www.tablesgenerator.com/

10. Figures: Figures can be included and automatically numbered sequentially and centre

justified. Figures are stored outside the main.tex file. Images should be PDF, PNG,

JPEG or GIF files. The \usepackage{graphicx} needs to be called within the

preamble:

\usepackage{graphicx}

%%%%%%%%%

Insert the figure here:

\begin{figure}[h] % Insert the figure about here

\centering % This centres the image

\includegraphics[scale=2]{myimage}

\caption{My Image}

\label{fig:myimage} % Figures to be referred to in the text

\end{figure}

Figures are cited within the body text as follows:

Refer to figure \ref{fig:myimage} above and on the following page
\pageref{fig:myimage}

If figures are stored in a folder named “figures”, then to refer to the figure using the following

command.

\ref(figures/fig:myimage)

\includegraphics[scale=2]{myimage} has several options such as:

\includegraphics[width=\linetwidth] myimage} % adjust according to linewidth

\includegraphics[width=\textwidth] myimage} % adjust according to textwidth

\includegraphics[width=0.5\textwidth] myimage} % 50% of textwidth

11. Algorithms (Pseudocode):

 The algorithm/pseudocode is an abstract level of representation for the computer

program.

 Usually, the algorithm/pseudocode defines the main concept of the computer program.

 Latex uses the \usepackage{algorithm} for writing the algorithm/pseudocode

\documentclass{article}

\usepackage{algorithm}

\usepackage{algpseudocode}

\begin{document}

\begin{algorithm}

\caption{An algorithm with caption}\label{alg:cap}

\begin{algorithmic}

\Require $n \geq 0$

\Ensure $y = x^n$

\State $y \gets 1$

\State $X \gets x$

\State $N \gets n$

\While{$N \neq 0$}

\If{N is even}

 \State $X \gets X \times X$

 \State $N \gets \frac{N}{2}$ \Comment{This is a comment}

\ElsIf{N is odd}

 \State $y \gets y \times X$

 \State $N \gets N - 1$

\EndIf

\EndWhile

\end{algorithmic}

\end{algorithm}

\end{document}

Output:

A detailed about different styles of algorithms is available at:

https://www.overleaf.com/learn/latex/Algorithms

12. Bibliography:

 References are includes using the major bibliography management programs (packages):

bibtex, biblatex, and natbib.

 You will also need the \usepacke{cite}

 Bibliography is a list of references cited throughout the text with a References list placed

at the end of the report.

 Bibliographies can be embedding at the end of your document as follows:

\begin{thebibliography}{9}

\bibitem{latexcompanion}

Michel Goossens, Frank Mittelbach, and Alexander Samarin.

\textit{The \LaTeX\ Companion}.

Addison-Wesley, Reading, Massachusetts, 1993.

\bibitem{knuthwebsite}

Knuth: Computers and Typesetting,

\\\texttt{http://www-cs-faculty.stanford.edu.html}

\bibitem{b1} G. O. Young, ``Synthetic structure of industrial

plastics,'' in \emph{Plastics,} 2nd ed., vol. 3, J.

Peters, Ed. New York, NY, USA: McGraw-Hill, 1964, pp. 15--64.

\bibitem{b2} W.-K. Chen, \emph{Linear Networks and Systems.} Belmont,

CA, USA: Wadsworth, 1993, pp. 123--135.

\bibitem{b3} J. U. Duncombe, ``Infrared navigation---Part I: An

assessment of feasibility,'' \emph{IEEE Trans. Electron Devices},

vol. ED-11, no. 1, pp. 34--39, Jan. 1959, 10.1109/TED.2016.2628402.

\end{thebibliography}

References are cited in text as follows:

This is a reference \cite{knuthwebsite} cited in the text

12.1. Biblatex package:

 Use package \usepackage{biblatex}

 You will also need the \usepacke{cite}

 Add the bib resource file \addbibresource{file-name.bib}

 Before end of the \end{document} command use the
\printbiblography

Example:

Main.tex CT1112bib.bib
\documentclass{article}

\usepackage{cite}

\usepackage[style=alphabetic]
{biblatex}

\addbibresource{CT1112bib.bib}

%----------preamble-------------

\begin{document}

Neural Networks provides a forum for

developing and nurturing \cite{

qin2011charging} an international

community of scholars and practitioners who

are interested in all aspects of neural networks

and related approaches to computational

intelligence \cite{bourass2017secure}.

\printbibliography

\end{document}

@inproceedings{qin2011charging,

 title={Charging scheduling with

minimal waiting in a network of

electric vehicles and charging

stations},

 author={Qin, Hua and Zhang,

Wensheng},

 booktitle={Proceedings of the

Eighth ACM international workshop

on Vehicular inter-networking},

 pages={51--60},

 year={2011}

}

@article{bourass2017secure,

 title={Secure optimal itinerary

planning for electric vehicles in

the smart grid},

 author={Bourass, Achraf and

Cherkaoui, Soumaya and Khoukhi,

Lyes},

 journal={IEEE Transactions on

Industrial Informatics},

 volume={13},

 number={6},

 pages={3236--3245},

 year={2017},

 publisher={IEEE}

}

Output:

12.2. natbib package:

 Use package \usepackage{natbib}

 You will also need the \usepacke{cite}

 Use the style \bibliographystyle{style name}

 Before end of the \end{document} command use the
\bibliography{file-name.bib}

Example:

main.tex CT1112.bib
\documentclass{article}

\usepackage{cite}

\usepackage{natbib}

\bibliographystyle{alpha} % style

\begin{document}

Neural Networks provides a forum

for developing and nurturing

\cite{bourass2017secure} an

international community of

scholars and practitioners who are

interested in all aspects of

neural networks and related

approaches to computational

intelligence \cite{

qin2011charging}.

\bibliography{CT1112bib.bib}

\end{document}

@inproceedings{qin2011charging,

 title={Charging scheduling with

minimal waiting in a network of

electric vehicles and charging

stations},

 author={Qin, Hua and Zhang,

Wensheng},

 booktitle={Proceedings of the

Eighth ACM international workshop

on Vehicular inter-networking},

 pages={51--60},

 year={2011}

}

@article{bourass2017secure,

 title={Secure optimal itinerary

planning for electric vehicles in

the smart grid},

 author={Bourass, Achraf and

Cherkaoui, Soumaya and Khoukhi,

Lyes},

 journal={IEEE Transactions on

Industrial Informatics},

 volume={13},

 number={6},

 pages={3236--3245},

 year={2017},

 publisher={IEEE}

}

Output:

Available styles: dinat, plainnat, abbrvnat, unsrtnat, rusnat, ksfh_nat

Python Lecture-5

1) Introduction to programming

2) Installation

3) Python IDE (Anaconda and Juypter Notbook)

4) Python Could based IDE (Google Colab)

5) Writing program

6) Basic keywords

7) Print function

8) Comments

9) Variables and datatypes

10) Concatenation and addition

11) String manipulation

12) Input function

13) Format function

1. Introduction

 When we type a letter written in plain English, into say MS Word on the Personal Computer, the

application is designed to show us exactly what we type on the computer screen.

 To achieve this, MS Word was written in the programming language, C++ and designed to accept

our keyboard characters and display them on the screen verbatim.

 In doing this, the C++ programme converts our keyboard characters into machine code that is then

manipulated by the CPU.

 There are hundreds of high level programming languages, like C++.

 They have all been designed around human-readable syntax.

 Listed below are some of the more common programming languages.

Language Description

C/C++ General-purpose language

C# Microsoft .NET platform

Java Object-oriented language

JavaScript Scripting language for web browsers and unrelated to Java

Python General purpose language with readable code

PHP Server side scripting and web app development

SQL Relational database requests

Ruby Web apps that use the Rails framework

NODE.js JavaScript runtime environment for outside a browser

R Like mathlab and used for queries

LaTeX High level language for typesetting documents

Swift Language for Apple applications

Excel Spreadsheet application for data analytics

 Computer programmers typically learn a number of programming languages e.g. Java, JavaScript,

Python, C++, LaTeX and SQL.

 In addition, Programmers who specialise in web applications will also learn HTML and CSS.

 Python and JavaScript have fewer syntax requirements (fewer lines of code) and are good starting

points for learning the logic of programming before progressing to other languages.

 LaTeX is a programming language used for formatting and layout of reports, papers and mathematical

expressions.

 Examples of programming language syntax for four common languages are given below for the

function 'print the characters Hello World! onto the computer screen'.

 Python

print('Hello, world!')

 LaTeX

\title{Hello world!}

 C++

#include

Int main()

{

std::cout << "Hello, world";

return 0;

}

 JavaScript

document.write ('Hello, world!');

1.1. Writing Programs

 Simple text editors can be used to create programs or source code e.g. TextEdit (Mac) and Notepad

(PC). Applications like Word are unsuitable because of hidden formatting that may later cause

syntax errors.

 Python text files are saved with the .py file extension. Javascript, for example, uses .js and so on.

 Integrated Development Environments (IDE) are preferred by programmers over simple text files

for creating programs since they provide special features such as syntax highlighting (e.g.

print('Hello, world!') and access to libraries of reusable source code called modules or packages.

Common IDEs include:

- XCode (Apple Mac and iPhone languages)

- Visual Studio Code (Most languages)

- Android Studio (Android applications)

- RubyMine (Ruby language)

- PyCharm (Python language)

 Running a program is achieved by either compiling the program into an executable (.exe) file or

interpreting the source code in a text file (e.g. game.py) during computer run-time.

 Increasingly, programs utilise both compiled and interpreted elements.

 Common compiler languages include C/C++. Common interpreter languages include Python and

JavaScript.

 Languages such as Java, C# and Python can use a combination of both.

 Interpreted languages can save time during program development because no compilation and linking

is necessary.

 Compiler process

 Interpreter process

2. Installation

1. To download and install Python, visit the official website of Python

https://www.python.org/downloads/ and choose your version.

2. Once the download is completed, run the .exe file to install Python. Now click on Install Now.

3. When it finishes, you can see a screen that says the Setup was successful. Now click on

“Close”.

3. IDE Installation:

1. Download Anaconda and install using the following link.

https://www.anaconda.com/products/individual#windows

2. Open/run Anaconda

3. From Anaconda Navigator, lunch Jupyter Notebook

4. Once Jupyter Notebook lunched, click on new and python 3

https://www.anaconda.com/products/individual#windows

5. Python is now ready

4. Could base IDE

 Google colab provides a cloud base IDE for python

 Search the Google Colab, make sure you are logged in with yours google account

 The google colab will open, click on File New notebook

 A cloud base Jupyter will open

5. Writing program

 Write the following code and test the output.

Jupyter Notedbook (Anaconda)

Jupyter Notebook (Google colab)

>>> 10 + 2

>>> 10 / 2 + 3

>>> 2 + 3 * 6

>>> (2 + 3) * 6

>>> 10 % 3

Jupyter Notedbook (Anaconda)

Jupyter Notebook (Google colab)

What will happen if

?

?
6. Python Keywords

 Keywords are python recovered words for designated tasks and thus can’t be used for variable

or functions. Following is a list of python keywords

Value: True, False, None
Operator: and, or, not, in, is
Control Flow: if, elif, else
Iteration: for, while, break, continue, else
Structure: def, class, with, as, pass, lambda
Returning: return, yield
Import: import, from, as
Exception-Handling: try, except, raise, finally, else, assert
Asynchronous Programming: async, await
Variable Handling: del, global, nonlocal

7. Print function

 The print() function outputs the specified message to the screen or other output device.

 The message can be a string, or other data type (e.g. integer, float or Boolean).

 Functions contain parenthesis () to store parameters and arguments (e.g. strings).

 Below, the argument "Hello World!" is passed into the print function for display on the

terminal screen.

print("Hello world!")

print(" ______________ ")

print("| |")

print("| Hello World! |")

print("| |")

print("|______________|")

print('Hello World!')

print('Hello world "again"')

print("Hello \nWorld") # \n moves the word World to a new line

Note:

 Anything included in single or double quotes is considered as string (i.e., the data type

is string). Here in this example the arguments Hello world is of string data type.

 The hash sing (#) represents the comments.

Output:

if 5 > 2: # if is a python keyword

 print("Five is greater than two!")

print(10 > 9) # Conditional statement or expression (True/False)

print(10 == 9)

print(10 < 9)

Output:

8. Comments

 White space (spaces and empty lines) can be used liberally in most areas throughout the code to

provide clarity and emphasis.

 Comments can be added by using the # (hash) or single/double qoutes character .

 The compiler ignores all characters after the # character.

 The # character can be used in front of lines of code to temporarily stop these lines of code from

executing.

 Docstrings use triple single or double quotes (''' or """) at the start and end of a block of comments.

Example: Single and multiline comments

9. Variables and datatypes

 A variable is a container with a name that contains a value. The equal sign below means

'take the value on the right and store it in the variable on the left'. It does not mean that both

sides are equal.

 first_name = "David"

age = 20

is_male = True

 "David" is a type of data called a string, 20 is called an integer and True is a Boolean data

type.
 Other common data types include Floats (e.g. 20.5), Lists, Dictionaries and Classes

(objects).
 Adding variables is called concatenation. Integers and Floats need to be converted to

strings, using the str() function, before they can be concatenated.

List of different data types

Finding datatypes: Python provides the type (arguments) for finding the datatypes

10. Concatenation and addition: By default, adding variables results in concatenation for string types and

sum for integer and float data types.

11. String manipulation: To manipulate strings, we can use some of Pythons built-in methods.

 Accessing: Use [] to access characters in a string

Example:

Accessing: Use [] to access characters in a string

word = "Hello World"

letter=word[0]

print (letter)

Output

Length: Use len() to find the length (including

space) of a string

word = "Hello World"

print (len (word))

Finding: Use count (), find(), and index() to

find the number of characters & spaces, the

character position, and the substring in a given

string.

word = "Hello World"

print ('Count l ==> ', word.count('l'))

print ('Position of o ===> ',word.find('o'))

print ('Wold start position is ===>',

word.find("World"))

print ('Space counted ===>', word.count(' '))

Split Strings: Use the split() function to split

the string accordingly.

word = "Hello World"

print (word.split(' '))

print (word.split('o'))

Repeat Strings: Repeat the number of string.

print ("." * 15)

Replacing: Use the Replace function to replace a

word.

word = "Hello World"

word.replace("Hello", "Welcome to the")

Changing Upper and Lower Case Strings:

Use upper(), lower(), and capitalize() for upper

& lower cases and capitalizing first letter of the

string.

word = "Hello World"

print (word.upper())

print (word.lower())

print (word.capitalize())

Strip: Use the strip functions to remove most left

or right character from a given string.

word = "Hello World"

print (word.strip('H'))

print (word.strip('d'))

print (word.strip('W'))

For more detail, please visit the following websites.

https://www.pythonforbeginners.com/basics/string-manipulation-in-python

https://www.w3schools.com/python/python_ref_string.asp

https://www.pythonforbeginners.com/basics/string-manipulation-in-python
https://www.w3schools.com/python/python_ref_string.asp

12. Input function:

 Programs can accept inputs from the user using the input() function.

 By default, the input is considered as string datatype.

 For integer and floating type data, you will need to explicitly convert them.

Example:

name = input("Enter your name: ")

print("Hello " + name)

num1 = input("Enter your first number:")

num2 = input("Enter your second number:")

Output

13. Format function:

 We can also combine strings and numbers by using the format() function that takes the arguments,

formats them as variables and places them in the string placeholders {}.

Example:

num1 = float(input("Enter your first number:"))

num2 = float(input("Enter your second

number:"))

print('{} + {} = '.format(num1, num2))

print(num1 + num2)

Output:

Homework:

1. Define two variables x and y. Use input function to get the integer inputs, add them and print the

output. Your output should look like:

2. What is the output of the following string comparison?

print("John" > "Jhon")

print("Emma" < "Emm")

3. Test the output of the following code and explain str1[1:4] str1[:5], str1[4:]?

str1 = "Hello World"

print(str1[1:4], str1[:5], str1[4:])

Python Lecture-6

1) List data types

2) List manipulation

3) Tuple,

4) Set

5) Set manipulation

6) Dictionary

7) Dictionary manipulation

1. List data types

 Lists are written within square brackets [].

Define a list

z = [3, 7, 4, 2]

 Lists store an ordered collection of items which can be of different types.

 The list defined above has items that are all of the same type (int), but all the items of a list do not

need to be of the same type as you can see below.

heterogenousElements = [3, True, 'Michael', 2.0] # Define a list

Example 1:

z = [3, 7, 4, 2]

print (z)

print('element at index 0: ', z[0],'\nelement at index 1: ',z[1],'\nelement at index 2: ',z[2],'\nelement at

index 2: ',z[3])

Output:

Example 2:

heterogenousElements = [3, True, 'Michael', 2.0]

print (heterogenousElements)

print('element at index 0: ', heterogenousElements[0])

print('element at index 1: ',heterogenousElements[1])

print('element at index 2: ',heterogenousElements[2])

print('element at index 2: ',heterogenousElements[3])

Output:

2. List manipulation

Accessing element: Access the element from left

to right with positive index and right to left with

negative index.

Define a list

z = [3, 7, 4, 2]

Access the first item of a list at index 0

print(z[0])

print(z[-1])

Output:

Slice of Lists: The slice helps to get a subset of

the list.

Define a list

z = [3, 7, 4, 2]

print(z[0:2]) # first two elements

print(z[:3]) # First to third elements

print(z[0:]) # first to last elements

print(z[1:3]) # second to second last elements

Output

Update list: Update the elements of a list.

Defining a list

z = [3, 7, 4, 2]

Update the item at index 1 with the string "fish"

z[1] = "fish"

print(z)

Output

Index function: Find the index of an element

using the index() function. In the case of multiple

same values, the index() return the first index.

However, you can specific the starting point of

the search.

Define a list

z = [4, 1, 5, 4, 10, 4]

print(z.index(4))

print(z.index(4, 4))

Output:

Count function: It counts the number of times a

value occurs in a list.

random_list = [4, 1, 5, 4, 10, 4]

print(random_list.count(5))

Output:

Sort function: Sort the elements in ascending and

descending orders

Example1

z = [4, 1, 5, 2, 10, 0]

print('Origional list:', z)

print('....................................')

z.sort() # Ascending order

print('Asceding order:', z)

print('....................................')

z.sort(reverse = True) # Descending order

print('Decending order:', z)

Example 2

z = ['Elle', 'Miles', 'Kratos', 'Joel', 'Peter', 'Nathan']

print('Origional list:', z)

print('....................................')

z.sort() # Ascending order

print('Asceding order:', z)

print('....................................')

z.sort(reverse = True) # Descending order

print('Decending order:', z)

Output:1

Output:2

Append function: The append method adds an

element to the end of a list.

z = [7, 4, 3, 2]

z.append(10)

print(z)

Output:

Remove function: The remove function removes

an element from the list.

z = [7, 4, 3, 2, 5, 8]

print('Original list: ',z)

print('...................................')

print('After removing 4: ',z)

z.remove(4)

print(z)

Output:

Pop function: The pop method removes an item at

the index you provide.

z = [7, 4, 3, 2, 5, 8]
Output:

print('Original list: ',z)

print('...................................')

print('After popup: ',z.pop(4))

print(z)

Extend function: The extend() function extends a

list by appending items. The same can be achieved

by adding two lists.

Example 1

z = [7, 4, 3, 2, 5, 8]

print('Original list: ',z)

print('...................................')

z.extend([20,40])

print(‘Extended list: ',z)

Example 2

z = [7, 4, 3, 2, 5, 8]

z1 = [20,40]

print('First list: ',z)

print('...................................')

print('Second list: ',z1)

print('...................................')

print('extended: ',z+z1)

Output:1

Output:2

Insert function: The insert() function inserts an

item before the index you provide.

z = [7, 3, 3, 4, 5]

print('Original list: ',z)

print('...')

z.insert(4, 10)

print('After inserting 10: ',z)

Output

3. Tuple:

 Python provides another type that is an ordered collection of objects, called a tuple.

 Tuples are identical to lists in all respects, except for the following properties:

- Tuples are defined by enclosing the elements in parentheses ().

- Tuples are immutable

List:

t = ['foo', 'bar', 'baz', 'qux', 'quux', 'corge']

print (t)

print (type(t))

print('...............................')

t[0] = 'zoo'

print (t)

Output:

Tuple:

t = ('foo', 'bar', 'baz', 'qux', 'quux', 'corge')

print (t)

print (type(t))

print('...............................')

t[0] = 'zoo'

print (t)

Output:

4. Set:

 A set is created using curly braces {}, with elements separated by comma.

 The elements may be of different types (integer, float, tuple, string etc.).

 The set elements are immutable

 Set elements can’t be duplicated

Example 1: Creating different types of sets

Different types of sets in Python

set of integers

my_set = {1, 2, 3}

print(my_set)

set of mixed datatypes

my_set = {1.0, "Hello", (1, 2, 3)}

print(my_set)

Example 2:

set cannot have duplicates

Output: {1, 2, 3, 4}

my_set = {1, 2, 3, 4, 3, 2}

print(my_set)

Example 3: Set from list

we can make set from a list

Output: {1, 2, 3}

my_set = set([1, 2, 3, 2])

print(my_set)

 Example 4:

Output: 1

Output:2

set cannot have mutable items

here [3, 4] is a mutable list

this will cause an error.

my_set = {1, 2, 3}

print(my_set)

my_set = {1, 2, 3, [6,7]}

Example 5: Empty set

Distinguish set and dictionary while creating

empty set

initialize a with {}

a = {}

check data type of a

print(type(a))

initialize a with set()

a = set()

check data type of a

print(type(a))

Output: 3

Output: 4

Output: 5

5. Set manipulation

Adding element and update set: The add() and

update() methods are used to modify the set.

Example:

initialize my_set

my_set = {1, 3}

print('Original set', my_set)

print('.............................')

add single element

my_set.add(2)

print('Modified set', my_set)

print('.............................')

adding multiple element

my_set.update({1, 6, 8})

print('Modified set', my_set)

Output:

Removing element: Use the remove() and

discard(). IF an element doesn’t exist the remove()

function will raise an error, while the discard() will

do nothing.

Example:

initialize my_set

my_set = {1, 3, 4, 5, 6}

print('Original set', my_set)

print('............Testing discard function...........')

discard an element

Output: {1, 3, 5, 6}

my_set.discard(4)

print(my_set)

my_set.discard(6)

print(my_set)

print('............Testing remove function...........')

my_set.remove(5)

print(my_set)

my_set.remove(7)

print(my_set)

Output:

POP up element and clearing set: The pop()

function popup the first element from the set, while

the clear() function remove all the elements from a

set.

Example:

my_set = {1, 3, 4, 5, 6}

print('Original set', my_set)

my_set.pop()

print('........After pop up........')

print(my_set)

print('........After clearing........')

my_set.clear()

print(my_set)

Output:

Set operations:

 Union:

Set union method

initialize A and B

A = {1, 2, 3, 4, 5}

B = {4, 5, 6, 7, 8}

print('Set A: ', A)

print('Set B: ', B)

use | operator

Output: {1, 2, 3, 4, 5, 6, 7, 8}

print('Union of A and B: ',A | B)

Output:

 Intersection:

Set union method

initialize A and B

A = {1, 2, 3, 4, 5}

B = {4, 5, 6, 7, 8}

print('Set A: ', A)

print('Set B: ', B)

use | operator

Output: {1, 2, 3, 4, 5, 6, 7, 8}

print('A intersection B: ',A & B)

print('.........Using intersection() function........')

print('A intersection B: ',A.intersection(B))

 Difference:

Set union method

initialize A and B

A = {1, 2, 3, 4, 5}

B = {4, 5, 6, 7, 8}

print('Set A: ', A)

print('Set B: ', B)

use | operator

Output: {1, 2, 3, 4, 5, 6, 7, 8}

print('Difference between sets A and B: ',A-B)

For further study on set operations please check.

https://www.programiz.com/python-programming/set

6. Dictionary:

 Dictionaries are Python’s implementation of a data structure that is more generally known as an

associative array.

 A dictionary consists of a collection of key-value pairs.

 Each key-value pair maps the key to its associated value.

 You can also construct a dictionary with the built-in dict() function.

 The argument to dict() should be a sequence of key-value pairs.

d = dict([

 (<key>, <value>),

 (<key>, <value),

 .

 .

 .

 (<key>, <value>)

])

Example:

months = {} # Create empty dictionary

https://www.programiz.com/python-programming/set

months = { 1 : "January", 2 : "February", 3 : "March", 4 : "April", 5 : "May", 6 : "June", 7 : "July", 8 :

"August", 9 : "September", 10 : "October", 11 : "November", 12 : "December" }

print('Dictionary :', months)

print ('The dictionary contains the following keys: ', months.keys())

print ('The dictionary contains the following keys: ', months[3])

Output:

7. Dictionary manipulation

Accessing Element: A value is retrieved from a

dictionary by specifying its corresponding key in

square brackets [].

If you refer to a key that is not in the dictionary,

Python raises an exception:
Example: 1

months = { 1 : "January", 2 : "February", 3 :

"March", 4 : "April", 5 : "May", 6 : "June", 7 :

"July", 8 : "August", 9 : "September", 10 :

"October", 11 : "November", 12 : "December" }

k = int(input("Enter the key value in range [1-12]"))

print ('The dictionary value at ' , k, ' is ', months[k])

Example: 2

Enter the key value in range [1-12]13

Output:1

Output:2

Update an entry: If you want to update an entry,

you can just assign a new value to an existing key:

months = { 1 : "January", 2 : "February", 3 :

"March", 4 : "April", 5 : "May", 6 : "June", 7 :

"July", 8 : "August", 9 : "September", 10 :

"October", 11 : "November", 12 : "December" }

k = int(input("Enter the key value in range [1-12]:

"))

print ('Current value at ' , k, ' is ', months[k])

print('...')

stV = input("Enter the value: ")

months[k] = stV

Output:

print ('Modified value at ' , k, ' is ', months[k])

Delete: To delete an entry, use the del statement,

specifying the key to delete:

Example:

months = { 1 : "January", 2 : "February", 3 :

"March", 4 : "April", 5 : "May", 6 : "June", 7 :

"July", 8 : "August", 9 : "September", 10 :

"October", 11 : "November", 12 : "December" }

k = int(input("Enter the key value in range [1-12]:

"))

stV = months[k]

del months[k]

print ('..')

print ('The value ' , '"', stV, '"',' is deleted')

print ('Dictionary after deleting value at ' , k, ' is ',

months)

Output:

Dynamic Dictionary: You can start by creating an

empty dictionary, which is specified by empty curly

braces. Then you can add new keys and values one

at a time:

Example: 1

CT1112 = {}

type(CT1112)

CT1112 [1] = "A"

CT1112 [2] = "B"

CT1112 [3] = "C"

print('Students: ', CT1112)

Example: 2

CT1112 = {}

CT1112[1] = "John"

print(CT1112[1], ' registered')

print('......................................')

print('Total students: ', CT1112)

print('......................................')

CT1112[2] = "Paul"

print(CT1112[2], ' registered')

print('......................................')

print('Total students: ', CT1112)

CT1112[3] = "Connor"

print(CT1112[3], ' registered')

print('......................................')

print('Total students: ', CT1112)

Output:1

Output:2

CT1112[4] = "Jack"

print(CT1112[4], ' registered')

print('......................................')

print('Total students: ', CT1112)

Multiple element at single key:

Example:1

CT1112 = {}

type(CT1112)

CT1112 ['Student'] = ["John", "Paul", "Connor",

"Jack"]

CT1112 ['Courses'] = ["OS", "Latex", "Python",

"Excel"]

print('Dictionary: ', CT1112)

print('...')

print(CT1112['Student'][1], ' is studing: ',

CT1112['Courses'][2])

Example: 2

CT1112 = {}

type(CT1112)

CT1112 ['Student'] = ["John", "Paul", "Connor",

"Jack"]

CT1112 ['Courses'] = ["OS", "Latex", "Python",

"Excel"]

print('Dictionary: ', CT1112)

sk = int(input('Enter student key [1-3]: '))

ck = int(input('Enter student key [1-3]: '))

print('...')

print(CT1112['Student'][sk], ' selected ',

CT1112['Courses'][ck])

Output:1

Output:2

Built-in functions:

in and not in: The in and not in returns True and

False values according to the values in the

dictionary.

Example:

months = {1 : "January", 2 : "February", 3 :

"March", 4 : "April", 5 : "May", 6 : "June", 7 :

"July", 8 : "August", 9 : "September", 10 :

"October", 11 : "November", 12 : "December" }

print ('1 exist in dictionary: ', 1 in months)

print ('...')

Output

print ('13 exist in dictionary: ', 13 in months)

print ('...')

print ('13 does not exist in dictionary: ', 13 not in

months)

Len(): The len() function returns the number of key-

value pairs in a dictionary:

Example:
months = { 1 : "January", 2 : "February", 3 :

"March", 4 : "April", 5 : "May", 6 : "June", 7 :

"July", 8 : "August", 9 : "September", 10 :

"October", 11 : "November", 12 : "December" }

print ('Length of dictionary: ', len(months))

Output:

Clear(): The clear() function empties all the entries

in a dictionary

Example:

months = { 1 : "January", 2 : "February", 3 :

"March", 4 : "April", 5 : "May", 6 : "June", 7 :

"July", 8 : "August", 9 : "September", 10 :

"October", 11 : "November", 12 : "December" }

print ('Length of dictionary: ', len(months))

print('...')

months.clear()

print ('Length of dictionary: ', len(months))

Output:

Get(): The get() function returns the value for a

given key, it exist otherwise it return none.

Example: 1

months = { 1 : "January", 2 : "February", 3 :

"March", 4 : "April", 5 : "May", 6 : "June", 7 :

"July", 8 : "August", 9 : "September", 10 :

"October", 11 : "November", 12 : "December" }

print ('Length of dictionary: ', len(months))

print('...')

v = int(input('Enter a key: '))

print('Value for ', v, 'is: ', months.get(v))

Example: 2

months = { 1 : "January", 2 : "February", 3 :

"March", 4 : "April", 5 : "May", 6 : "June", 7 :

"July", 8 : "August", 9 : "September", 10 :

"October", 11 : "November", 12 : "December" }

print ('Length of dictionary: ', len(months))

print('...')

v = int(input('Enter a key: '))

print('Value for ', v, 'is: ', months.get(v,'Not found'))

Output:1

Output:2

Items(): The item() function returns a list of tuples

containing the key-value pairs. The first item in each

tuple is the key, and the second item is the key’s

value:

Example:
months = { 1 : "January", 2 : "February", 3 :

"March", 4 : "April", 5 : "May", 6 : "June", 7 :

"July", 8 : "August", 9 : "September", 10 :

"October", 11 : "November", 12 : "December" }

print(months.items())

Output:

Keys(): The keys() function returns all the keys of a

dictionary.

Example:

months = { 1 : "January", 2 : "February", 3 :

"March", 4 : "April", 5 : "May", 6 : "June", 7 :

"July", 8 : "August", 9 : "September", 10 :

"October", 11 : "November", 12 : "December" }

print(months.keys())

Output:

Values(): The values() functions returns all the

values of a dictionary.

Example:

months = { 1 : "January", 2 : "February", 3 :

"March", 4 : "April", 5 : "May", 6 : "June", 7 :

"July", 8 : "August", 9 : "September", 10 :

"October", 11 : "November", 12 : "December" }

print(months.values())

Output:

Pop(): The pop() function remove the specified key

and returns the its value. It will raise and error if the

key doesn’t exist.

Example: 1
months = { 1 : "January", 2 : "February", 3 :

"March", 4 : "April", 5 : "May", 6 : "June", 7 :

"July", 8 : "August", 9 : "September", 10 :

"October", 11 : "November", 12 : "December" }

print(months.pop(1))

print(months)

Example: 2

months = { 1 : "January", 2 : "February", 3 :

"March", 4 : "April", 5 : "May", 6 : "June", 7 :

"July", 8 : "August", 9 : "September", 10 :

"October", 11 : "November", 12 : "December" }

print(months.pop(13))

print(months)

Output:1

Output:2

Example: 3. Handling error

months = { 1 : "January", 2 : "February", 3 :

"March", 4 : "April", 5 : "May", 6 : "June", 7 :

"July", 8 : "August", 9 : "September", 10 :

"October", 11 : "November", 12 : "December" }

print(months.pop(13, 'No value exist'))

print(months)

Output:3

Popitem(): This function remove the last key-value

pair and return them.

Example:

months = { 1 : "January", 2 : "February", 3 :

"March", 4 : "April", 5 : "May", 6 : "June", 7 :

"July", 8 : "August", 9 : "September", 10 :

"October", 11 : "November", 12 : "December" }

print(months.popitem())

print(months)

Output:

Update(): The update() function merge two

dictionaries.

Example:

d1 = {'a': 10, 'b': 20, 'c': 30}

print('First dictionary: ', d1)

print('....................................')

d2 = {'b': 200, 'd': 400}

print('Second dictionary: ', d2)

d1.update(d2)

print('....................................')

print('Merged d1 and d2: ', d1)

Output:

Python Lecture-7

1) Conditional statement (If-Else-if statements)

2) Loops

3) Function

4) Scope of a variable

1. Conditional statement:

 Decision making is required when we want to execute a code only if a certain condition

is satisfied.

 The if…elif…else statement is used in Python for decision making.

1.1. If statement: Syntax

if test expression:

 statement(s)

The program text expression and execute statement(s) if the condition is true

If the condition is false, the statement(s) will not execute

Example:

#Testing a positive number

num = int(input('Enter a number: '))

if num > 0:

 print(num, "is a positive number.")

Output:1 True conditon

Output:2 False condition

1.2. If Else statement: Syntax

if test expression:

 Body of if

else:

 Body of else

If the text expression is true, then execute body of if otherwise execute body of

else

Example:

#Testing a positive or negative number

num = int(input('Enter a number: '))

if num > 0:

 print(num, "is a positive number.")

else:

 print(num, "is a negative number.")

Output: True conditon

Output: False condition

1.3. if...elif...else Statement: Syntax

if test expression:

 Body of if

elif test expression:

 Body of elif

else:

 Body of else

The elif is short for else-if.

If the condition for if is False, it checks the condition of the next elif block and so on.

If all the conditions are False, the body of else is executed.

Example:

num1 = float(input("Enter first

number: "))

op = input("Enter the operator: ")

num2 = float(input("Enter second

number: "))

if op == "+":

 print("The answer is: ", num1 +

num2)

elif op == "-":

 print("The answer is: ", num1 -

num2)

elif op == "*":

 print("The answer is: ", num1 *

num2)

elif op == "/":

 print("The answer is: ", num1 /

num2)

else:

 print("Invalid operator. Run

programme again")

Output:

2. Loops: Loops provides a way to iterate over a sequence (list, tuple, string) or other iterable

objects. Iterating over a sequence is called traversal.

Common types: For Loop , While loop, Nested loop

2.1 For Loop: Syntax

for val in sequence:

 loop body

 Here, val is the variable that takes the

value of the item inside the sequence

on each iteration.

 Loop continues until we reach the last

item in the sequence.

 The body of for loop is separated from

the rest of the code using indentation.

Example:

Program to find the sum of all numbers

stored in a list

List of numbers

numbers = [6, 5, 3, 8, 4, 2, 5, 4, 11]

variable to store the sum

sum = 0

iterate over the list

for val in numbers:

 sum = sum+val

print("The sum is: ", sum)

Output:

Loop with range() function:

 The range() function returns a sequence

of numbers, starting from 0 by default,

and increments by 1 (by default), and

ends at a specified number.

 The range() function supports different

parameters for start, stop, and step size.

i.e., range(start, stop, step_size)

Example: 1

for x in range(6):

 print(x)

Example: 2

for x in range(2, 30, 3):

 print(x)

 List with range():

Example:3

print(range(10))

print(list(range(10)))

print(list(range(2, 8)))

print(list(range(2, 20, 3)))

Output: 1

Output: 2

Output: 3

Example:4

create a list lst with start:2, stop:20, and

step size:3

lst = list(range(2,20,3))

iterate over the list using index

print('The list values are:')

for i in range(len(lst)):

 print(lst[i])

Example: 5

Program to iterate through a list using

indexing

genre = ['OS', 'Latex', 'Python', 'Excel']

iterate over the list using index

for i in range(len(genre)):

 print("I like", genre[i])

Output: 4

Output: 5

For loop with else and break:

Example:1

digits = [0, 2, 5, 6, 7]

for i in digits:

 print(i)

else:

 print("No items left.")

Example:2

digits = [0, 2, 5, 6, 7]

for i in digits:

 if i == 5: break

 print(i)

else:

 print("Loop break point")

Output:1

Output:2

For loop with Dictionary, if, and break

Example:

program to display student's marks from

record

student_name = input('Enter student name:

')

marks = {'James': 90, 'Jules': 55, 'Arthur':

77}

for student in marks:

 if student == student_name:

 print(marks[student])

 break

else:

 print('No entry with that name found.')

Output

2.1. While loop:

 The while loop is used to iterate over a

block of code as long as the test

expression (condition) is true.

 Generally, the While loop is used when

the number of iteration beforehand is

not known.

 Syntax:

while test_expression:

 Body of while

 If the text_experssion is true run the

body of the while loop.

Example:1

Program to add natural

numbers up to

sum = 1+2+3+...+n

To take input from the user,

n = int(input("Enter n: "))

initialize sum and counter

sum = 0

i = 1

while i <= n:

 sum = sum + i

 i = i+1 # update counter

print the sum

print("The sum is", sum)

Example: 2

Output:1

Output:2

i = 1

while i < 6:

 print(i)

 i += 1

While loop with break statement:

Example:

i = 1

while i < 6:

 print(i)

 if i == 3:

 break

 i += 1

Output:

While loop with continue statement:

i = 0

while i < 6:

 i += 1

 if i == 3:

 continue

 print(i)

Output:

While loop with else statement:

i = 1

while i < 6:

 print(i)

 i += 1

else:

 print("i is no longer less than 6")

Output:

2.3. Nested loop:

Example:

for i in range(3):

 for j in range(5):

 print(j)

Output:

3. Function: Syntax:

 Function is a block of code

(subprogram) that is written once

 Called/used as many time as required

 Performs specific task

 Pass data to function known as

arguments

 Function returns the result

 Main programming is known as calling

program, the function is known as

called program

Types of function:

 Built-in function

 User defined function

Components:

 Function definition

 Function call

Note: Built-in functions have definitions in the

libraries and import the libraries, call the

function with arguments and the function

return the result.

def function_name(parameters):

 """docstring"""

 statement(s)

1. Keyword def that marks the start of the function

header.

2. A function name to uniquely identify the

function.

3. Parameters (arguments) through which we pass

values to a function.

4. A colon (:) to mark the end of the function

header.

5. Optional documentation string (docstring) to

describe what the function does.

6. One or more valid python statements that make

up the function body.

7. An optional return statement to return a value

from the function

Example: Simple function

def fun(): # Function definition

 print('This is a simple function!')

fun() # Function call

Output:

1.1. Passing arguments

Example:

Def greet(name): # function definition

 """

 This function greets to

 the person passed in as

 a parameter

 """

 print("Hello, ", name, ". Good

afternoon!")

greet('James') # function call

Output:

Passing two integer arguments

Example:

def sum(x, y): # Function definition

 s = x+y

 print('Sum: ', s)

Output:

sum(10, 15) # Function call

Passing integer and string arguments

Example:

Function definition is here

def printinfo(name, age):

 "This prints a passed info into this function"

 print ('Name: ', name)

 print ('Age: ', age)

Now you can call printinfo function

printinfo(age=35, name='James')

Output:

Default arguments: The default arguments

are the arguments that are considered if no

arguments are passed to the function.

Example:

Function definition is here

def printinfo(name, age = 35):

 "This prints a passed info into this function"

 print ('Name: ', name)

 print ('Age: ', age)

Now you can call printinfo function

print('Both the arguements are passed')

printinfo(age=50, name='James') # both the

arguements are passed

print('........................Age has a defult

value........................')

printinfo(name='James')

Output:

Variable arguments:

 You can pass variable number arguments to

the function.

 An asterisk (*) is placed before the variable

name that holds the values of all non-

keyword variable arguments.

Example: 1

Function definition is here

def printinfo(arg1, *vartuple):

 "This prints a variable passed arguments"

 print (arg1)

 for var in vartuple:

 print (var)

Now you can call printinfo function

print ('Fixed arguement passed is: ')

printinfo(10)

Output:1

print ('Variable argument passed is: ')

printinfo(70, 60, 50)

Example:2

def calculateTotalSum(*arguments):

 totalSum = 0

 for number in arguments:

 totalSum += number

 print(totalSum)

function call

calculateTotalSum(5, 4, 3, 2, 1)

Output:2

3.2. Return statement:

 The return statement is used to passing

back an expression to the caller.

 Syntax:

return [expression_list]

 This statement can contain an

expression that gets evaluated and the

value is returned.

 If there is nothing to return and the

return statement is used, then the

function will return the None object.

Example:

Function definition is here

def sum(arg1, arg2):

 # Add both the parameters and return them."

 total = arg1 + arg2

 return total; # Return the total

Now you can call sum function

total = sum(10, 20);

print ('Returned total : ', total)

Output:

Assignment: Write a function fun that ask the user

to enter the first and second integers and sum them,

the function then returned the output.

Output:

Scope of a variable:

 The scope of a variable defines the

accessibility of the variable.

 Variables that are defined inside a function

body have a local scope, and those defined

outside have a global scope.

Example:

total = 0; # This is global variable.

Function definition is here

def sum(arg1, arg2):

 # Add both the parameters and return them."

Output:

 total = arg1 + arg2; # Here total is local

variable.

 print ('Inside the function local total : ', total)

Now you can call sum function

sum(10, 20);

print ('Outside the function global total : ', total)

Python Lecture-8

1) External files

2) Classes and objects

3) Modules/libraries

1. Files:

 Files are named locations on disk to store related information.

 They are used to permanently store data in a non-volatile memory (e.g. hard disk).

 Hence, in Python, a file operation takes place in the following order:

- Open a file

- Read a file

- Close the file

- Write to the file

- Creating a new file

1.1. Open a file: The built-in open() function is used to open a file in python.

 Syntax:

specifying full path

f = open("F:/Old-PC-Coursework-Data/Professional Skill-lectures-NUIG/Lectures/Python/test.txt")

1.2. Read a file: The read() function can be used to read from the file. The optional argument r

specifies the read mode.

 Mode: Mode defines the purpose for opening a file. For instance, reading, writing to the file, or

appending etc. A detailed of different modes are given below.

Example:

specifying full path

f = open("F:/Old-PC-Coursework-Data/Professional Skill-lectures NUIG/Lectures/Python/test.txt",

"r")

print(f.read())

Output:

- Readline function:
- The readline() function is used to read the first line from the file.

- If it is called twice it will read the first two lines.

Example:

specifying full path

f = open("F:/Old-PC-Coursework-Data/Professional Skill-lectures-NUIG/Lectures/Python/test.txt", "r")

print(f.readline())

print(f.readline())

Output:

 Reading file through loop:

- Multiple lines/entire file contents can be read through looping.

Example:

specifying full path

f = open("F:/Old-PC-Coursework-Data/Professional Skill-lectures-NUIG/Lectures/Python/test.txt", "r")

for x in f:

 print(x)

Output:

1.3. Closing a file: The close() function is used to close a file.

Example:

specifying full path

f = open("F:/Old-PC-Coursework-Data/Professional Skill-lectures-NUIG/Lectures/Python/test.txt", "r")

print(f.readline())

f.close()

print('File closed successfully')

Output:

1.4. Write to the file: The write() function is used to write to the file. There are two mode parameters

namely “a” and “w”. The “a” parameter is for appending the text without overwriting the previous

contents; however, the “w” overwrite the file.

 Writing to an existing file: Writing an existing file requires to be opened using the open() function.

Two examples with “a” and “w” are illustrated below.

- Writing with “a” option:

Example:

specifying full path

f = open("F:/Old-PC-Coursework-Data/Professional Skill-lectures-NUIG/Lectures/Python/test.txt", "a")

f.write("This is the new contents added from python")

f.close()

Reopen the file with "r" mode and check the added contents

f = open("F:/Old-PC-Coursework-Data/Professional Skill-lectures-NUIG/Lectures/Python/test.txt", "r")

print(f.read())

Output:

- Writing with “w” option:

Example:

specifying full path

f = open("F:/Old-PC-Coursework-Data/Professional Skill-lectures-NUIG/Lectures/Python/test.txt",

"w")

f.write("Woops! I have deleted the content!")

f.close()

Reopen the file with "r" mode and check the added contents

f = open("F:/Old-PC-Coursework-Data/Professional Skill-lectures-NUIG/Lectures/Python/test.txt", "r")

print(f.read())

Output:

1.5. Creating a new file: To create a new file in Python, use the open() function, with one of the

following parameters:

 "x" - Create - will create a file, returns an error if the file exist

Example:

f = open("F:/Old-PC-Coursework-Data/Professional Skill-lectures-NUIG/Lectures/Python/CT1112.txt",

"x")

f.write("This is a new created file")

f.close()

Reopen the file with "r" mode and check the added contents

f = open("F:/Old-PC-Coursework-Data/Professional Skill-lectures-NUIG/Lectures/Python/CT1112.txt",

"r")

print(f.read())

Output:

Note: There are various methods available with the file object. Some of them have been used in the

above examples. Please read and practice if interested.

2. Classes and objects:

 A class represents an abstract name for group of physical entities that holds common properties.

For example, Human, Animals, Car etc. are classes that represents specific group.

 An object is a physical instance of the class, for example “James” is an object of class Human,

“Benz” is an object of Car and so on.

 Creating an object for the class allocate a space in the memory.

 Example: A general example of Class (i.e., Car), with objects.

 Considering the object-oriented programing, the classes are name representations for the objects

and does not hold any space in memory.

 Syntax:

class Car: # define class

""" Body (Variables and functions) of the Car class here. """

obj = Car() # define object

""" Different attributes and behavior of parrots are manipulated through object obj"""

Example:

class Car: # Define class Car

 # class attribute

 model_name

 model_year

 model_color

 # instance attribute

 #The self keyword help to access the attribute of class

 def fun(self, mn , my, mc): # Function fun() definition

 self.model_name = mn

 self.model_year = my

 self.model_color = mc

 print('Model===> ', self.model_name)

 print('Year===>', self.model_year)

 print('Color===>', self.model_color)

instantiate the Parrot class

obj = Car() # Create object obj for Car class

var1 = input('Enter the model name: ')

var2 = input('Enter the model year: ')

var3 = input('Enter the color: ')

print('..')

obj.fun(var1, var2, var3) # Call function fun

Output:

Example: 2

class Sum:

 # Class variables

 var1

 var2

 s= 0

 # Class function

 def total(self, x, y):

 self.var1 = x

 self.var2 = y

 self.s= self.var1 + self.var2

 return self.s

obj = Sum() # define the object

a = int(input('Enter first number: '))

b = int(input('Enter second number: '))

print('..............................')

result = obj.total(a,b)

print('Total===> ', result)

Output:

3. Modules/Libraries:

 Modules refer to a file/libraries containing Python statements and definitions.

 We use modules to break down large programs into small manageable and organized files.

 Furthermore, modules provide reusability of code.

 We can define our most used functions in a module and import it, instead of copying their

definitions into different programs.

 There is a slight difference in module and libraries. A library is a collection of files while a

module is a single file. We can say module is a subset of library. However, we considered the

module as libraries.

 Example of libraries:
import myown_code # My own reusable functions, variables, etc …

import NumPy # Package for scientific computation

import Tkinter # Package for GUI

import scikit-learn # Package for machine learning and AI

 There are two types of modules

3.1. User define module: Python support to create your own modules and reuse them. Following are the

required steps.

Step. 1. From window search type “anaconda Navigator (anaconda3)” and open it.

Step. 2. From anaconda navigator lunch Jupyter Notebook.

Step. 3. In Jupyter Notebook, click new and Text File.

Step. 4. In the text file write your code. In our case we write the following code and save it as

exp.py (i.e., it is our own defined name, you can use any name).

Function definition is here

def fun(name, age):

 print ('Name: ', name)

 print ('Age: ', age)

It will look like the shown in figure below.

Step. 5. Now, from Jupyter Notebook open Python (i.e., Python 3 in our case)

Step. 6. Import the module exp.py and run the program. Use the following code.

Example:

import exp as ex

ex.fun('James', 30)

Output:

Example: 2

Put the following code in the text file and save it

as Sum.py

def add(a, b):

 """This program adds two

 numbers and return the result"""

 result = a + b

 return result

Now, from python3, import the Sum.py module by

running the following code.

import Sum as s

 s.add(2,8)

Output:

3.2. Built-in Modules/Libraries

 Python has a huge collection of modules/libraries.

 .Some of the common libraries are presented as follows.

Library name Description

Pillow

Python Image Library and can supports a lot of file types such as PDF,

WebP, PCX, PNG, JPEG, GIF, PSD, WebP, PCX, GIF, IM, EPS, ICO, BMP,

and many others as well.

Matplotlib
Matplotlib is a Python library that uses Python Script to write 2-dimensional

graphs and plots.

Numpy
Numpy is a popular array – processing package of Python. It provides good

support for different dimensional array objects as well as for matrices.

OpenCV Python Open Source Computer Vision is a python package for image processing.

Requests
Requests is a rich Python HTTP library. Requests is focused on making

HTTP requests more responsive and user-friendly.

Keras Keras is an open-source deep neural network library.

TensorFlow TensorFlow is a free, open-source python machine learning library.

Theano
Theano is a python library and a compiler for feasible computer programs –

a.k.a an optimizing compiler.

NLTK (Natural

Language Toolkit)

NLTK a.k.a Natural language toolkit is one of the most popular python NLP

libraries.

Arrow
Arrow is a practical python library. It is a friendly library that basically

works with dates and times.

FlashText
FlashText is another python library that offers easy search and replacement

of words from documents.

Scipy
Scipy is an open-source python library that is used for both scientific and

technical computation.

PyTorch PyTorch is an open-source python machine learning library.

Bokeh
Bokeh is a data visualization library for python. It allows interactive data

visualization.

Pandas
It is a must to learn for data-science and dedicatedly written for Python

language.

Scikit Learn Scikit learn is a simple and useful python machine learning library.

PyGame
It is a set of python functions and classes dedicated to writing video games

mainly.

Further Information

https://www.python.org/

https://www.python.org/

Microsoft Excel Lecture-9

1) Introduction

2) Basic components

3) Worksheets and workbook

4) Customization Microsoft Excel Environment

5) Important Shortcut keys

6) Math operations

7) Make column names bold

8) Align data to the left

9) Enclose data in boxes

10) Setting the print area and printing (Print View) & Page Layout

11) Data validation

12) Data filters

13) Group and Ungroup

14) Adding images to spreadsheets

15) Excel Formula

16) Excel Functions

17) Condition and logical statements (IF, AND, OR etc).

1. Introduction:

 Microsoft Excel is a spreadsheet program used to record and analyze numerical and statistical data.

 It provides multiple features to perform various operations like calculations, tables, and graph tools, etc.

 Compatible with Windows, macOS, Android and iOS

 Basic layout of excel sheet.

2. Basic components:

2.1. Understanding Ribbon: The ribbon provides shortcuts to commands in Excel. A command is an action that

the user performs.

 Ribbon start button – It is used to access commands i.e. creating new documents, saving existing work,

printing, accessing the options for customizing Excel, etc.

 Ribbon tabs – The tabs are used to group similar commands together. The home tab is used for basic

commands such as formatting the data to make it more presentable, sorting and finding specific data within

the spreadsheet.

 Ribbon bar – The bars are used to group similar commands together such as Alignment ribbon bar is used

to group all the commands that are used to align data together.

3. Worksheet and workbook:

 A worksheet is a collection of rows and columns. When a row and a column meet, they form a cell.

Cells are used to record data.

 A workbook is a collection of worksheets.

4. Customization Microsoft Excel Environment:

 Customization the ribbon: If you wish to customize the default setting of ribbon, click on file options

and select the customize ribbon.

 Adding custom tabs to the ribbon: You can also add your own tab, give it a custom name and assign

commands to it.

Step. 1. Right click on the ribbon and select Customize the Ribbon. The dialogue window shown above

will appear.

Step. 2. Click on new tab button

Step. 3. Select the newly created tab

Step. 4. Click on Rename button

Step. 5. Give it a name of CT1112

Step.6. Add icon and test

 Setting the colour theme: File OptionsGeneral

 Settings for formulas: FileOptionsFormula

 Proofing settings:

 Save settings:

5. Imported Shortcuts:

6. Math operations:

7. Make column names bold

8. Align data to the left

9. Enclose data in boxes

10. Setting the print area and printing (Print View) & Page Layout

11. Data validation: Data validation is very important in the sense that it helps us avoid mistakes that can be

avoided.

Example: Consider the following table where the student’s marks minimum and maximum values are 0 and

100. To ensure the data must be between 0-100, we use the data validation feature.

Step. 1

Step. 2

Step. 3

Step. 4

Step. 5. Try to enter 200

12. Data filters: Data filters allow us to get data that matches our desired criteria. Let’s say we want to show the

results of all the students whose names start with “ja”. To do so, we use the following steps.

Step. 1.

Step. 2.

Step. 3.

Step. 4.

13. Group and Ungroup:

Step. 1. Click on Data tab

Step. 2. Select Group

Step.3.

Step. 4.

Step. 5.

Step.6.

Step.7.

Step.8.

14. Adding images to spreadsheets:

Step.1.

Step.2.

Step.3.

15. Excel Formulas: FORMULAS IN EXCEL is an expression that operates on values in a range of cell addresses

and operators.

An example of a formula made up of discrete values lik =A2 * D2 / 2

Example:

16. Excel Functions: FUNCTION IN EXCEL is a predefined formula that is used for specific values in a

particular order.

Examples

 Common functions.

 Number functions

 Strng functions

 Date time functions

Microsoft Excel Lecture-9

1) Condition and logical statements (IF, AND, OR etc).

2) Charts

3) Advance charts

4) XML data

5) CVS data

6) Data entry form

7) Solver

1. Condition and logical statements: This feature us to take decision if a condition is true or false while executing

the formulations and functions. Excel support the IF conditional statement.

Example: Consider the data given in Figure below. We use the IF function to determine if an item is expensive

or not, assuming that items with a value greater than 6,000 are expensive.

Here is the IF conditional statement

=IF(E4<6000,”Yes”,”No”)

List of logical functions:

Shahid
Typewriter
help

Shahid
Typewriter

Shahid
Arrow

Shahid
Typewriter

Shahid
Highlight

Shahid
Highlight

Shahid
Highlight

Shahid
Highlight

Shahid
Typewriter
True condition

Shahid
Typewriter

Shahid
Typewriter

Shahid
Typewriter
False condition

Shahid
Typewriter

Shahid
Highlight

Shahid
Highlight

Shahid
Highlight

2. Charts: A chart is a visual representative of data in both columns and rows. Charts are usually used to analyse

trends and patterns in data sets.

Example: Consider the following data table. The different types of charts are then illustrated, subsequently.

Shahid
Highlight

Shahid
Highlight

Different types of charts in Excel

Creating charts: The steps used to create charts in excel

Step.1.

 Open Excel

 Enter the data from the sample data table above

 Your workbook should now look as follows

Step. 2.

 Select the data you want to represent in graph

 Click on INSERT tab from the ribbon

 Click on the Column chart drop down button

 Select the chart type you want

3. Advance charts: To create advanced charts, we consider the following data table.

Shahid
Highlight

Shahid
Highlight

Shahid
Highlight

Example:

Step 1.

 Create a new workbook in Excel.

 Enter the data shown above

 Create a basic column chart as shown below. If you do not know how to create a basic chart, then read

the article on charts.

Step.2.

 Now, it’s time for our charts and complex graphs in Excel to take beyond the basics.

 Select the orange bars representing traffic

Step. 3.

 Click on change chart type as shown below

Shahid
Highlight

Shahid
Highlight

Shahid
Highlight

 You will get the following dialog window

Step.4. Select Combo and,

 Click on the clustered column

 Select Line chart

 Click on OK button, you will see the following figure.

 Select the chart

 Click on Design under chart tools and select change chart type

Step. 5.

 Edit the chart through the steps shown in figure below.

 Finally, you will get the chart given below.

4. XML(Website) data: Consider the http://www.ecb.europa.eu/stats/eurofxref/eurofxref-daily.xml

 Open a new workbook

 Click on the DATA tab on the ribbon bar

 Click on “From Web” button

 You will get the following window

Shahid
Highlight

Shahid
Highlight

Shahid
Highlight

Shahid
Arrow

Shahid
Typewriter
Get External Data

http://www.ecb.europa.eu/stats/eurofxref/eurofxref-daily.xml

 Enter http://www.ecb.europa.eu/stats/eurofxref/eurofxref-daily.xml in the address

 Click on Go button, you will get the XML data preview

 Click on Import button when done

 Click on OK button

 You will get the following Excel import XML data

1. CSV data. Download any CVS (Comma Separated Values) file from internet and follow the following

steps.

Steps. 1.

2. Open a new workbook

3. Click on DATA tab on the ribbon

4. Click on From Text button

5. You will get the following window

6. Browse to the folder where you downloaded the CSV file

7. Select da.csv file

8. Click on Import button

9. You will get the following import text file wizard

Shahid
Highlight

Shahid
Highlight

Shahid
Highlight

Shahid
Highlight

 Click on Next button

 Select Comma on the Delimiters panel

 Click on Next button

 Click on Finish button

 Click on OK button

 You will get the data, look like as given in the following

6. Data Entry Form:

Steps. 1.

 Right click anywhere on the quick quick access toolbar.

 Select Customize Quick Access Toolbar from the menu options.

Shahid
Typewriter

Shahid
Highlight

Step.2.

 Select Commands Not in the Ribbon.

 Select Form from the list of available commands. Press F to jump to the commands starting with F.

 Press the Add button to add the command into the quick access toolbar.

 Press the OK button.

 Select a cell inside the data which we want to create a data entry form with.

 Click on the Form icon in the quick access toolbar area.

Components of the form:

- New: This will clear any existing data in the form and allows you to create a new record.

- Delete: This will allow you to delete an existing record.

- Restore: If you’re editing an existing entry, you can restore the previous data in the form (if you haven’t

clicked New or hit Enter).

- Find Prev: This will find the previous entry.

- Find Next: This will find the next entry.

- Criteria: This allows you to find specific records.

- Close: This will close the form.

- Scroll Bar: You can use the scroll bar to go through the records.

7. Excel Solver:

 Solver is a Microsoft Excel add-in program that find an optimal (maximum or minimum).

 The formula cell is known as objective cell which is subject to constraints, or limits, on the values

of other formula cells on a worksheet.

Optimization problem:

 Optimization problem is the problem of finding the best solution from all feasible solutions under

the bounded constraints. OR

 A computational problem in which the object is to find the best of all possible solutions.

 Mathematical relationships between the objective and constraints and the decision variables is

hard to solve; therefore, designated algorithms (Solver) that comprehensively solve such complex

relationship are used.

Problem statement:

A corporation plans on building a maximum of 11 new stores in a large city. They will build these

stores in one of three sizes for each location – a convenience store (open 24 hours), standard store, and

an expanded services store. The convenience store requires $4.125 million to build and 30 employees to

Shahid
Highlight

Shahid
Highlight

Shahid
Highlight

Shahid
Highlight

Shahid
Highlight

Shahid
Highlight

Shahid
Highlight

Shahid
Highlight

Shahid
Highlight

Shahid
Highlight

Shahid
Highlight

Shahid
Highlight

Shahid
Highlight

Shahid
Highlight

Shahid
Highlight

Shahid
Highlight

Shahid
Highlight

Shahid
Highlight

Shahid
Highlight

Shahid
Highlight

Shahid
Highlight

operate. The standard store requires $8.25 million to build and 15 employees to operate. The expanded-

services store requires $12.375 million to build and 45 employees to operate. The corporation can dedicate

$82.5 million in construction capital, and 300 employees to staff the stores. On the average, the

convenience store nets $1.2 million annually, the standard store nets $2 million annually, and the

expanded services store nets $2.6 million annually. How many of each should they build to maximize

revenue?

Assign variables:

𝑥1: Number of convenience stores

𝑥2: Number of standard stores

𝑥3: Number of expanded stores

Constraints:

a. 𝑥1 + 𝑥2+ 𝑥3 ≤ 11

b. 4.125𝑥1 + 8.25𝑥2+ 12.375𝑥3 ≤ 82.5

c. 30𝑥1 + 15𝑥2+ 45𝑥3 ≤ 300

d. 𝑥1 > 0, 𝑥2 > 0, 𝑥3 > 0

Profit/Revenue function:

𝑁(𝑥1, 𝑥2, 𝑥3) = 1.2𝑥1 + 2𝑥2+ 2.6𝑥3

Objective function:

𝑚𝑎𝑥
𝑥1,𝑥2,𝑥3

(𝑁)

Decision variables: 𝑥1, 𝑥2, 𝑥3

Solution: First of all, add the solver in the excel following the following steps.

Shahid
Highlight

Shahid
Highlight

Shahid
Highlight

Shahid
Highlight

Shahid
Typewriter
x1≥0, x2≥ 0, x3≥0

manth
Strikeout

Once the Solver add-in is installed, we solve the problem using the following procedure, the subsequent figure

shows the setup in excel worksheet.

The table in excel is setup, to access the solver, click on Data Solver, as shown in the following figure.

Setup the solver using the following steps.

Step. 1. Set the objective cell D19

Step. 2. Add the three constraints a, b, c one by one, by clicking the add button.

Step. 3. Choose the Max radio button

Step. 4. Click on the options button and set the maximum time (i.e., 100) and iterations (i.e., 100) and click OK

as shown in the second figure.

Step. 5. Finally, click on the Solve button

Output:

Assignment: Using Excel solver, slove the following optimization problem.

	Getting Started with Mac OS X/Linux Command Terminal
	What is a Command Terminal?
	How do I start a Command Terminal?
	Commands for manipulating directories (cd, md)
	Getting directory listings (ls)
	Wildcards
	Copying and deleting files
	Viewing files on the screen
	Running programs from the command line
	File permissions
	A few tips
	Getting help

	Common useful Windows/Unix commands
	5.4. Line spacing: The line space is defined by three commands \baselinestretch, \setlength{\baselineskip}{value}, and \linespread{value} command. An example for the \baselinestretch is illustrated below.
	5.5. Line break: The following three commands are used for the line break.
	5.6. Page break: The \newpage command is used for a page break. Use the \newpage command and test the result.
	Further Information

