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char a = ‘a’;

int b = 100;

Int c = 50;

void swap(int* x, int* y){

int temp = *x;

*x = *y;

*y = temp;

}

swap(b, c);

First, a, b and c are pushed 

onto the stack.

When swap() is called, 

x , y and temp are pushed onto 

the stack.

When swap returns, x, y and 

temp are popped from the 

stack. 

Their memory is no longer in 

use. 
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What if we wanted to keep track of temp and use it later?
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● Unordered
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● unlimited size*
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(threads)
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int b = 100;

Int c = 50;

void* swap(int* x, int* y){

Int temp = *x;

int* perm = malloc(int);

perm = &temp;

x = y;

y = *perm;

return perm;

}

void* p = swap(b, c);

…

free(p);

First, b and c are pushed onto 

the stack.

When swap() is called, 

x , y and temp are pushed 

onto the stack.

We allocate space in memory 

for perm using malloc.

When swap returns, x, y and 

temp are popped from the 

stack. 

The memory allocated to 

perm is still in use!



Heap vs. Stack

Heap:

● Unordered

● allocate / free

● unlimited size*

● global access 

(threads)

● Slower

Ok, so we could just return temp in the same way but...

● Even when this function terminates, another function 

can access perm using that pointer.

● If we need to store a large amount of data (or an 

undeterminable amount of data) we can safely use 

heap.

○ No risk of stack overflow.

○ No risk of losing reference or accidental 

deallocation of memory.



Heap vs. Stack

Stack Pros:

● Fast

● Easy to manage

Stack cons:

● Limited size (stack overflow)

● Limited access (scope / closures)

● Cannot free memory

Heap Pros:

● Unlimited size

● Unlimited access

Heap Cons:

● Harder to manage (memory leaks!)

● Slower


