
Design Patterns: Structural 1

�
Design Patterns: Structural

Structural Design Patterns:
Structural patterns help organise different classes and objects to form
larger, more efficient systems.

These patterns are concerned with how classes and objects are
composed to form larger structures while keeping the system flexible
and efficient.

The key focus is on simplifying relationships and improving code
flexibility by changing how objects interact.

Design Patterns: Structural 2

Core Concepts of Structural Patterns:

Structural patterns promote composition (combining multiple
objects) rather than extending classes through inheritance. This
allows for more flexible and reusable systems.

They promote reusing existing functionality through object
composition and interfaces, reducing redundant code and improving
system maintainability.

What is the Adapter Pattern?
The Adapter Pattern is a structural design pattern that allows
objects with incompatible interfaces to collaborate.

The pattern acts as a bridge between two incompatible interfaces,
helping one object adapt to the interface expected by another object.

It is commonly used when integrating legacy code or when you need
to use a class that doesn't match the required interface.

Design Patterns: Structural 3

Why do we need the Adapter Pattern?

When you have an existing class that needs to interact with new
classes, but their interfaces don't match.

When integrating third-party libraries or frameworks with
incompatible APIs.

Allows existing, non-modifiable classes to fit into a new design
without rewriting or heavily modifying existing code.

Adapter
Adapter is a structural design pattern that allows
objects with incompatible interfaces to
collaborate.

https://refactoring.guru/design-patterns/adapt
er

The Adapter Pattern in Java | Baeldung
Understand the Adapter Design Pattern with a
practical Java implementation

https://www.baeldung.com/java-adapter-patte
rn

Basic Implementation of the Adapter Pattern

https://refactoring.guru/design-patterns/adapter
https://www.baeldung.com/java-adapter-pattern

Design Patterns: Structural 4

Hereʼs a simple example where we adapt an AdvancedMediaPlayer
(which supports specific formats like VLC and MP4 to work with a
MediaPlayer interface that supports generic media types.

Example Media Player Adapter

// Target interface

interface MediaPlayer {

 void play(String audioType, String fileName);

}

// Adaptee interface with more specific functionali

ty

interface AdvancedMediaPlayer {

 void playVlc(String fileName);

 void playMp4(String fileName);

}

// Concrete implementation of AdvancedMediaPlayer f

or VLC

class VlcPlayer implements AdvancedMediaPlayer {

 @Override

 public void playVlc(String fileName) {

 System.out.println("Playing VLC file. Name:

" + fileName);

 }

 @Override

 public void playMp4(String fileName) {

 // Do nothing

 }

}

// Concrete implementation of AdvancedMediaPlayer f

or MP4

class Mp4Player implements AdvancedMediaPlayer {

 @Override

 public void playVlc(String fileName) {

 // Do nothing

Design Patterns: Structural 5

 }

 @Override

 public void playMp4(String fileName) {

 System.out.println("Playing MP4 file. Name:

" + fileName);

 }

}

// Adapter class to bridge MediaPlayer with Advance

dMediaPlayer

class MediaAdapter implements MediaPlayer {

 AdvancedMediaPlayer advancedMusicPlayer;

 public MediaAdapter(String audioType) {

 if (audioType.equalsIgnoreCase("vlc")) {

 advancedMusicPlayer = new VlcPlayer();

 } else if (audioType.equalsIgnoreCase("mp

4")) {

 advancedMusicPlayer = new Mp4Player();

 }

 }

 @Override

 public void play(String audioType, String fileN

ame) {

 if (audioType.equalsIgnoreCase("vlc")) {

 advancedMusicPlayer.playVlc(fileName);

 } else if (audioType.equalsIgnoreCase("mp

4")) {

 advancedMusicPlayer.playMp4(fileName);

 }

 }

}

// Concrete class that uses the adapter

class AudioPlayer implements MediaPlayer {

Design Patterns: Structural 6

 MediaAdapter mediaAdapter;

 @Override

 public void play(String audioType, String fileN

ame) {

 if (audioType.equalsIgnoreCase("mp3")) {

 System.out.println("Playing MP3 file. N

ame: " + fileName);

 } else if (audioType.equalsIgnoreCase("vl

c") || audioType.equalsIgnoreCase("mp4")) {

 mediaAdapter = new MediaAdapter(audioTy

pe);

 mediaAdapter.play(audioType, fileName);

 } else {

 System.out.println("Invalid media. " +

audioType + " format not supported");

 }

 }

}

// Client code

public class AdapterPatternDemo {

 public static void main(String[] args) {

 AudioPlayer audioPlayer = new AudioPlayer

();

 audioPlayer.play("mp3", "song.mp3"); // Out

put: Playing MP3 file. Name: song.mp3

 audioPlayer.play("mp4", "video.mp4"); // Ou

tput: Playing MP4 file. Name: video.mp4

 audioPlayer.play("vlc", "movie.vlc"); // Ou

tput: Playing VLC file. Name: movie.vlc

 audioPlayer.play("avi", "movie.avi"); // Ou

tput: Invalid media. avi format not supported

 }

}

Key Points about the Adapter Pattern

Design Patterns: Structural 7

The Adapter Pattern is used when you want to use a class with an
interface that isn't compatible with what you expect.

The adapter separates the interface logic from the core
functionality of the incompatible class.

Class Adapter vs Object Adapter:

Class Adapter uses inheritance to adapt one interface to
another.

Example of Class Adapter:

In the Class Adapter pattern, we use inheritance to
adapt one interface to another. It works by creating an
adapter class that inherits from the target class and
adapts it to the required interface.

Here we have an example where a class adapter is
used to adapt a TemperatureSensor interface to
provide temperature in Celsius, while the adaptee
returns temperature in Fahrenheit.

// Target interface (what the client ex

pects)

interface TemperatureSensor {

 double getTemperatureInCelsius();

}

// Adaptee class (returns temperature i

n Fahrenheit)

class FahrenheitSensor {

 public double getTemperatureInFahre

nheit() {

 return 98.6; // Fahrenheit valu

e

 }

}

// Class Adapter using inheritance

class TemperatureAdapter extends Fahren

heitSensor implements TemperatureSensor

Design Patterns: Structural 8

{

 @Override

 public double getTemperatureInCelsi

us() {

 // Convert Fahrenheit to Celsiu

s

 return (getTemperatureInFahrenh

eit() - 32) * 5 / 9;

 }

}

// Client code

public class ClassAdapterDemo {

 public static void main(String[] ar

gs) {

 TemperatureSensor sensor = new

TemperatureAdapter();

 System.out.println("Temperature

in Celsius: " + sensor.getTemperatureIn

Celsius());

 }

}

Object Adapter uses composition to wrap an object and
adapt its interface.

Example of Object Adapter:

In the Object Adapter pattern, we use composition to
wrap an instance of the adaptee class inside the
adapter. The adapter forwards requests to the adaptee
to make it compatible with the target interface.

Here we use composition to adapt a FahrenheitSensor
to a TemperatureSensor interface. This is often
considered more flexible than the class adapter
because the adapter class doesn't need to inherit from
the adaptee class.

Design Patterns: Structural 9

// Target interface (what the client ex

pects)

interface TemperatureSensor {

 double getTemperatureInCelsius();

}

// Adaptee class (returns temperature i

n Fahrenheit)

class FahrenheitSensor {

 public double getTemperatureInFahre

nheit() {

 return 98.6; // Fahrenheit valu

e

 }

}

// Object Adapter using composition

class TemperatureAdapter implements Tem

peratureSensor {

 private FahrenheitSensor fahrenheit

Sensor;

 public TemperatureAdapter(Fahrenhei

tSensor fahrenheitSensor) {

 this.fahrenheitSensor = fahrenh

eitSensor;

 }

 @Override

 public double getTemperatureInCelsi

us() {

 // Convert Fahrenheit to Celsiu

s

 return (fahrenheitSensor.getTem

peratureInFahrenheit() - 32) * 5 / 9;

 }

}

Design Patterns: Structural 10

// Client code

public class ObjectAdapterDemo {

 public static void main(String[] ar

gs) {

 FahrenheitSensor fahrenheitSens

or = new FahrenheitSensor();

 TemperatureSensor sensor = new

TemperatureAdapter(fahrenheitSensor);

 System.out.println("Temperature

in Celsius: " + sensor.getTemperatureIn

Celsius());

 }

}

Advantages of Adapter Pattern
� The Adapter Pattern lets you use existing classes (even those

from third-party libraries) without modifying their source code.

� The client code remains loosely coupled to the adaptee, as it
doesn't know about its concrete implementation.

� By introducing adapters, the logic of adapting one interface to
another is encapsulated in a separate class, following the Single
Responsibility Principle.

Common Pitfalls in Adapter Pattern
Overuse of Adapter Pattern

Developers sometimes use the Adapter Pattern when it isnʼt
needed, creating more layers of abstraction than necessary,
which can increase the complexity of the code.

Example: Unnecessary Adapter

Letʼs say you have a class SquarePeg that fits into a SquareHole .
However, the developer creates an adapter to fit it into a RoundHole
even though a simpler conversion or modification of the method
could do the job.

// Adaptee class

class SquarePeg {

Design Patterns: Structural 11

 private double width;

 public SquarePeg(double width) {

 this.width = width;

 }

 public double getWidth() {

 return width;

 }

}

// Target class

class RoundHole {

 private double radius;

 public RoundHole(double radius) {

 this.radius = radius;

 }

 public boolean fits(RoundPeg peg) {

 return this.radius >= peg.getRadius();

 }

}

// Unnecessary adapter

class SquarePegAdapter extends RoundPeg {

 private SquarePeg squarePeg;

 public SquarePegAdapter(SquarePeg squarePeg)

{

 this.squarePeg = squarePeg;

 }

 @Override

 public double getRadius() {

 // Over-complicating the logic

 return Math.sqrt(Math.pow((squarePeg.get

Width() / 2), 2) * 2);

Design Patterns: Structural 12

 }

}

In this case, using the Adapter pattern introduces unnecessary
complexity when a simple utility method to convert square pegs
to round pegs would suffice.

Solution:

Instead of using an adapter, consider refactoring the code to
either modify the class to work directly or write a simple
helper method.

Overuse of design patterns can increase cognitive load and
make the system harder to maintain.

Performance Overhead

Every call to an adapter method is an additional function
invocation, which can add overhead in scenarios where
performance is critical (e.g., real-time systems).

Example: Adapter in Real-Time System

Imagine an adapter that wraps around a video processing system
where performance is critical. Adding an unnecessary adapter
layer can introduce latency.

// Target interface (expected by real-time syste

m)

interface VideoProcessor {

 void processVideo(String video);

}

// Adaptee class (legacy video processor)

class LegacyVideoProcessor {

 public void runVideo(String video) {

 System.out.println("Processing video usi

ng legacy system: " + video);

 }

}

Design Patterns: Structural 13

// Adapter class that adds overhead

class VideoProcessorAdapter implements VideoProc

essor {

 private LegacyVideoProcessor legacyProcesso

r;

 public VideoProcessorAdapter(LegacyVideoProc

essor legacyProcessor) {

 this.legacyProcessor = legacyProcessor;

 }

 @Override

 public void processVideo(String video) {

 legacyProcessor.runVideo(video); // Add

itional function call adds overhead

 }

}

In performance-critical applications like real-time video
processing, the additional call to the adapterʼs processVideo
method introduces unnecessary delay.

Solution:

When performance is crucial, avoid using the Adapter pattern
unless absolutely necessary.

Instead, refactor the code to directly integrate the
functionality, minimising function calls and keeping the design
simple.

Tight Coupling

Adapters can sometimes lead to tight coupling between
components, especially if not designed carefully.

This makes it difficult to modify or extend the system, as
changes in the adaptee might require corresponding changes
in the adapter.

Example: Tight Coupling with Adapter

Design Patterns: Structural 14

Imagine an adapter that adapts a legacy PaymentProcessor to a
modern PaymentGateway interface. If the legacy system undergoes
changes, the adapter may need constant updates, leading to tight
coupling between the adapter and the adaptee.

// Target interface (modern system)

interface PaymentGateway {

 void processPayment(double amount);

}

// Adaptee class (legacy system)

class LegacyPaymentProcessor {

 public void makePayment(double amount) {

 System.out.println("Processing payment o

f: $" + amount + " through legacy system");

 }

}

// Adapter class (tight coupling with the legacy

system)

class PaymentGatewayAdapter implements PaymentGa

teway {

 private LegacyPaymentProcessor legacyProcess

or;

 public PaymentGatewayAdapter(LegacyPaymentPr

ocessor legacyProcessor) {

 this.legacyProcessor = legacyProcessor;

 }

 @Override

 public void processPayment(double amount) {

 legacyProcessor.makePayment(amount);

 }

}

If the LegacyPaymentProcessor is updated, you might need to
update the PaymentGatewayAdapter as well, making the system fragile

Design Patterns: Structural 15

and harder to extend.

Solution:

Design the adapter to minimise changes to both the adaptee
and target interface.

Use dependency injection to decouple the adapter from the
specific implementation, which will reduce the tight coupling.

Complexity in Maintenance

 If too many adapters are used in the system, it can become
difficult to track how classes and systems are interconnected.

This can increase the maintenance cost of the system and
make debugging difficult.

Example: Multiple Adapters

Consider a system where multiple legacy systems are being
adapted to fit a new architecture. Each legacy component requires
a different adapter, leading to a complex web of adapters.

class LegacyComponentA {

 public void runA() {}

}

class LegacyComponentB {

 public void runB() {}

}

class AdapterA {

 private LegacyComponentA legacyA;

 public void execute() {

 legacyA.runA();

 }

}

class AdapterB {

 private LegacyComponentB legacyB;

 public void execute() {

 legacyB.runB();

Design Patterns: Structural 16

 }

}

Here, you have multiple adapters for different components, which
can become difficult to maintain when more components and
adapters are added.

Solution:

Keep the system simple by limiting the number of adapters.

If multiple systems need to be adapted, consider
consolidating adapters or using a Facade Pattern to manage
multiple adapters behind a simpler interface.

What is the Decorator Pattern?
The Decorator Pattern allows for the dynamic addition of behaviours
or responsibilities to individual objects without modifying the
underlying class.

This pattern is especially useful when subclassing would lead to an
explosion of combinations of different behaviours.

Instead of creating multiple subclasses, the Decorator pattern offers
a more flexible approach.

Design Patterns: Structural 17

Why use the Decorator Pattern?

It provides a flexible alternative to subclassing for extending
functionality.

Instead of modifying a class directly, the pattern allows adding
functionality dynamically at runtime.

Examples:

Adding new features to a graphical user interface (e.g.,
scrollbars, borders).

Enhancing an objectʼs functionality in a transparent manner.

Benefits of the Decorator Pattern

� By using the decorator, you can divide functionality into small,
focused classes. Each decorator class focuses on a specific
behavior.

� Classes can be extended without modifying the original code.

� Rather than using inheritance to extend behavior, decorators use
composition to wrap existing objects and extend their functionality.

Decorator
Decorator is a structural design pattern that lets you
attach new behaviors to objects by placing these
objects inside special wrapper objects that contain

https://refactoring.guru/design-patterns/decorator

The Decorator Pattern in Java | Baeldung
A guide to the decorator design pattern and its Java
implementation

https://www.baeldung.com/java-decorator-patter
n

Basic Structure of the Decorator Pattern
� Component Interface  Defines the base interface for objects

that can have decorators.

� Concrete Component  The class that is being decorated (i.e.,
the original object).

https://refactoring.guru/design-patterns/decorator
https://www.baeldung.com/java-decorator-pattern

Design Patterns: Structural 18

� Decorator Class  Implements the same interface as the
component and holds a reference to a component object.

� Concrete Decorator  Implements additional functionality by
calling methods on the wrapped object and adding new
functionality before or after those calls.

Example: Basic Coffee

In this structure, the decorators wrap around the original component
object, adding new behaviour:

Component Interface: Coffee

Concrete Component: SimpleCoffee

Decorator: CoffeeDecorator

Concrete Decorators: MilkDecorator , SugarDecorator

Letʼs consider a scenario where we want to dynamically add
behaviours (like adding milk or sugar) to a coffee object.

� Component Interface:

public interface Coffee {

 String getDescription();

 double cost();

}

� Concrete Component Base Class):

public class SimpleCoffee implements Coffee {

 @Override

 public String getDescription() {

 return "Simple Coffee";

 }

 @Override

 public double cost() {

 return 2.00; // Basic coffee cost

Design Patterns: Structural 19

 }

}

� Decorator Class:

public abstract class CoffeeDecorator implements

Coffee {

 protected Coffee coffee; // The component b

eing decorated

 public CoffeeDecorator(Coffee coffee) {

 this.coffee = coffee;

 }

 public String getDescription() {

 return coffee.getDescription();

 }

 public double cost() {

 return coffee.cost();

 }

}

� Concrete Decorators:

public class MilkDecorator extends CoffeeDecorat

or {

 public MilkDecorator(Coffee coffee) {

 super(coffee);

 }

 @Override

 public String getDescription() {

 return coffee.getDescription() + ", Mil

k";

 }

Design Patterns: Structural 20

 @Override

 public double cost() {

 return coffee.cost() + 0.50; // Additio

nal cost for milk

 }

}

public class SugarDecorator extends CoffeeDecora

tor {

 public SugarDecorator(Coffee coffee) {

 super(coffee);

 }

 @Override

 public String getDescription() {

 return coffee.getDescription() + ", Suga

r";

 }

 @Override

 public double cost() {

 return coffee.cost() + 0.20; // Additio

nal cost for sugar

 }

}

Usage Example:

public class CoffeeShop {

 public static void main(String[] args) {

 Coffee simpleCoffee = new SimpleCoffee

();

 System.out.println(simpleCoffee.getDescr

iption() + " $" + simpleCoffee.cost());

 // Add Milk to the coffee

 Coffee milkCoffee = new MilkDecorator(si

Design Patterns: Structural 21

mpleCoffee);

 System.out.println(milkCoffee.getDescrip

tion() + " $" + milkCoffee.cost());

 // Add Sugar to the milk coffee

 Coffee milkAndSugarCoffee = new SugarDec

orator(milkCoffee);

 System.out.println(milkAndSugarCoffee.ge

tDescription() + " $" + milkAndSugarCoffee.cost

());

 }

}

Expected Output:

Simple Coffee $2.0

Simple Coffee, Milk $2.5

Simple Coffee, Milk, Sugar $2.7

Advantages of Decorator Pattern
Enhances the behaviour of individual objects without modifying
the underlying class or affecting other objects.

The class is closed for modification but open for extension,
making it easy to add new functionality by creating new
decorators Adheres to Open-Closed Principle OCP.

Instead of extending a class, behaviour is added dynamically by
composing with other decorators.

Decorators vs Inheritance & Composite
Decorator vs. Inheritance:

Decorators provide a more flexible way to add behaviors than
inheritance, as decorators don't affect other objects of the
same class.

Decorator vs. Composite:

The decorator pattern is often compared to the composite
pattern, but while both involve objects that reference other

Design Patterns: Structural 22

objects, the composite is focused on representing
hierarchies, whereas the decorator focuses on adding
responsibilities.

For example, a composite tree of UI components might
include windows, panels, and buttons, while decorators might
add behaviors (e.g., borders, scrolling) to each of these
components.

// Base interface for GUI components

public interface Component {

 void draw();

}

// Concrete component: TextBox

public class TextBox implements Component {

 @Override

 public void draw() {

 System.out.println("Drawing a TextBo

x");

 }

}

// Base Decorator class

public abstract class ComponentDecorator impl

ements Component {

 protected Component component;

 public ComponentDecorator(Component compo

nent) {

 this.component = component;

 }

 @Override

 public void draw() {

 component.draw();

 }

}

Design Patterns: Structural 23

// Concrete Decorator: Border

public class BorderDecorator extends Componen

tDecorator {

 public BorderDecorator(Component componen

t) {

 super(component);

 }

 @Override

 public void draw() {

 super.draw();

 System.out.println("Adding border");

 }

}

// Concrete Decorator: ScrollBar

public class ScrollBarDecorator extends Compo

nentDecorator {

 public ScrollBarDecorator(Component compo

nent) {

 super(component);

 }

 @Override

 public void draw() {

 super.draw();

 System.out.println("Adding scroll ba

r");

 }

}

// Client code

public class Demo {

 public static void main(String[] args) {

 Component textBox = new TextBox();

 // Add a border decorator

 Component borderedTextBox = new Borde

Design Patterns: Structural 24

rDecorator(textBox);

 // Add a scroll bar decorator

 Component scrollableBorderedTextBox =

new ScrollBarDecorator(borderedTextBox);

 // Draw the component

 scrollableBorderedTextBox.draw();

 // Output: Drawing a TextBox

 // Adding border

 // Adding scroll bar

 }

}

Common Pitfalls in the Decorator Pattern:
Complexity of Layers

When too many decorators are combined, it can become
difficult to follow the flow of execution, as behaviour is
distributed across multiple layers.

Example:

Consider a coffee ordering system where we add several layers of
decorators Milk, Sugar, Cream, Mocha, etc.):

// Base interface

public interface Coffee {

 String getDescription();

 double cost();

}

// Concrete implementation

public class SimpleCoffee implements Coffee {

 @Override

 public String getDescription() {

 return "Simple Coffee";

 }

 @Override

 public double cost() {

Design Patterns: Structural 25

 return 2.00;

 }

}

// Decorators

public abstract class CoffeeDecorator implements

Coffee {

 protected Coffee coffee;

 public CoffeeDecorator(Coffee coffee) {

 this.coffee = coffee;

 }

 @Override

 public String getDescription() {

 return coffee.getDescription();

 }

 @Override

 public double cost() {

 return coffee.cost();

 }

}

public class MilkDecorator extends CoffeeDecorat

or {

 public MilkDecorator(Coffee coffee) {

 super(coffee);

 }

 @Override

 public String getDescription() {

 return coffee.getDescription() + ", Mil

k";

 }

 @Override

 public double cost() {

 return coffee.cost() + 0.50;

 }

}

public class SugarDecorator extends CoffeeDecora

Design Patterns: Structural 26

tor {

 public SugarDecorator(Coffee coffee) {

 super(coffee);

 }

 @Override

 public String getDescription() {

 return coffee.getDescription() + ", Suga

r";

 }

 @Override

 public double cost() {

 return coffee.cost() + 0.20;

 }

}

// Example of adding too many layers

public class CoffeeShop {

 public static void main(String[] args) {

 Coffee coffee = new SimpleCoffee();

 coffee = new MilkDecorator(coffee);

 coffee = new SugarDecorator(coffee);

 coffee = new MilkDecorator(coffee);

 coffee = new SugarDecorator(coffee); //

Adding layers upon layers

 System.out.println(coffee.getDescription

() + " $" + coffee.cost());

 }

}

Problem:

The flow of the program becomes harder to trace with each
new decorator added.

Debugging issues related to cost or description becomes
complex since many decorators are calling one another in a
layered manner.

Violation of Single Responsibility Principle SRP

Design Patterns: Structural 27

The SRP states that a class should have only one reason to
change.

Misuse of decorators to add multiple responsibilities (like
adding milk and sugar in one decorator) can result in a
violation of this principle.

Example:

public class CoffeeWithMilkAndSugarDecorator ext

ends CoffeeDecorator {

 public CoffeeWithMilkAndSugarDecorator(Coffe

e coffee) {

 super(coffee);

 }

 @Override

 public String getDescription() {

 return coffee.getDescription() + ", Mil

k, Sugar";

 }

 @Override

 public double cost() {

 return coffee.cost() + 0.70; // Adds bo

th Milk and Sugar in a single decorator

 }

}

Problem:

This decorator is responsible for two things: adding both milk
and sugar. If we want to change the price of milk or sugar, we
have to modify this class.

This violates the SRP because a single class should not
handle multiple responsibilities.

Performance Issues

Each decorator adds a method call, and if you have many
decorators, it can introduce performance overhead due to
increased method calls.

Design Patterns: Structural 28

In performance-critical systems, like real-time applications,
this can degrade system performance.

Example:

Letʼs say we have a system where decorators are used to add
various security checks to a request processing system. Each
decorator adds a layer of logic for validation or filtering:

public interface RequestProcessor {

 void processRequest(String request);

}

// Concrete implementation

public class SimpleRequestProcessor implements R

equestProcessor {

 @Override

 public void processRequest(String request) {

 System.out.println("Processing request:

" + request);

 }

}

// Security decorator for input validation

public class ValidationDecorator implements Requ

estProcessor {

 private RequestProcessor processor;

 public ValidationDecorator(RequestProcessor

processor) {

 this.processor = processor;

 }

 @Override

 public void processRequest(String request) {

 if (isValid(request)) {

 processor.processRequest(request);

 } else {

 System.out.println("Invalid request:

" + request);

Design Patterns: Structural 29

 }

 }

 private boolean isValid(String request) {

 // Assume some complex validation logic

here

 return request.length() > 0;

 }

}

// Another security decorator for logging

public class LoggingDecorator implements Request

Processor {

 private RequestProcessor processor;

 public LoggingDecorator(RequestProcessor pro

cessor) {

 this.processor = processor;

 }

 @Override

 public void processRequest(String request) {

 System.out.println("Logging request: " +

request);

 processor.processRequest(request);

 }

}

// Usage

public class SecuritySystem {

 public static void main(String[] args) {

 RequestProcessor processor = new SimpleR

equestProcessor();

 processor = new ValidationDecorator(proc

essor);

 processor = new LoggingDecorator(process

or);

Design Patterns: Structural 30

 processor.processRequest("Process this r

equest");

 }

}

Problem:

In performance-critical systems (e.g., real-time processing),
each decorator adds an extra method call.

If you have many decorators for tasks like logging, validation,
and caching, the performance overhead can accumulate.

