CT2108

Internet Transport Protocols
TCP and UDP

Content

» Transport layer protocols

- UDP
— UDP segment header
« TCP

— Introduction to TCP

— Service model

— TCP Protocol

— The TCP Segment Header

— TCP Connection Establishment

— TCP Connection Release

— TCP Connection Management Modeling
— TCP Transmission Policy

— TCP Congestion Control

— TCP Timer Management

The big picture

|Pv4 Applications |Pv6 Applications
AF_INET AF_INET6
sockaddr_in{} sockaddr_in6{}
m-routed ping tracerouts PP app app 0P VACHOUAe ping

o | - 32 bit 128 bit S B Y

address address

network

datadink

* Internet has two main protocols at the transport layer
— Connectionless protocol: UDP (User Datagram Protocol)
— Connection oriented protocol: TCP (Transport Control Protocol)

ICMP — Internet Control and Messaging Protocol

IGMP — Internet Group Management Protocol — used for multicast addressing

User Datagram Protocol

» Simple transport layer protocol described in RFC 768, in
essence just an IP datagram with a short header

» Provides a way to send encapsulated raw IP datagrams
without having to establish a connection

— The application writes a datagram to a UDP socket, which is
encapsulated as either IPv4 or IPv6 datagram that is sent to the
destination; there is no guarantee that UDP datagram ever reaches
its final destination

— Many client-server application that have one request — one
response use UDP

» Each UDP datagram has a length; if a UDP datagram
reaches its final destination correctly, then the length of the
datagram is passed onto the receiving application

« UDP provides a connectionless service as there is no need
for a long term relation-ship between a client and the server

For example, a UDP client can create a socket and send a datagram to a given server
and then immediately send another datagram on the same socket to a different
server; similarly, UDP server can receive multiple datagrams from different sources
on the same single UDP socket

UDP header

32 Bits

1 ! 1 ! ! 1 1 | 1 1 Il ! | 1 1 | 1 | ! ! 1 1 1 | 1 | ! | 1 ! |

Source port Destination port

UDP length UDP checksum

UDP segment consists of 8 bytes header followed by the data

The source port and destination port identify the end points within the
source and destination machines; without the port fields, the transport
would not know what to do with the packet; with them, it delivers the
packets correctly to the application attached to the destination port

The UDP length field includes the 8-byte header and the data

The UDP checksum includes the 1 complement sum of the UDP data
and header. It is optional, if not computed it should be stored as all
bits “0”.

UDP

Does not:
— Flow control
— Error control
— Retransmission upon receipt of a bad segment
Provides an interface to the IP protocol, with the added feature of
demultiplexing multiple processes using the ports
One area where UDP is useful is client server situations where the
client sends a short request to the server and expects a short replay
— If the request or reply is lost, the client can timeout and try again

DNS (Domain Name System) is an application that uses UDP

— shortly, the DNS is used to lookup the IP address of some host name; DNS
sends and UDP packet containing the host name to a DNS server, the server
replies with an UDP packet containing the host IP address. No setup is needed in
advance and no release of a connection is required. Just two messages go over
the network)

Widely used in client server RPC
Widely used in real time multimedia applications

Transmission Control Protocol

Provides a reliable end to end byte stream over unreliable
internetwork (different parts may have different topologies,
bandwidths, delays, packet sizes, etc...)

Defined in RFC793, with some clarifications and bug fixes in
RFC1122 and extensions in RFC1323

Each machine supporting TCP has a TCP transport entity (user
process or part of the kernel) that manages TCP streams and interfaces
to the IP layer

— Accepts user data streams from local processes, breaks them into pieces (not
larger than 64KB) and sends each piece as a separate I[P datagram

— At the receiving end, the IP datagrams that contains TCP packets, are delivered
to the TCP transport entity, which reconstructs the original byte stream

— The IP layer gives no guarantee that the datagrams will be delivered properly, so
it is up to TCP to time out and retransmit them as the need arises.

— Datagrams that arrive, may be in the wrong order; it is up to TCP to reassemble
them into messages in the proper sequence

TCP Service Model (1)

» Provides connections between clients and servers, both the
client and the server create end points, called sockets
— Each socket has a number (address) consisting of the IP address of

the host and a 16 bits number, local to that host, called port (TCP
name for TSAP)

— To obtain a TCP service, a connection has to be explicitly
established between the two end points

— A socket may be used for multiple connections at the same time

— Two or more connections can terminate in the same socket;
connections are identified by socket identifiers at both ends
(socketl, socket2)

 Provides reliability

— When TCP sends data to the other end it requires
acknowledgement in return; if ACK is not received, the TCP entity
retransmits automatically the data and waits a longer amount of
time

TCP Service Model (2)

TCP contains algorithms to estimate round-trip time between a client
and a server to know dynamically how long to wait for an
acknowledgement

TCP provides flow control — it tells exactly to its peer how many bytes
of data is willing to accept from its peer.

Port numbers below 1024 are called well known ports and are
reserved for standard services e.g.

— Port 21 used by FTP (File Transfer Protocol)

— Port 22 used by SSH (Secure Remote Login)

— Port 23 used by Telnet (Remote Login — insecure)

— Port 25 used by SMTP (E-mail transport between servers)

— Port 69 used by TFTP (Trivial File Transfer Protocol)

— Port 80 used by HTTP (World Wide Web - insecure)

— Port 443 used by TLS (Transport Layer Security — secure WWW)

TCP Service Model (3)

» All TCP connections are full duplex and point to point (it
doesn’ t support multicasting or broadcasting)

» A TCP connection is a byte stream not a message stream
(message boundaries are not preserved)

— 1.e. if a process is doing four writes of 512 bytes to a TCP stream,
data may be delivered at the other end as four 512 bytes reads, two
1024 bytes reads or one 2048 read

\/

A C D A B CD

IP header TCP header

(a) (b)

(a) Four 512-byte segments sent as separate [P datagrams.

(b) The 2048 bytes of data delivered to the application in a single READ
CALL.

10

TCP Service Model (4)

When an application sends data to TCP, TCP entity may
send it immediately or buffer it (in order to collect a larger
amount of data to send at once)

— Sometimes the application really wants the data to be sent
immediately (i.e. after a command line has been finished); to force
the data out, applications can use the PUSH flag (which tells TCP
not to delay transmission)

Urgent data — is a way of sending some urgent data from
one application to another over TCP

— i.e. when an interactive user hits DEL or CTRL-C key to break-off
the remote computation; the sending app puts some control info in
the TCP stream along with the URGENT flag; this causes the TCP
to stop accumulating data and send everything it has for that
connection immediately; when the urgent data is received at the
destination, the receiving application is interrupted (by sending a
break signal in Unix), so it can read the data stream to find the
urgent data

11

TCP Protocol Overview (1)

Each byte on a TCP connection has its own 32-bit sequence
number, used for various purposes (re-arrangement of out of
sequence segments; identification of duplicate segments,
etc...)

Sending and receiving TCP entities exchange data in the
form of segments. A segment consists of a fixed 20-byte
fixed header (plus an optional part) followed by zero or
more data bytes

The TCP software decide how big segments should be; it
can accumulate data from several writes to one segment or
split data from one write over multiple segments.

— Two limits restrict the segment size:

» Each segment including the TCP header must fit the 65535-byte IP payload

» Each network has a maximum transfer unit (M7U) and each segment must
fit in the MTU (in practice the MTU is a few thousand bytes and therefore
sets the upper bound on the segment size)

12

TCP protocol Overview (2)

» The basic protocol is the sliding window protocol
— When a sender transmits a segment, it also starts a timer

— When the segment arrives at the destination, the receiving TCP
sends back a segment (with data, if any data is to be carried)
bearing an acknowledgement number equal to the next sequence
number it expects to receive;

— If sender’ s timer goes off, before an acknowledgement has been
received, the segment is sent again

* Problems with the TCP protocol

— Segments can be fragmented on the way; parts of the segment can
arrive, but some could get lost

— Segments can be delayed, and duplicates can arrive at the receiving

end

— Segments may hit a congested or broken network along its path

13

TCP segment header

32 Bits

1 1 I 1 1 1 1 1 1 1 l 1 1 1 1 1

Source port Destination port
Sequence number
Acknowledgement number
TCP U/ AIP|R|S|F
header R|C|(S|S|Y|!I Window size
length G|K|/H|T|N[N
Urgent pointer

=

Options (0 or more 32-bit words)

Data (optional)

1 T

Options field was designated to provide extra facilities not covered by the regular
header; the most important one is the one that allows each host to specify the
maximum TCP payload is willing to accept; all Internet hosts are required to
accept at least 536 +20 TCP segments

Source and destination ports identify the local endpoints for the connection; each host may decide for itself how to allocate
the its own ports starting at 1024; a port number plus its host IP form a 48 bits unique TSAP

Sequence Number is associated with every byte that is sent. It is used for a number of different purposes: it is used to re-
arrange the data at the receiving end, before passing it to the application; it is used to detect duplicate data and
Acknowledgement number fields specifies the next byte expected

TCP header length tells how many 32-bit words are contained in the TCP header; this is required because the Options field
is of variable length; technically it indicates the start of data within the segment, measured in 32 bits words.

URG flag is set to 1 if urgent pointer is in use; the urgent pointer is used to indicate a byte offset from the current sequence
number at which urgent data is to be found,; this facilitates interrupt messages without getting the TCP itself involved in

car%ing such message 't}g).es) o ,)
ACK flag is set to 1 to indicate that the acknowledgement number is valid; if set to 0, then the packet doesn' t contain an

acknowledgement, so the appropriate field is ignored (the Acknowledgement number field is ignored)

PSH flag indicates pushed data, so the receiver is requested to deliver the received data to the application upon arrival,
without buffering it to form a full buffer has been received

RST flag is used to restart a connection that has become confused due to a host crash or any other reasons; it is also used to
reject an invalid segment or refuse an attempt to open a connection

SYN flag is used to establish connections; the connection requests have SYN = 1 and ACK = 0 to indicate that the
piggyback acknowledgement field is not in use; the connection response does bear an acknowledgment, so it has SYN =1
and ACK = 1; In essence SYN bit is used to denote a CONNECTION REQUEST and a CONNECTION ACCEPTED with
ACK field used to distinguish between those two possibilities

Flow control in TCP is done using variable size slidinf window; the Window size field tells how many bytes may be sent
starting at the byte acknowledged; a window size field with value 0 is legal and means that bytes up to (Acknowledgement
number -1) have been received, and no more accepted; to resume receiving data, the receiver releases another segment with
a window size different than 0 and same acknowledge number

Checksum is provided for extreme reliability. It checksums the header, the data and the conceptual pseudo-header shown
on the next slide; when performing the computation, the data field is padded with an additional zero byte if its length is an
odd number; the checksum is simply the sum in 1’ s complement; as consequence, when the receiver performs the
calculation on the entire segment, including the checksum field, the result should be 0

Options field was designated to provide extra facilities not covered by the regular header; the most important one is the one
that allows each host to specify the maximum TCP payload is willing to accept; all Internet hosts are required to accept at
least 536 +20 TCP segments

14

TCP pseudoheader

32 Bits

| [N N N S — l | S IS S S S | | N IR N S S | l L1 1 1 1 1

Source address

Destination address

00000000 Protocol = 6 TCP segment length

» The pseudoheader contains the 32 bits IP addresses of the
source and the destination machines, the protocol number (6
for TCP) and the byte count for the TCP segment (including
the header)

* Including this pseudoheader in the TCP checksum
calculation helps detect miss-delivered packets, but doing so
violates the protocol hierarchy (since IP addresses belong to
the network layer, not to the TCP layer)

15

TCP extra options

For lines with high bandwidth and high delay, the 64KB widow size is
often a problem

— 1.e.,ona T3 line (44.736 Mb/s) it takes only about 12ms to output a full 64KB
window. If the round-trip propagation delay is 50ms (typical for a
transcontinental fiber), then the sender will be idle % of the time, waiting for
acknowledgements

— In RFC 1323 a window scale option was proposed, allowing the sender and
receiver to negotiate a window scale factor. This number allows both sides to
shift the window size up to 14 bits to the left, thus allowing for window size up
to 23° bytes; most TCP implementations support this option

The use of “selective repeat ”instead of “go and back n” protocol
described in RFC 1106

— If the receiver gets a bad segment and then a large number of good ones, the
normal TCP protocol eventually time out and retransmit all the unacknowledged
segments, including the ones that were received correctly

— RFC 1106 introduces NACs to allow the receiver to ask for a specific segment
(or segments). After it gets those, it can acknowledge all the buffered data, thus
reducing the amount of data retransmitted.

16

TCP connection establishment

Host 1 Host 2 Host 1 Host 2
——SYN(sEa. —SNsEQ - y
T Ny
s‘(ti\,sigzﬂ’
—
E AK:)“—“ . p\CK=*tl/
- =Y - =Y —
i YN (SEQ=Y —— | gmSEe=E—
— - -
-— S\\
!)’N(SEN
Sx
S %
—‘(‘EO =X+1 ACK /
TR =y+y)

(a) (b)

It uses the three-way handshake protocol
a) Normal case

b) Call collision case, when two hosts are trying to establish a connection
between same two sockets

— The result is that just one connection will be established, not two, because the
connections are identified by their endpoints.

17

TCP connection establishment ...

client server

socket, bind, listen
(pasive connection)

accept (bocks)

socket

-

=" L
I
|

L
connect (bloc He

(active —>,L3 :
ction) = 7 -
:/’WAQM
connect returns —
T—a

SEQ= x4+
4 FACKsy+ — - accept returns

// [
read (blocks)

—

The initial sequence number on a connection is not 0 (to avoid confusion when a
host crashes). A clock-based scheme is used, with a clock tick every 4 us. For
additional safety, when a host crashes, it may not reboot for the maximum packet
lifetime (120s) to make sure that no packets from previous connections are still
roaming around the Internet, somewhere.

[1] the server must be prepared to accept an incoming connection; this is normally done by
calling socket, bind and listen and it is called passive open

[2] the client, after the creation of a new socket, issues an active open by calling connect.
This causes the client TCP to send a SYN segment (which stands for synchronize) to tell the
server the client’ s initial sequence number for the data that the client will send on the
connection; normally there is no data sent with SYN: it just contains an IP header, a TCP
header and possible TCP options

[3] the server must acknowledge the client’ s SYN and the server must also send its own
SYN containing the initial sequence number for the data that the server will send on the
connection. The server sends SYN and the ACK of the client’ s SYN in a single segment
[4]the client must acknowledge the server’ s SYN

The initial sequence number on a connection is not 0 (to avoid confusion when a host
crashes). A clock-based scheme is used, with a clock tick every 4 us. For additional safety,
when a host crashes, it may not reboot for the maximum packet life time (120s) to make
sure that no packets from previous connections are still roaming around the Internet,
somewhere.

TCP connection termination

The connection is full duplex, each simple connection is released
independently

To release a connection, either party can send a TCP segment with
FIN bit set, which means that there is no more data to transmit

When FIN is acknowledged, that direction is shut down for new data;
however, data may continue to flow indefinitely in the other direction

When both directions have been shutdown, the connection is released

Normally, four TCP segments are used to shutdown the connection
(one FIN and one ACK for each direction)

To avoid complications when segments are lost, timers are used; if the
ACK for a FIN packet is not arriving in two packet lifetimes, the
sender of the FIN releases the connection; the other side will
eventually realize that nobody seem to listen to it anymore and times
out as well

19

client
(active close)

TCP connection termination

server
(pasive close)

close-f=—"_ r=-

| |
== read returns 0
H
|

L —
— 3
T FINN—— 131 close
L —
4 N

[4] the TCP on the system that receives the final FIN (the end that did
the active close) acknowledges the FIN

[1] one application calls close first, and we say that this end performs the active close. This
end’ s TCP sends a FIN segment, which means it is finished sending data

[1] one application calls close first, and we say that this end performs the active close. This
end’ s TCP sends a FIN segment, which means it is finished sending data

[3] sometime latter, the application that received the end-of-file will close the socket; this
will cause its TCP to send a FIN packet

[4] the TCP on the system that receives the final FIN (the end that did the active close)
acknowledges the FIN

TCP state transition diagram
State Description
CLOSED No connection is active or pending
LISTEN The server is waiting for an incoming call
SYN RCVD A connection request has arrived; wait for ACK
SYN SENT The application has started to open a connection
ESTABLISHED | The normal data transfer state
FIN WAIT 1 The application has said it is finished
FIN WAIT 2 The other side has agreed to release
TIMED WAIT Wait for all packets to die off
CLOSING Both sides have tried to close simultaneously
CLOSE WAIT The other side has initiated a release
LAST ACK Wait for all packets to die off

The steps involved in establishing and releasing connections can be described/modeled
using a Finite State Machine model. TCP can be represented as a FSM with 11 states.

Each connection starts in a CLOSED state. It leaves that state when it does either a passive
open (LISTEN) or an active open (CONNECT). If the other side does the opposite one, a
connection is established, and the state becomes ESTABLISHED. Connection release can
be initiated by either side. When it is complete, the state returns to CLOSED

21

(Start)

CONNECT/SYN (Step 1 of the 3-way handshake)

D
CLOSE/~
CLOSE/~

CLOSED

LISTEN/- }

e SYNISYN + ACK
» The heavy solid line — (Step 2 /5 the S-way handshare) | LISTEN
client ‘
. ST/~ SEND/SYN
» The heavy dashed line SYN | ~ SYN
— server Acvo SYN/SYN + ACK ftaneous open) L—ouT

* The light lines -

unusual events (Data transfer state)

SYN + ACK/ACK

* Each transition is) ~| ESTABLISHED (Step 3 of the 3-way handshake)
labeled by Event causing cLoserin :

. . 1

it/Action CLOSE/EIN | FINJACK

((Active close) (Passive \close)
___ A A

A

e FINJACK | T

WAT1 [CLOSING E Ot |
ACK"’ ACKi- | ! CLOSE/FIN!

!]
! t :
FIN + ACK/ACK — ! !
) (&)
| Al i
WAIT 2 FINACK WAIT_ | | : i
S NN S S [;

(Timeout/) i

H

ACK/- i

CLOSED |a=mmmmmmnmmmmmmmmnes
(Go back to sta'n)

TCP connection management finite state machine. The heavy solid line is the normal path
for a client. The heavy dashed line is the normal path for a server. The light lines are
unusual events. Each transition is labeled by the event causing it and the action resulting
from it, separated by a slash.

The event can either be a user-initiated system call (CONNECT, LISTEN, SEND or
CLOSE), a segment arrival (SYN, FYN, ACK or RST) or in one case a timeout. The action

“ ”

is the sending of a control segment (SYN, FIN or RST) or nothing, indicated by -

22

TCP transmission policy

Sender
Application

Receiver Receivers

buffer
:?Ie: aZk —— 0 4K
—_ Empty
I o -
ey
- e 2K
— {AcK = 2048 WIN = 2048 —]
Application
does a2k —=| _
write {2 sea- =2048] _
T ™ Full
Sender is Application
blocked oy reads 2K
_ 2K
Sender may -
send up to 2K —=
17K T

* Window management in TCP, starting with the client
having a 4096 bytes buffer

TCP transmission policy

When window size is 0 the sender can’ t send segments with
two exceptions
— Urgent data may be sent (i.e. to allow the user to kill the process
running on the remote machine)
— The sender may send 1 byte segment to make the receiver re-
announce the next byte expected and window size
Senders are not required to send data as soon as they get it
from the application layer;
— 1.e. when the first 2KB of data came in from the application, TCP
may have decided to buffer it until the next 2KB of data would

have arrived, and send at once a 4KB segment (knowing that the
receiver can accept 4KB buffer)

— This leaves space for improvements

Receivers are not required to send acknowledgements as
soon as possible

24

TCP performance issues (1)

« Consider a telnet session to an interactive editor that reacts
to every keystroke, we will have the worst-case scenario:
— when a character arrives at the sending TCP entity, TCP creates a

21 bytes segment, which is given to IP to be sent as a 41 bytes
datagram;
— at the receiving side, TCP immediately sends a 40 bytes

acknowledgement (20 bytes TCP segment headers and 20 bytes IP
headers)

— Latter, at the receiving side, when the editor (application) has read
the character, TCP sends a window update, moving the window 1
byte to the right; this packet is also 40 bytes

— Finally, when the editor has interpreted the character, it will echo it
as a 41-byte character

» We will have 162 bytes of bandwidth are used and four
segments are sent for each character typed.

25

TCP optimizations — delayed ACK

* One solution that many TCP implementation use to
optimize this situation is to delay acknowledgements
and window updates for 500ms

— The idea is the hope to acquire some data that will be
bundled in the ACK or window update segment

* i.e. in the editor case, assuming that the editor sends the echo
within 500 ms from the character read, the window update and
the actual byte of data will be sent back as a 41 bytes packet

— This solution deals with the problem at the receiver end,
it doesn’ t solve the inefficiency at the sending end

26

TCP optimizations — Nagle’ s algorithm

* Operation:

— When data come into the sender TCP one byte at a time, just send the first byte
as a single TCP segment and buffer all the subsequent ones until the first byte is
acknowledged

— Then send all the buffered characters in one TCP segment and start buffering
again until they are all acknowledged

— The algorithm additionally allows a new segment to be sent if enough data has
accumulated to fill half the window or a new maximum segment
» If the user is typing quickly and the network is slow, then a substantial
number of characters may go in each segment, greatly reducing the
usage of the bandwidth
» Nagle’ s algorithm is widely used in TCP implementations; there are

times when it is better to disable it:

— 1.e. when an X-Window is run over internet, mouse movements have to be sent
to remote computer; gathering them and send them in bursts, make the cursor
move erratically at the other end.

27

TCP performance issues (2)
3

[Receiver's buffer is full

|

Application reads 1 byte

[J«=—— Room for one more byte |

Window update segment sent
New byte arrives
1 Byte l

Receiver's buffer is full

/

« Silly window syndrome (Clark, 1982)

— Data is passed to the sending TCP entity in large blocks
— Data is read at the receiving side in small chucks (1 byte)

TCP optimizations — Clark’ s solution

* Clark’ s solution:
— Prevent the receiver from sending a window update for 1 byte

— Instead have the receiver to advertise a decent amount of space
available; specifically, the receiver should not send a window
update unless it has space to handle the maximum segment size
(that has been advertised when the connection was established) or
its receiving buffer its half empty, which ever is smaller

— Furthermore, the sender can help by not sending small segments;
instead it should wait until it has accumulated enough space in the
window to send a full segment or at least one containing half of the
receiver s buffer size (which can be estimated from the pattern of
window updates it has received in the past)

29

Nagle’ s algorithm vs. Clark’ s solution

« Clark’ s solution to the silly window syndrome and Nagle’ s
algorithm are complementary

— Nagle was trying to solve the problem caused by the sending
application deliver data to TCP one byte at a time

— Clark was trying to solve the problem caused by the receiving
application reading data from TCP one byte at a time

— Both solutions are valid and can work together. The goal is for the
sender not to send small segments and the receiver not to ask for

them
* The receiving TCP can also improve performance by
blocking a READ request from the application until it has a
large chunk of data to provide:
— However, this can increase the response time.

— But, for non-interactive applications (e.g. file transfer) efficiency
may outweigh the response time to individual requests.

30

TCP congestion control

» TCP deals with congestion by dynamically
manipulating the window size

« First step in managing the congestion is to detect it

— A timeout caused by a lost packet can be caused by

* Noise on the transmission line (not really an issue for modern
infrastructure)

* Packet discard at a congested router
— Most transmission timeouts are due congestion
* All the Internet TCP algorithms assume that

timeouts are due to congestion and monitor timeouts
to detect congestion

31

TCP congestion control

o
_/ L\ Transmission
N\

) rate adjustment

Transmissicn
network

Small-capacity R Large-capscity ':" ——

receiver o oo recener._|
o —
—
8) 1)

Two types of problems can occur:
— Network capacity
— Receiver capacity
When the load offered to a network is more than it can handle, congestion builds up
— (a) A fast network feeding a low-capacity receiver.
— (b) A slow network feeding a high-capacity receiver.

32

TCP congestion control

TCP deals with network capacity congestion and receiver
capacity congestion separately; the sender maintains two
windows

— The window that the receiver has guaranteed

— The congestion window
Both of the windows reflect the number of bytes that the
sender may transmit; the number that can be transmitted is
the minimum of the two windows

— If the receiver says “send 8K” but the sender knows that more than
4K will congest the network, it sends 4K

— On the other hand, if the receiver says “send 8K” and the sender
knows that the network can handle 32K, then it sends the full 8K

— Therefore, the effective window is the minimum between what the
sender thinks is all right and the receiver thinks is all right

33

Slow start algorithm (Jacobson, 1988)

When a connection is established, the sender initializes the congestion
window to the size of the maximum segment in use; it then sends a
maximum segment

— If the segment is acknowledged in time, the sender doubles the size of the
congestion window (making it twice the size of a segment) and sends two
segments, that have to be acknowledged separately

— As each of those segments is acknowledged in time, the size of the congestion
window is increased by one maximum segment size (in effect, each burst
successfully acknowledged doubles the congestion window)

The congestion window keeps growing until either a timeout occurs,
or the receivers window is reached

The idea is that if bursts of size, say 1024, 2048, 4096 bytes work
fine, but burst of 8192 bytes timeouts, congestion window remains at
4096 to avoid congestion; as long as the congestion window remains
at 4096, no larger bursts than that will be sent, no matter how much
space the receiver grants

34

Slow start algorithm (Jacobson, 1988)

e

2
3

» Max segment size is 1024 bytes

ol * Initially the threshold was 64KB,
2 m: but a timeout occurred, and the
3 threshold is set to 32KB and the
§ o
o congestion window to 1024 at
g, i transmission time 0

oL 1 ! - L L
o 2 4 6 8 10 12 14 1% 18 20 2 24
Transmission rumbee

The internet congestion algorithm uses a third parameter, the threshold, initially
64K, in addition to the receiver and congestion windows.

— When a timeout occurs, the threshold is set to half of the current congestion window, and
the congestion window is reset to one maximum segment size.

Each burst successfully acknowledged doubles the congestion window.

— It grows exponentially until the threshold value is reached.
— It then grows linearly until the receivers window value is reached.

35

TCP timer management

e TCP uses multiple timers to do its work

— The most important is the retransmission timer
* When a segment is sent, a retransmission timer is started

* If the segment is acknowledged before this timer expires, the
timer is stopped

* If the timer goes off before the segment is acknowledged, then
the segment gets retransmitted (and the timer restarted)

* The big question is how long this timer interval should be?
— Keepalive timer is designed to check for connection
integrity
* When goes off (because a long time of inactivity), causing one
side to check if the other side is still there

36

TCP timer management

» TCP uses multiple timers to do its work

— Persistence timer is designed to prevent deadlock
* Receiver sends a packet with window size 0

« Latter, it sends another packet with larger window size, letting
the sender know that it can send data, but this segment gets lost

* Both the receiver and transmitter are waiting for the other
* Solution: persistence timer on the sender end, that goes off and
produces a probe packet to go to the receiver and make it to
advertise again its window
— TIMED WAIT state timer used when a connection is
closed; it runs for twice the maximum packet lifetime to
make sure that when a connection is closed, all packets
belonging to this connection have died off.

37

TCP Retransmission Timer

0.3 0.3 — T T2

)

H

i

|

0.2 0.2 — !
& =

=1 35 i

< B !

8 2 .
a o

0.1 0.1 H

|

i

i

/\ |

0 1 1 1 | 0 L 1 1 HE|
0 10 20 30 40 50 0 10 20 30 40 50
Round-trip time (msec) Round-trip time (msec)
(a) (b)

(a) Probability density of ACK arrival times in the data link layer.

— Expected delay is highly predictable, so the timer can be set to go off slightly after the
acknowledgement is expected; since ACK are rarely delayed in data link layer, the
absence of it means that it has been lost

(b) Probability density of ACK arrival times for TCP.

— Determining the round-trip time to the destination is tricky; even if RRT is known,
determining the timeout interval is difficult
» Too small, unnecessary transmissions will occur
* Too large, performance will be affected

38

TCP Retransmission Timer

TCP should use a highly dynamic algorithm that
constantly adjusts the timeout interval, based on
continuous measurement of network performance

Jacobson timer management algorithm

— For each connection, TCP maintains a variable RTT that is the best
current estimate of the round-trip time to destination

* When a segment is sent, a timer is started, both to see how long an ACK
takes and to trigger a retransmission

» Ifthe ACK gets back before the timer expires, TCP measures how long the
ACK took, say M. It then updates the RTT according to the formula:

* RTT =aRTT + (1- @)M, where a is the smoothing factor, typically 7/8

39

TCP Retransmission Timer

» Jacobson timer management algorithm

— Even a good value for RTT, choosing the retransmission timeout is not a trivial
matter
» Normally TCP uses BRTT, but the trick is to choose B (in initial intllplementations B
was chosen 2, but experience showed that constant value was not flexible
« Jacobson proposed to make the proportional with the standard deviation of the
acknowledgment arrival time
~ His algorithm required to keep track of another variable D (deviation)

—~ Whenever an ACK comes in, the difference between the expected and observed value
|[RTT-M]| is computed ; a smoothed value of this is maintained by the formula:

» D=6D+(1- &) |RTT-D|
* Most TCP implementations use this algorithm to set the time out to:
~ Timeout=RTT +4 *D
» 4 is chosen arbitrary, but it has the advantage that multiplication by 4 can be done

with a shift; it also has the advantage that minimizes the retransmissions because
very few packets arrive in more than four standard deviations late

* One problem: what to do when a segment times out and is
sent again?
— Incoming ACK refers to the first or second sent segment
— Solution (Karn): don’t update RTT for retransmitted segments

40

