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Concurrent Programming

• Concurrent programs: interleaving sets of sequential atomic instructions.
• i.e., interacting sequential processes run at same time, on same/different 

processor(s)
• processes interleaved, i.e. at any time each processor runs one of instructions of 

the sequential processes
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Correctness

If all the math is done in registers, then the results 
depend on interleaving (indeterminate computation).
• This dependency on unforeseen circumstances is 

known as a Race Condition.
Generalisation: a program is correct when its 
preconditions hold then its post conditions will hold.
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Program1: load reg, N
Program2: load reg, N
Program1: add reg, #1
Program2: add reg, #1
Program1: store reg, N
Program2: store reg, N

A concurrent program must be correct under all possible interleavings.



Lets Look at this in Practice: Race Conditions

• A race condition occurs when a program output is dependent on the 
sequence or timing of code execution
• if multiple processes of execution enter a critical section at about the same time; 

both attempt to update the shared data structure
Øleads to surprising results (undesirable) 
vYou must work to avoid this with concurrent code

• Critical section = parts of the program where a shared resource is 
accessed
• It needs to be protected in ways that avoid the concurrent access
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Example Bank Transaction

Int withdraw(account, amount){
int balance = account.balance;
balance = balance – amount ;
account.balance = balance;
return balance;

}
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Example Bank Transaction

//account.balance = 100
Int withdraw(account, amount = 10){

int balance = account.balance; //100
balance = balance – amount ; //90

Int withdraw(account, amount = 20){
int balance = account.balance; //80
balance = balance – amount ; //80
account.balance = balance; //80
account.balance = balance; //90
return balance; //90

}
return balance; //80

}
//account.balance = 90! 
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Process 1

Process 2

Process 1

Process 2

Two processes:
• Process 1: withdraw 10 from account
• Process 2: withdraw 20 from account



Race Condition Consequences

We can get different results every time we run the code
Ø result is indeterminate

Deterministic computations have the same result each time
• We want deterministic concurrent code
ØWe can use synchronisation mechanisms
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Handling Race Conditions

• We need a mechanism to control access to shared resources in 
concurrent code
Ø Synchronisation is necessary for any shared data structure

Idea:
• Focus on critical sections of code 
• i.e., bits that access shared resources

• We want critical sections to run with mutual exclusion
Øonly one process can execute that code at the same time
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Example: Bank Transactions
What code should be within the critical section?
1 int withdraw(account, amount){
2 int balance = account.balance; 
3 balance = balance – amount ; 
4 account.balance = balance; 
5 return balance; 
6}
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Q: Why is this not critical?



Critical Section Properties

• Mutual exclusion: only 1 process can access at a time
• Guarantee of progress: processes outside the critical section cannot 

stop another from entering it
• Bounded waiting: a process waiting to enter a critical section will 

eventually enter
• Processes in the critical section will eventually leave

• Performance: the overhead of entering/exiting should be small 
• Especially compared to amount of work done in there – why?

• Fair: don’t make some processes wait much longer than others
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Synchronisation Solutions

Ways to protect critical sections
• Option 1: Atomicity
• Atomic operations cannot be interrupted, in order to avoid illogical outcomes

• Option 2: Conditional synchronisation (ordering)
• Making sure that one process runs before another
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Atomicity

• Basic atomicity is provided by the hardware
• E.g., References and assignments (i.e., read & write operations) are 

atomic in all CPUs 

• However higher-level constructs (i.e., any sequence of two or 
more CPU instructions ) are not atomic in general
• Some languages (e.g., Java) have mechanisms to specify multiple 

instructions as atomic

12



Conditional Synchronisation

• Strategy: Person A writes a rough draft 
and then Person B edits it.
• A and B cannot write at the same time (as 

they are working on different versions of 
the paper)
• Must ensure that Person B cannot start 

until Person A is finished

13

Person A Person B



What Might Conditional Synchronisation Look 
Like?
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A Doc B

Open (doc)

Finished (doc)
Open(doc)

Open refused

Open(doc)

Finished (doc)

Process finished/terminated



Code Constructs to Support Defining Critical 
Sections

• Locks
• Very primitive, just provide mutual exclusion, minimal semantics, useful as a 

building block for other methods

• Semaphores
• Basic, easy to understand

• Monitors
• Higher level abstraction, requires language support, implicit operations
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Mutual Exclusion solutions: 
Locks
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Locks: Basic idea

• Lock = a token you need to enter a critical 
section of code

• If a process wants to execute a critical 
section…it must have the lock:
• Need to ask for lock
• Need to release lock 

• No restrictions on executing other code
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A B C

D

Critical section

Processes

Token/Lock



Lock States and Operation

• Locks have 2 states:
• Held: some process is in the critical section
• Not held: no process is in the critical section

• Locks have 2 operations:
• Acquire:

• mark lock as held or wait until released
• If not held => execute immediately

• Release:
• mark lock as not held

If many processes call acquire, only 1 process can get the lock
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Using Lock

• Locks are declared like variables:
Lock myLock;

• A program can use multiple locks – why?
Lock myDataLock, myIoLock;

• To use a lock:
• Surround critical section as follows:

• Call acquire() at start of critical section
• Call release() at end of critical section

• Remember our general pattern for mutex
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while (true)
// Non_Critical_Section

myLock.acquire();

// Critical_Section

myLock.release();

// Non_Critical_Section
end while

Surround critical 
section of code



Lock Benefits

• Only 1 process can execute the critical section code at a time
• When a process is done (and calls release) another process can enter 

the critical section
ØAchieves requirements of mutual exclusion and progress for 

concurrent systems
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Lock Limitations

• Acquiring a lock only blocks processes trying to acquire the same lock
• i.e., processes can acquire other locks

• Must use the same lock for all critical sections accessing the same 
data (or resource)
• E.g., withdraw() and deposit() for a bank account

• Q: What does this mean for code complexity?
• E.g., Add a new process that accesses same data
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Lock in Use Example: Bank Transactions

int withdraw(account, amount){

int balance = account.balance; 
balance = balance – amount ; 
account.balance = balance}; 

return balance; 

}
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acquire(myBalanceLock);

release(myBalanceLock);

The local variable, does not need to be protected

See our old code:



E.g., Bank Transaction with Locks
//account.balance = 100
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P1
P2 Int withdraw(account, amount = 20){

acquire(myBalanceLock);     // Process STALLED

P1

balance = balance – amount ; //90
account.balance = balance; //90
release(myBalanceLock);    // NOW P2 can start

P2
Int withdraw(account, amount = 10){

acquire(myBalanceLock);
int balance = account.balance; //100

int balance = account.balance; //90
balance = balance – amount ; //70
account.balance = balance; //70
release(myBalanceLock); 
return balance; //70

}
return balance; //90

}

//account.balance = 70

P1



Impacts

• We can run the processes in any order:
• We will have the correct final balance

ØWe no longer have a race condition
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Software Implementation of Locks (v1)

Struct lock {
bool held; //initially FALSE

}
void acquire(lock) {

while(lock->held)
; //just wait

lock->held = TRUE;
}
void release(lock) {

lock->held = FALSE;
}
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How does it run?
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a:Account lock

acquire ()

acquire()
acquire()

held = FALSE

UML notation for instance a 
of class Account

b:Account

While lock->held; //FALSE

UML comment

acquire ()

While lock->held; //FALSE

lock->held- TRUE;

lock->held- TRUE;
held = TRUE

return;

Now both processes think they have the lock
=> This solution does not work



Solve via Hardware Support

//c code for test and set behaviour
bool test_and_set (bool *flag) {

bool old = *flag;
*flag = true;
return old;

}

Processor has a special instruction called “test and set”
• Allows atomic read and update
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Hardware-based Spinlock

struct lock {
bool held; //initially FALSE

}
void acquire(lock) {

while(test_and_set(&lock->held))
; //just wait

return;
}

void release(lock) {
lock->held = FALSE;

}

28Q: Why is this called a spin lock?



Drawbacks of Spinlocks

• Spinlocks are a form of busy waiting
=> burn CPU time

• Once acquired they are held until explicitly released
• What about other processes?

• Inefficient if lock is held for long periods
• OS overhead of context switching
• If Process Scheduler makes processes sleep while lock is held

ØAll other processes use their CPU time to spin while the process with the lock makes no 
progress
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Do Locks give us sufficient safety?

1. Check Safety properties: these must always be true
• Mutual exclusion: Two processes must not interleave certain sequences of 

instructions
• Absence of deadlock: Deadlock is when a non-terminating system cannot respond 

to any signal

2. Check Liveness properties: These must eventually be true
• Absence of starvation: Information sent is delivered
• Fairness: That any contention must be resolved

• If you can demonstrate any cases in which these properties do not hold
Ø then, the system is not correct
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Q: What do you think?



Lock Deadlock Scenario
• 2+ processes, 2 shared resources, 2 locks
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a:Process lock1

acquire ()

acquire()

held = FALSE

lock2

acquire ()

held = TRUE

b:Process

held = FALSE

held = TRUE

acquire()
Blocked

Blocked

No more progress is possible!



Protocols to avoid deadlock

• Add a timer to lock.request() method
ØCancel job and attempt it another time

• Add a new lock.check() method to see if a lock is already held before 
requesting it
Øyou can do something else and come back and check again

• Avoid hold and wait protocol 
Ønever hold onto 1 resource when you need 2

But these all lead to problems too!
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Livelock by trying to avoid deadlock

• 2 processes, 2 resources, locks with checking
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a:Process lock1

check ()

check()

held = FALSE

lock2

acquire ()

held = TRUE

b:Process

held = FALSE

held = TRUE
acquire ()

check()

Set timer

check()

check()



Starvation

• More general case of livelock
• 1 or more processes do not get to run as another process is locking the 

resource
• Example:
• 2 processes

• Process A runs for 99ms, releases lock for 1ms
• Process B runs for 1ms, releases lock for 90ms

ØA sends many more requests for resource
ØB hardly ever gets allocated the resource
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Locks/Critical Sections and Reliability

• What if a process is interrupted, is suspended, or crashes inside its 
critical section? 
• In the middle of the critical section, the system may be in an 

inconsistent state
• Not only that: the process is holding a lock and if it dies no other 

process waiting on that lock can proceed!

• Developers must ensure critical regions are very short and always 
terminate.
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Beyond Locks

• Locks only provide mutual exclusion
• Ensure only 1 process is in the critical section at a time
• Good for protecting our shared resource to prevent race conditions and avoid 

nondeterministic execution
• E.g., bank balance We want more! 

• What about fairness, avoiding starvation, and livelock?
ØWe need to be able to place an ordering on the scheduling of processes
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Take Home Message

• Race conditions, deadlock, livelock, fairness, and reliability are all 
concerns when writing concurrent code
• Several mechanisms exist to ensure the orderly execution of 

cooperating processes 
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Higher Level Support for Mutual Exclusion: 
Semaphores

38



Example Scenario: we want to place an order 
on when processes execute
• Producer- Consumer:
• Producer: creates a resource (data)
• Consumer: Uses a resource (data)
• E.g. ps | grep “gcc” | wc

• Don’t want producers and consumers to operate in lockstep (i.e., 
atomicity)
• Each command must wait for the previous output
• Implies lots of context switching (i.e., very expensive)

• Solution: place a fixed size buffer between producers and consumers
• Synchronise access to buffer 
• Producer waits of buffer full; consumer waits if buffer empty
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Semaphores

• Semaphore = higher level synchronisation 
primitive 
• Invented by Dijkstra in 1965 as part of THE OS 

project

• Semaphores are a kind of generalized lock
• Main synchronisation primitive used in original UNIX 

• Implement with a counter that is 
manipulated atomically via 2 operations 
signal and wait
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wait(semaphore): A.K.A., down() or P()
decrement counter
if counter is zero then block until semaphore is 
signalled

signal(semaphore): A.K.A., up() or V()
increment counter
wake up one waiter, if any

sem_init(semaphore, counter): 
set initial counter value



Semaphore Pseudocode
struct semaphore {

int value;
queue L; // list of processes

}
wait (S) {

if (s.value > 0)
s.value = s.value -1;

else {
add this process to s.L;
block;

}
}
signal (S) {

if (S.L != EMPTY){
remove a process P from S.L;
wakeup(P);

} else
s.value = s.value + 1;

}

wait()and signal()are critical sections!
Ø Hence, they must be executed atomically with 

respect to each other

• Each semaphore has an associated queue of 
processes
• When wait()is called by a process

• If semaphore is available => process continues
• If semaphore is unavailable => process blocks, 

waits on queue
• signal()opens the semaphore

• If processes are waiting on a queue => one 
process is unblocked

• If no processes are on the queue => the signal is 
remembered for the next time wait() is called

Note: Blocking processes are not spinning, they 
release the CPU to do other work



Semaphore Initialisation

• If semaphore initialised to 1
• First call to wait goes through

• Semaphore value goes from 1 to 0
• Second call to wait() blocks

• Semaphore value stays at zero, process goes on queue
• If first process calls signal()

• Semaphore value stays at 0
• Wakes up second process

ÞActs like a mutex lock
ÞCan use semaphores to implement locks
This is called a binary semaphore
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What happens if we initialise to 2?
struct semaphore {

int value;

queue L; // list of processes

}

wait (S) {

if (s.value > 0)

s.value = s.value -1;

else {

add this process to s.L;
block;

}

}

signal (S) {

if (S.L != EMPTY){

remove a process P from 
S.L;

wakeup(P);
} else

s.value = s.value + 1;

}

Consider multiple processes:
• Process1: wait(sem)

• value=1,L=[],  P1 executes

• Process2: wait(sem)
• value=0, L[], P2 executes

• Process3: wait(sem)
• value=0, L[P3], P3 blocks

Initial value of semaphore = number of 
processes that can be active at once:
• Sem_init(sem, 2) 

• value=2, L =[]



Uses of Semaphores

• Allocating a number of resources
• Shared buffers: each time you want to access a buffer, call wait() => you are 

queued if there is no buffer available

• Counter is initialised to N = number of resources
• Called a counting semaphore
• Useful for conditional synchronisation
• i.e., one process is waiting for another process to finish a piece of work before 

it continues
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Semaphores for Mutual Exclusion
With semaphores: 
• guaranteeing mutual exclusion for ! processes is trivial
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semaphore mutex = 1;

void Process(int i) {
while (1) {

// Non Critical Section Bit
wait(mutex) // grab the mutual exclusion semaphore
// Do the Critical Section Bit
signal(mutex) //grab the mutual exclusion semaphore

}
}

int main ( ) {
cobegin {

Process(1); Process(2);
}

}



Bounded Buffer Problem

• Producer-consumer problem
• Buffer in memory 

• Finite size of N entries
• A producer process inserts an entry into it
• A consumer process removes an entry from it

• Processes are concurrent
ØWe must use a synchronisation mechanism to control access to shared 

variables describing buffer state

46



Producer-Consumer Single Buffer
• Simplest case
• Single producer process, single consumer process
• Single shared buffer between the Producer and the Consumer

• Requirements
• Consumer must wait for Producer to fill buffer
• Producer must wait for Consumer to empty buffer (if filled)
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Some Buffer of 
Resource

E.g., Video Stream
Producer Consumer



Semaphores can be Hard to Use

• Complex patterns of resource usage
• Cannot capture relationships with semaphores alone 
• Need extra state variables to record information

Þ Produce buggy code that is hard to write
- If one coder forgets to do V()/signal()after critical section, the whole 
system can deadlock
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Monitors
• Need a higher level construct: 

• Groups the responsibility for correctness
• Supports controlled access to shared data

• Monitors: an extension of the monolithic monitor used in OS to allocate 
memory. 
• A programming language construct that supports controlled access to shared data
• Synchronisation code added by compiler, enforced at runtime (Less work for 

programmer!)
• Monitors keep track of who is allowed to access the shared data and when

they can do it

• Monitors Encapsulate 
• Shared data structures
• Procedures that operate on shared data
• Synchronisation between concurrent processes that invoke these procedures
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Detection and Protection of 
Deadlock
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Requirements for Deadlock

1. Mutex: at least one held resource must be non-shareable
2. No pre-emption: resources cannot be pre-empted (no way to 

break priority or take a resource away once allocated
• Locks have this property

3. Hold and wait: there exists a process holding a resource and 
waiting for another resource

4. Circular wait: there exists a set of processes P1, P2,…,PN such that 
P1 is waiting for P2, P2 is waiting for P3,… and PN is waiting for P1
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All 4 conditions must hold for deadlock to occur:

If only 3 conditions hold then:
• you can get starvation 
• but not deadlock

Need to avoid circular 
wait

Make code more efficient,
hence, we want them



Sample Deadlock

• Acquire locks in different orders
• Example:

Process 1 Process 2
lock(x); lock(y);
A=A+10; B=B+10;
lock(y); lock(x);
B=B+20; A=A+20;
A=A+30; B=B+30;
unlock(y); unlock(x);
unlock (x) unlock(y);
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Sample Deadlock – Check for Deadlock

• Example:
Process 1 Process 2
lock(x); lock(y);
A=A+10; B=B+10;
lock(y); lock(x);
B=B+20; A=A+20;
A=A+30; B=B+30;
unlock(y); unlock(x);
unlock (x) unlock(y);
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1. Do we have mutex?

2. Do we have hold and wait?

3. Do we have no pre-emption?

4. Do we have a circular wait?



Deadlocks without Locks

• Deadlocks can occur for any resource or any time a process waits, e.g.
• Messages: waiting to receive a message before sending a message 

• i.e., hold and wait
• Allocation: waiting to allocate resources before freeing another resource 

• i.e., hold and wait
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Testing for Real World Deadlock

• How do cars do it? 
• We have rules to avoid it/recover from it 
• E.g.,

• Never block an intersection
• Must backup if you find yourself doing so (a form of pre-emption)

• Why does this work?
• Breaks a “hold and wait”
• Shows that refusing to hold a resource while waiting for something else is a 

key element of avoiding deadlock

55



Dealing With Deadlocks: Ignore

• Strategy 1: Ignore the fact that deadlocks may occur
• Write code, put nothing special in
• Sometimes you have to re-boot the system
• May work for some unimportant or simple applications where deadlock does 

not occur often

• Quite a common approach!
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Dealing with Deadlock: Reactive

• Periodically check for evidence of deadlock
• E.g., add timeouts to acquiring a lock, if you timeout then it implies deadlock 

has occurred and you must do something

• Recovery actions:
• Blue screen of death and reboot computer
• Pick a process to terminate, e.g., a low priority one

• Only works with some types of applications
• May corrupt data so process needs to do clean-up when terminated
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Dealing with Deadlock: Proactive

• Prevent 1 of the 4 necessary conditions for deadlock 
• No single approach is appropriate (or possible) for all circumstances
• Need techniques for each of the four conditions
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Solution 1: No Mutual Exclusion

• Make resources shareable
• Example: read-only files
• No need for locks

• Example: per-process variables
• Counters per process instead of global counter

• Not possible for all bits of code/applications
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Fixing our Sample Deadlock Code
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Original code:
Process 1 Process 2
lock(x); lock(y);
A=A+10; B=B+10;
lock(y); lock(x);
B=B+20; A=A+20;
A=A+30; B=B+30;
unlock(y); unlock(x);
unlock (x) unlock(y);



Solution 1: Avoid Hold and Wait

Only request a resource when you have none
• I.e., release a resource before requesting another

Process 1 Process 2
lock(x); lock(y);
A=A+10; B=B+10;
unlock(x); unlock(y);
lock(y); lock(x);
B=B+20; A=A+20;
unlock(y); unlock(x);
lock(x); lock(y);
A=A+30; B=B+30;
unlock (x); unlock(y);

Never hold x when want y: 
• Works in many cases
• But you cannot maintain a relationship between x and y
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Original code:
Process 1 Process 2
lock(x); lock(y);
A=A+10; B=B+10;
lock(y); lock(x);
B=B+20; A=A+20;
A=A+30; B=B+30;
unlock(y); unlock(x);
unlock (x) unlock(y);



Solution 2: Avoid Hold and Wait

Acquire all resources at once
• E.g., use a single lock to protect all data
• Having fewer locks is called lock coarsening 

Process 1 Process 2
lock(z); lock(z);
A=A+10; B=B+10;
B=B+20; A=A+20;
A=A+30; B=B+30;
unlock (z); unlock(z);

Problem: low concurrency
• All processes accessing A or B cannot run at the same time 
• Even if they don’t access both variables!

62

Original code:
Process 1 Process 2
lock(x); lock(y);
A=A+10; B=B+10;
lock(y); lock(x);
B=B+20; A=A+20;
A=A+30; B=B+30;
unlock(y); unlock(x);
unlock (x) unlock(y);



Prevention: Adding Pre-emption

• Locks cannot be pre-empted but other pre-emptive methods are possible

• Strategy: pre-empt resources

• Example:
• If process A is waiting for a resource held by process B, then take the resource from B 

and give it to A

• Problems:
• Only works for some resources

• E.g., CPU and memory (using virtual memory)
• Not possible if a resource cannot be saved and restored

• Otherwise, taking away a lock causes issues
• Also, there is an overhead cost for “pre-empt” and “restore”
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Prevention: Eliminate Circular Waits

Strategy: Impose an ordering on resources
• Processes must acquire the highest ranked resource first

Process 1 Process 2
lock(x); lock(x);
lock(y); lock(y);
A=A+10; B=B+10;
B=B+20; A=A+20;
A = A+B; A=A+B;
unlock(y); unlock(x);
A=A+30; B=B+30;
unlock (x); unlock(y);

Locks are always acquired in the same order
• We have eliminated the circular dependency
• Means you will need to lock a resource for a longer period
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Original code:
Process 1 Process 2
lock(x); lock(y);
A=A+10; B=B+10;
lock(y); lock(x);
B=B+20; A=A+20;
A=A+30; B=B+30;
unlock(y); unlock(x);
unlock (x) unlock(y);



Preventing Circular Wait: Lock Hierarchy
Strategy: Define an ordering of all locks in your 
program

• Always acquire locks in that order
Problem: Sometimes you do not know the order 
that the events will be used

• Recall our code for transferring money from 1 
account to another

How do we know the global order?
ØNeed extra code to find this out and then acquire

them In the right order
ØIt could get worse
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transfer(acc1, acc2, amount){
acquire(acc1.a_lock); 
acquire(acc2.a_lock); 
acc1.balance -= amount; 
acc2.balance += amount;
release(acc1.a_lock);
release(acc2.a_lock);

}



Lock Hierarchy Problems

Solution 1.1: 
• Order based on hash code of variable

Problem?
• What about same account with the 

same hash code?
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transfer(acc1, acc2, amount){
acc1Hash = hashCode(acc1);
acc2Hash = hashCode(acc2);
if (acc1Hash < acc2Hash) { 

acquire(acc1.a_lock); 
acquire(acc2.a_lock);
acc1.balance -= amount; 
acc2.balance += amount;
release(acc1.a_lock);
release(acc2.a_lock);

}else{ 
acquire(acc2.a_lock); 
acquire(acc1.a_lock);
acc1.balance -= amount; 
acc2.balance += amount;
release(acc2.a_lock);
release(acc1.a_lock);

}



lock tieLock; // a global lock 

transfer(acc1, acc2, amount){
acc1Hash = hashCode(acc1);
acc2Hash = hashCode(acc2);
if (acc1Hash < acc2Hash) { 

acquire(acc1.a_lock); 
acquire(acc2.a_lock);
acc1.balance -= amount; 
acc2.balance += amount;
release(acc1.a_lock);
release(acc2.a_lock);

}else if (acc1Hash > acc2Hash) { 
acquire(acc2.a_lock); 
acquire(acc1.a_lock);
acc1.balance -= amount; 
acc2.balance += amount;
release(acc2.a_lock);
release(acc1.a_lock);

} else {
acquire(tieLock);
acquire(acc1.a_lock); 
acquire(acc2.a_lock);
acc1.balance -= amount; 
acc2.balance += amount;
release(acc1.a_lock);
release(acc2.a_lock);
release(tieLock);

}
}

Lock Hierarchy Problems

Solution 1.2:
• Order based on hash code of the locked 

variable
• Deal with ties



Extra Resources:

Mike Swift Concurrency videos:
• https://www.youtube.com/channel/UCBRYU9uye8e-ZuWQMPBAoYA/videos
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https://www.youtube.com/channel/UCBRYU9uye8e-ZuWQMPBAoYA/videos

