
Name: AndrewHayes
Student ID: 21321503 ct404 Name: Cian Elberse

Student ID: 21406512

Lab Assignment 3: Faces

1 Execution Steps
To run the code, we first installed the necessary package image:

1 pkg install -forge image

Listing 1: Installation of the image package

We also replaced the test image used in Step 10 with a test image of our own as we did not have access to the file:

165 % Path to a new test image that is not part of the training dataset

166 new_test_img_path = 'C:\Users\waqarsqureshi\OneDrive - National University of Ireland, Galway\Waqar -

NUIG\NUIG - Teaching\2024-2025\CT - Digital Image Processing\Lecture\Lab-tesk-03\face.jpg';↪→

167 new_test_img = imread(new_test_img_path);

Listing 2: Original filepath used for new_test_img_path

165 new_test_img_path = '../data/michaeld.jpg';

Listing 3: Replacement filepath used for new_test_img_path

Figure 1: Replacement test image used (Michael D. Higgins)

Figure 2: Replacement test image and the best match to it found

1

2 Effect of Training Images on Accuracy
With the original number of training images per person (9), the testing accuracy achieved was 90%.

Figure 3: Testing accuracy achieved with original number of training images per person (9)

To reduce the number of training images used per person, we replaced the following line of code:

16 train_images_per_subject = 9; % Number of images per subject for training

Listing 4: Original value of train_images_per_subject

16 train_images_per_subject = 5; % Number of images per subject for training

Listing 5: Replacement value of train_images_per_subject

With the reduced number of training images per person (5), the testing accuracy achieved was 85%.

Figure 4: Testing accuracy achieved with reduced number of training images per person (5)

The reason why the testing accuracy decreased is likely due to reduced feature representation & dimensional coverage: fewer
training images result in less variability, making it more difficult for the program to capture a comprehensive representation of
each face. The eigenfaces algorithm relies on variance across the training images, and reducing the number of images will reduce
the variance captured in the principal components, leading to reduced power to discriminate between different faces. With
fewer examples, there is also a risk of overfitting wherein the mode may fit to the training data too closely and fail to generalise to
unseen testing images.

3 Effect of the Number of Eigenfaces
We experimentedwith different numbers of eigenfaces including 40, 200, & 300 by assigning different values to K in the following
line of code:

16 K = 200; % Number of eigenvectors (Eigenfaces) to use

Listing 6: Assigning the value of K

2

Figure 5: Reconstructed image achieved with K = 40

Figure 6: Testing accuracy achieved with K = 40

Figure 7: Reconstructed image achieved with K = 200

Figure 8: Testing accuracy achieved with K = 200

3

Figure 9: Reconstructed image achieved with K = 300

Figure 10: Testing accuracy achieved with K = 300

We observed that the quality of the reconstructed images appeared to scale with the number of eigenfaces used: the reconstructed
image achieved with K = 40was barely recognisable as human face, the reconstructed image achieved with K = 200was far better
but had quite a lot of blur & noise, and the reconstructed image achieved with K = 300was better again with reduced blur &
noise. Interestingly, despite the marked improvement in the reconstructed images, the testing accuracy was not greatly affected:
K = 40 achieved a testing accuracy of 87.50%, K = 200 achieved a slightly improved testing accuracy of 90%, and K = 300 failed
to improve on this and also achieved a testing accuracy of 90%.

The low testing accuracy with K = 40 can be explained by there being insufficient eigenfaces to capture the all the relevant facial
features. We can see that the features were better-captured with K = 200, and we observed that the improvement plateaued here
as K = 300 failed to improve the testing accuracy. This indicates that K = 200was sufficient to capture the relevant features.

4 Adding Your Friend’s Faces
To add the images of the 5 new people to the dataset, we took 10 images of each person and added them to directories in the
data directory named s41 through s45. Because each image we had was either JPEG or PNG and the program relies on files
being named %d.pgm where %d is some integer, we had to convert and re-name all the files for each person. As one of us was
using a Linux system, we achieved this using a one-line shell script on the command line using a program called ImageMagick:

1 count=1; for file in *; do magick "$file" "$count.pgm"; ((count++)); rm "$file"; done

Listing 7: Script used to rename & convert image files

We then realised that the images had to be re-sized to work with the program as well, so we ran the following script to resize the
images:

1 for file in *; do magick $file -resize 92x112! $file; done

Listing 8: Script used to rename & convert image files

We then edited the code to reflect the new number of subjects:

15 num_subjects = 45; % Number of subjects in the dataset

Listing 9: Updated number of subjects

4

Figure 11: Best match found for unseen friend picture

The model recognised the new photograph of our friend very well, correctly matching the unseen test image with a training
image of the same individual!

5

	Execution Steps
	Effect of Training Images on Accuracy
	Effect of the Number of Eigenfaces
	Adding Your Friend's Faces

