
CT3536
(Games Programming using

Unity3D)

Section 10

Pathfinding
C# Threads using “Thread Ninja”

Pathfinding in Unity using NavMesh
and NavMeshAgent

● See demo project on Canvas “NavMeshDemo”
● This is loosely based on:
https://www.red-gate.com/simple-talk/dotnet/c-programming/pathfinding-unity-c/

● Use Window>Navigation to open the Navigation tab.
● Here we’re creating a NavMesh attached to Floor

https://www.red-gate.com/simple-talk/dotnet/c-programming/pathfinding-unity-c/

Pathfinding in Unity using NavMesh
and NavMeshAgent

● In the ‘Bake’ settings you have various options
● The ‘Bake’ button creates the mesh
● This sparse navmesh has far fewer nodes than the grid-

based approach we take below => more efficient to use

The CleverCube Object

• Has a NavMeshAgent component added
• Has a new custom script added: ‘Pathfinder’

GameManager class

// attached to the Camera (a simple ‘follow cam’)

public class GameManager : MonoBehaviour {
void Start () {

Camera.main.transform.position = new Vector3(0f, 20f, 20f);
Camera.main.transform.LookAt(Vector3.zero);

}
}

Pathfinder Class
using UnityEngine.AI;

public class Pathfinder : MonoBehaviour {

private NavMeshAgent nav;

void Start () {
nav = GetComponent<NavMeshAgent>();
nav.destination = transform.position;

}

void Update () {
if (Input.GetMouseButtonDown(0)) {

Ray ray = Camera.main.ScreenPointToRay(Input.mousePosition);
RaycastHit hitInfo;
if (Physics.Raycast(ray, out hitInfo, 500f)) {

nav.destination = hitInfo.point;
}

}
}

}

A* Pathfinding
(The next few slides are from CT255)

A* Pathfinding
● The fundamental operation of the A* algorithm is to traverse a map

by exploring promising positions (nodes) beginning at a starting
location, with the goal of finding the best route to a target location.

● Each node has four attributes other than its position on the map:
§ g is the cost of getting from the starting node to this node
§ h is the estimated (heuristic) cost of getting from this node to the

target node. It is a best guess, since the algorithm doesn't (yet)
know the actual cost

§ f is the sum of g and h, and is the algorithm's best current estimate
as to the total cost of travelling from the starting location to the
target location via this node

§ parent is the identity of the node which connected to this node
along a potential solution path

A* Pathfinding
● The algorithm maintains two lists of nodes, the open list and the closed

list.
● The OPEN LIST consists of nodes to which the algorithm has already

found a route (i.e, one of its connected neighbours has been evaluated
or expanded) but which have not themselves, yet, been expanded.

● The CLOSED LIST consists of nodes that have been expanded and
which therefore should not be revisited.

● Progress is made by identifying the most promising node in the open
list (i.e., the one with the lowest f value) and expanding it by adding
each of its connected neighbours to the open list, unless they are
already closed.

● As nodes are expanded, they are moved to the closed list.
● As nodes are added to the open list, their f, g, h and parent values are

recorded.
● The g value of a node is, of course, equal to the g value of its parent

plus the cost of moving from the parent to the node itself.

https://qiao.github.io/PathFinding.js/visual/

(PathFinding.js.html)

Implementing A* Pathfinding..
● What data do we need? How might we structure the data?

● Start loc, target loc
● Nodes to map the game area (2D array of nodes)
● Walkable/unwalkable map (2Darray of booleans)
● Open list (as linked list of nodes?)
● Storage of final path (as a stack of nodes?)

● What are the initial conditions for this data?
● Each wall node is unwalkable -> ‘closed’
● All the rest are not open and not closed
● Calculate f,g,h for starting node and set to ‘open’

● What is the general algorithmic step?
● Find open node with lowest f (call it X)
● Look at its neighbours: any not closed and not open should become opened: calculate f,g,h and record

parent position (i.e. position of X)
● Close node X

● How will we know when we’re finished?
● If a neighbour is the target, we’re done searching
● If there are no open nodes, the maze is unsolvable

● How will we use what we found in order to have an AI-controlled ‘badguy’ chase after a
‘player’?

● Push target onto stack,
● Push its parent onto stack
● Push its parent onto stack
● Etc.. Until we have pushed start node

Pathfinding in Demon Pit (1/2)
● Since the DemonPit arena periodically reconfigures

(floors drop and rise back, walls rise and drop back),
pathfinding can’t be performed on a static mesh

● Whenever walls/floor have finished moving, a set of
raycasts (at 1x1m intervals) is used to re-determine
the walkability of each grid cell. This is carried out by
the AStarMesh script, attached to the arena object

● The AI-controlled monsters have the AStarAgent
script attached to them, which share use of the single
AStarMesh in order to calculate paths

Pathfinding in Demon Pit (2/2)
● A* pathfinding is performed by the AStarAgent in a thread, using the free

asset “Thread Ninja” from the asset store, which simplifies C# threads
● The AStarMesh is locked while an agent is using it, so other agents will

potentially be delayed waiting for it, for a few frames
● In another game I’m working on (with much larger maps than Demon

Pit), I have implemented a pool of AStarMeshes, each having their own
set of Nodes. This allows multiple agents to simultaneously calculate
paths

Pathfinding in Demon Pit
● See separate document for code:

● AStarMesh.cs
● AStarAgent.cs
● Relevant code from Monster.cs

● NB this is relatively advanced so don’t be
concerned if you can’t follow it. It’s definitely not
examinable material for this module, but
hopefully it’s a useful example nevertheless.

