OLLSCOILNA (GAILLIMHUE

Dr Takfarinas Saber

UNIVERSITY OF GALWAY L takfarinas.saber@universityofgalway.ie

CT213
Computing System
& Organisation

Lecture 6: Process Synchronisation

Concurrent Programming

e Concurrent programs: interleaving sets of sequential atomic instructions.

* i.e., interacting sequential processes run at same time, on same/different
processor(s)

e processes interleaved, i.e. at any time each processor runs one of instructions of
the sequential processes

Correctness

If all the math is done in registers, then the results Programl: load reg, N
depend on interleaving (indeterminate computation). Program2: load reg, N
Programl: add reg, #1
Program2: add reg, #1
Programl: store reg, N
Generalisation: a program is correct when its Program2: store reg, N
preconditions hold then its post conditions will hold.

* This dependency on unforeseen circumstances is
known as a Race Condition.

A concurrent program must be correct under all possible interleavings.

o
AT OLLSCOILNA GAILLIMHE

° Elernls

C‘I'-li UNIVERSITY oF GALWAY 3

Lets Look at this in Practice: Race Conditions

* A race condition occurs when a program output is dependent on the
sequence or timing of code execution

* if multiple processes of execution enter a critical section at about the same time;
both attempt to update the shared data structure

»leads to surprising results (undesirable)
**You must work to avoid this with concurrent code

* Critical section = parts of the program where a shared resource is
accessed

* |t needs to be protected in ways that avoid the concurrent access

Example Bank Transaction

Int withdraw(account, amount) {
int balance = account.balance;

balance = balance - amount ;
account.balance = balance;

return balance;

Example Bank Transaction

Two processes:
* Process 1: withdraw 10 from account
* Process 2: withdraw 20 from account

//account.balance = 100

Int withdraw (account, amount = 10) {
Process 1 int balance = account.balance; /
balance = balance - amount ; //9

100

O~

Int withdraw (account, amount = 20) {
Process 2 int balance = account.balance; /
balance = balance - amount ; 8

80

O~

/
account.balance = balance; //8
9

Process 1 account.pbaltance = batance; //
return balance; //90

D@ O

return balance; //80
Process 2

}

OLLSCOMLA GAILLIWHE //account.balance = 90!

UNIVERSITY OF GALWAY

LL
Sy

VAT
- §[mjy -
N==lV
o Nl
4 LW 1

Race Condition Consequences

We can get different results every time we run the code
» result is indeterminate

Deterministic computations have the same result each time
* We want deterministic concurrent code
»\We can use synchronisation mechanisms

Handling Race Conditions

* We need a mechanism to control access to shared resources in
concurrent code

» Synchronisation is necessary for any shared data structure

|dea:

e Focus on critical sections of code
* j.e., bits that access shared resources

 \We want critical sections to run with mutual exclusion
»only one process can execute that code at the same time

Example: Bank Transactions

What code should be within the critical section?

1 int withdraw (account, amount) {

-/

2 int balance = account.balance;

3 balance = balance — amount ; —
4 account.balance = balance;

5 return balance;

o}

Q: Why is this not critical?

Critical section

9

Critical Section Properties

* Mutual exclusion: only 1 process can access at a time

* Guarantee of progress: processes outside the critical section cannot
stop another from entering it

* Bounded waiting: a process waiting to enter a critical section will
eventually enter
* Processes in the critical section will eventually leave

* Performance: the overhead of entering/exiting should be small
e Especially compared to amount of work done in there — why?

* Fair: don’t make some processes wait much longer than others

Synchronisation Solutions

Ways to protect critical sections
* Option 1: Atomicity
* Atomic operations cannot be interrupted, in order to avoid illogical outcomes

e Option 2: Conditional synchronisation (ordering)
* Making sure that one process runs before another

Atomicity

* Basic atomicity is provided by the hardware

* E.g., References and assignments (i.e., read & write operations) are
atomic in all CPUs

* However higher-level constructs (i.e., any sequence of two or
more CPU instructions) are not atomic in general

* Some languages (e.g., Java) have mechanisms to specify multiple
Instructions as atomic

Conditional Synchronisation

 Strategy: Person A writes a rough draft
and then Person B edits it.

* A and B cannot write at the same time (as

they are working on different versions of
the paper)

e Must ensure that Person B cannot start
until Person A is finished

Person A Person B

- D e

What Might Conditional Synchronisation Look
Like?

I Open (doc)

3 Open(doc)
Finished (doc) I Open refused _ _§

Open(doc)

%< Finished (doc)

Process finished/terminated

SCOILNA GAILLIMHE
SITY OF GALWAY 14

Code Constructs to Support Defining Critical
Sections

e Locks

* Very primitive, just provide mutual exclusion, minimal semantics, useful as a
building block for other methods

* Semaphores
* Basic, easy to understand

* Monitors
* Higher level abstraction, requires language support, implicit operations

Mutual Exclusion solutions:
Locks

Locks: Basic idea

* If a process wants to execute a critical
section...it must have the lock:
Processes
* Need to ask for lock P
* Need to release lock / /

A B C
* Lock = a token you need to enter a critical
section of code
/ D

Critical section

* No restrictions on executing other code Token/Lock

Lock States and Operation

* Locks have 2 states:
* Held: some process is in the critical section
* Not held: no process is in the critical section

* Locks have 2 operations:
* Acquire:
* mark lock as held or wait until released
* If not held => execute immediately

* Release:
* mark lock as not held

If many processes call acquire, only 1 process can get the lock

Using Lock

* Locks are declared like variables: while (true)
Lock myLock; // Non Critical Section
* A program can use multiple locks — why? ' myLock . acquire () ;

Lock myDatalLock, myIoLock;

 To use a lock:

e Surround critical section as follows:
* Call acquire() at start of critical section
* Call release() at end of critical section

{// Critical Section

myLock.release() ;

// Non Critical Section
* Remember our general pattern for mutex end while

Surround critical
section of code

U/ﬁ\ QOLLSCOILNAGAILLIMHE
Szl - UNIVERSITY OF GALWAY

CVAv
4

19

Lock Benefits

* Only 1 process can execute the critical section code at a time

* When a process is done (and calls release) another process can enter
the critical section

» Achieves requirements of mutual exclusion and progress for
concurrent systems

Lock Limitations

* Acquiring a lock only blocks processes trying to acquire the same lock
* ji.e., processes can acquire other locks

* Must use the same lock for all critical sections accessing the same
data (or resource)

e E.g., withdraw() and deposit() for a bank account

* Q: What does this mean for code complexity?
* E.g., Add a new process that accesses same data

Lock in Use Example: Bank Transactions

See our old code:

int withdraw (account, amount) {

c
acquire (myBalanceLock) ; — 2
O
int balance = account.balance; &
balance = balance - amount ; — 3
account.balance = balance}; g

release (myBalancelock) ;

return balance;

The local variable, does not need to be protected

c?@i UNIVERSITY OF GALWAY 2 2
Lw

E.g., Bank Transaction with Locks

//account.balance = 100
Int withdraw (account, amount = 10) {
o acquire (myBalanceLock) ;
int balance = account.balance; //100
N Int withdraw (account, amount = 20) {
acquire (myBalancelock) ; // Process STALLED
balance = balance — amount ;7 //90
= account.balance = balance; //90
release (myBalanceLock) ; // NOW P2 can start
int balance = account.balance; //90
balance = balance - amount ; //70
N account.balance = balance; //70
release (myBalanceLock) ;
return balance; //70
}
- return balance; //90
(a '
}

U/ﬁ\ QOLLSCOILNAGAILLIMHE
Szl - UNIVERSITY OF GALWAY

C'Av
4

23
//account.balance = 70

Impacts

* We can run the processes in any order:
 We will have the correct final balance

»We no longer have a race condition

Software Implementation of Locks (v1)

Struct lock {
bool held; //initially FALSE
}

vold acquire (lock) {
while (lock=>held)
; //just wait
lock->held = TRUE;
}
vold release(lock) |
lock->held = FALSE;

How does it run?

UML notation for instance a

of class Account i

| held = FALSE |

—

While lock->held; //FALSE

-
—
-
-
-
-
-
-
1 -
I o ===
-
-
-
-

=

o

lock->held- TRUE;

UML comment

While lock->held; //FALSE

lock->held- TRUE;

e | held = TRUE |

Ll

VAR OLLSCOILNAGAILLIMHE

u| - -

5.~ UNIVERSITY OF GALWAY
w?'

L. acauire()
| | LT R

Now both processes think they have the lock
=> This solution does not work

return;

26

Solve via Hardware Support

//c code for test and set behaviour
bool test and set (bool *flag) {
bool old = *flag;
*flag = true;
return old;

Processor has a special instruction called “test and set”
* Allows atomic read and update

Hardware-based Spinlock

struct lock {
bool held; //initially FALSE
}
vold acquire (lock) {
while (test and set (&lock->held)
; //just wait
return;
}
volid release (lock) {
lock->held = FALSE;

)

Drawbacks of Spinlocks

 Spinlocks are a form of busy waiting
=> burn CPU time

* Once acquired they are held until explicitly released
 What about other processes?

* Inefficient if lock is held for long periods
* OS overhead of context switching

* |f Process Scheduler makes processes sleep while lock is held

» All other processes use their CPU time to spin while the process with the lock makes no
progress

Do Locks give us sufficient safety?

1. Check Safety properties: these must always be true
* Mutual exclusion: Two processes must not interleave certain sequences of
instructions

* Absence of deadlock: Deadlock is when a non-terminating system cannot respond
to any signal

2. Check Liveness properties: These must eventually be true
* Absence of starvation: Information sent is delivered
* Fairness: That any contention must be resolved

* |f you can demonstrate any cases in which these properties do not hold
» then, the system is not correct

Q: What do you think?

30

Lock Deadlock Scenario

e 2+ processes, 2 shared resources, 2 locks

b:Process

.’acquire " [heIdiFALSE [held .F<ALSE] scquire I
_held = TRUE | | held = TRUE |
T | ——) s |

I acquire() =

[|] < } acquire()
Blocked |

[BIoc:lked]

No more progress is possible!

1

LSCOIL NA GAILLIMME i '
i ! 31

ITY OF GALWAY i !

Protocols to avoid deadlock

* Add a timer to lock.request() method
» Cancel job and attempt it another time

* Add a new lock.check() method to see if a lock is already held before
requesting it
»you can do something else and come back and check again
* Avoid hold and wait protocol
»never hold onto 1 resource when you need 2

But these all lead to problems too!

Livelock by trying to avoid deadlock

e 2 processes, 2 resources, locks with checking

b:Process

———————————————————————————————————

I | held = FALSE | held = FALSE] acquire () I
acquire ()] .
— > | held = TRUE | |
= | held = TRUE | U ;
check() i | .
S SRERERREEEEEEEEE =
|Settimer check() IH_<_________________E ________________ S
g g g =
. ’

33

Starvation

* More general case of livelock

* 1 or more processes do not get to run as another process is locking the
resource

* Example:

* 2 processes
* Process A runs for 99ms, releases lock for 1ms
* Process B runs for 1ms, releases lock for 90ms

» A sends many more requests for resource
»B hardly ever gets allocated the resource

Locks/Critical Sections and Reliability

 What if a process is interrupted, is suspended, or crashes inside its
critical section?

* In the middle of the critical section, the system may be in an
Inconsistent state

* Not only that: the process is holding a lock and if it dies no other
process waiting on that lock can proceed!

* Developers must ensure critical regions are very short and always
terminate.

Beyond Locks

* Locks only provide mutual exclusion
* Ensure only 1 process is in the critical section at a time
* Good for protecting our shared resource to prevent race conditions and avoid
nondeterministic execution
* E.g., bank balance We want more!
* What about fairness, avoiding starvation, and livelock?

»\We need to be able to place an ordering on the scheduling of processes

Take Home Message

* Race conditions, deadlock, livelock, fairness, and reliability are all
concerns when writing concurrent code

» Several mechanisms exist to ensure the orderly execution of
cooperating processes

Higher Level Support for Mutual Exclusion:
Semaphores

Example Scenario: we want to place an order
on when processes execute

* Producer- Consumer:
e Producer: creates a resource (data)
e Consumer: Uses a resource (data)
*E.g.ps | grep “gcc” | wc
* Don’t want producers and consumers to operate in lockstep (i.e.,

atomicity)
* Each command must wait for the previous output
* Implies lots of context switching (i.e., very expensive)

 Solution: place a fixed size buffer between producers and consumers

* Synchronise access to buffer
* Producer waits of buffer full; consumer waits if buffer empty

Semaphores

* Semaphore = higher level synchronisation
primitive
* |Invented by Dijkstra in 1965 as part of THE OS
project
* Semaphores are a kind of generalized lock
* Main synchronisation primitive used in original UNIX

* Implement with a counter that is
manipulated atomically via 2 operations
signal and wait

U/ﬁ\ QOLLSCOILNA GAILLIMUE
¥ l-' UNIVERSITY OF GALWAY

CVAV

wailt (semaphore): A.K.A., down() or P()
decrement counter
if counter is zero then block until semaphore is
signalled

signal (semaphore): A.K.A., up() or V()
increment counter
wake up one waiter, if any

sem inilt (semaphore, counter):
set initial counter value

Semaphore Pseudocode

struct semaphore {

int value;

wait ()and signal () are critical sections! queue L; // list of processes

» Hence, they must be executed atomically with }
respect to each other wait (S) {

if (s.value > 0)
s.value = s.value -1;
* Each semaphore has an associated queue of else {

processes add this process to s.L;

* Whenwait ()is called by a process block;

* If semaphore is available => process continues

* If semaphore is unavailable => process blocks,
waits on queue }

e signal () opens the semaphore

* |f processes are waiting on a queue => one
process is unblocked if (S.L != EMPTY) {

* If no processes are on the queue => the siFnaI is
remembered for the next time wait() is called

signal (S) {

remove a process P from S.L;
wakeup (P) ;
Note: Blocking processes are not spinning, they] else

release the CPU to do other work
s.value = s.value + 1;

OLLSCOILNA GAILLIMUE |
UNIVERSITY OF GALWAY

Semaphore |nitialisation

* |f semaphore initialised to 1
* First call to wait goes through
* Semaphore value goes from1to 0
e Second call to wait() blocks
* Semaphore value stays at zero, process goes on gqueue

e If first process calls signal()
e Semaphore value stays at O
* Wakes up second process

—=>Acts like a mutex lock
—>Can use semaphores to implement locks
This is called a binary semaphore

oy
AT\ OLLSCOILNA GAILLIMHE

et

Y
- ul

S
iz -

a8y UNIVERSITY OF GALWAY
LW

What happens it we initialise to 27

Initial value of semaphore = number of
processes that can be active at once:
* Sem_init(sem, 2)

e value=2, L =[]

Consider multiple processes:
* Processl: wait(sem)

* value=1l,L=[], Pl executes

* Process2: wait(sem)

* value=0, L[], P2 executes

* Process3: wait(sem)
* value=0, L[P3], P3 blocks

LLy
Uv‘ﬁﬁ\ﬁ OLLSCOILNA GAILLIMHE

A

- §[mjy -
Nmaly,
4 1

UNIVERSITY OF GALWAY

struct semaphore {
int value;
queue L; // list of processes
}
wait (S) {
if (s.value > 0)
s.value = s.value -1;
else {
add this process to s.L;
block;

if (S.L != EMPTY) {

remove a process P from

wakeup (P) ;
} else

s.value = s.value + 1;

Uses of Semaphores

* Allocating a number of resources

» Shared buffers: each time you want to access a buffer, call wait() => you are
gueued if there is no buffer available

e Counter is initialised to N = number of resources
* Called a counting semaphore

* Useful for conditional synchronisation

* i.e., one process is waiting for another process to finish a piece of work before
it continues

Semaphores for Mutual Exclusion

With semaphores:
e guaranteeing mutual exclusion for N processes is trivial

semaphore mutex = 1;

void Process (int i) {
while (1) {
// Non Critical Section Bit
wait (mutex) // grab the mutual exclusion semaphore
// Do the Critical Section Bit
signal (mutex) //grab the mutual exclusion semaphore

int main () {
cobegin ({
Process(l); Process(2);

}

S,
AT\ OLLSCOILNA GAILLIMHE }

N
un

(=
flv-lf‘* UNIVERSITY OF GALWAY L
va

© v

Bounded Buffer Problem

* Producer-consumer problem

e Buffer in memory
* Finite size of N entries

* A producer process inserts an entry into it
e A consumer process removes an entry from it

* Processes are concurrent

»We must use a synchronisation mechanism to control access to shared
variables describing buffer state

Producer-Consumer Single Buftfer

* Simplest case
* Single producer process, single consumer process
 Single shared buffer between the Producer and the Consumer

* Requirements
e Consumer must wait for Producer to fill buffer
e Producer must wait for Consumer to empty buffer (if filled)

C
e

J:m BuIt _}01
Producer > Resource 4 Consumer
\ N

Fan)
124
N
—
—r
—_—
LL)
[a}
k)

FATe
r:...f(UNIVERSITY oF GALWAY 47
55

Semaphores can be Hard to Use

* Complex patterns of resource usage
e Cannot capture relationships with semaphores alone
* Need extra state variables to record information

— Produce buggy code that is hard to write

- If one coder forgets to do V () /signal () after critical section, the whole
system can deadlock

Monitors

* Need a higher level construct:

* Groups the responsibility for correctness
e Supports controlled access to shared data

* Monitors: an extension of the monolithic monitor used in OS to allocate
memory.
* A programming language construct that supports controlled access to shared data
* Synchronisation code added by compiler, enforced at runtime (Less work for
programmer!)

* Monitors keep track of who is allowed to access the shared data and when
they can do it

* Monitors Encapsulate
* Shared data structures
* Procedures that operate on shared data
» Synchronisation between concurrent processes that invoke these procedures

oy
Uﬁﬁ\’; OLLSCOILNA GAILLIMUE

et

Y
- ul

S
iz -

a8y UNIVERSITY OF GALWAY
LW

Detection and Protection of
Deadlock

Requirements for Deadlock

All 4 conditions must hold for deadlock to occur:

1. Mutex: at least one held resource must be non-shareable

2. No pre-emption: resources cannot be pre-empted (no way to
break priority or take a resource away once allocated
* Locks have this property

3. Hold and wait: there exists a process holding a resource and
waiting for another resource _

_ Make code more efficient,
hence, we want them

4. Circular wait: there exists a set of processes P4, P,,...,Py such that L
. .. : .. : o __ Need to avoid circular
P, is waiting for P,, P, is waiting for P,... and P is waiting for P, wait

If only 3 conditions hold then:
* you can get starvation
= o..00cbUt not deadlock

L |
. ulmals -
o I...li UNIVERSITY OF GALWAY

Sample Deadlock

* Acquire locks in different orders

* Example:
Process 1
lock(x);
A=A+10;
lock(y);
B=B+20;
A=A+30;
unlock(y);
unlock (x)

Process 2

lock(y);
B=B+10;
lock(x);
A=A+20;
B=B+30;
unlock(x);
unlock(y);

Sample Deadlock — Check for Deadlock

* Example:

Process 1
lock(x);
A=A+10;
lock(y);
B=B+20;
A=A+30;
unlock(y);
unlock (x)

Process 2

lock(y);
B=B+10;
lock(x);
A=A+20;
B=B+30;
unlock(x);
unlock(y);

1. Do we have mutex?
2. Do we have hold and wait?
3. Do we have no pre-emption?

4. Do we have a circular wait?

Deadlocks without Locks

* Deadlocks can occur for any resource or any time a process waits, e.g.
* Messages: waiting to receive a message before sending a message
* i.e., hold and wait

* Allocation: waiting to allocate resources before freeing another resource
* j.e., hold and wait

Testing for Real World Deadlock

* How do cars do it?
* We have rules to avoid it/recover from it
* E.g,
* Never block an intersection
* Must backup if you find yourself doing so (a form of pre-emption)

* Why does this work?
* Breaks a “hold and wait”

* Shows that refusing to hold a resource while waiting for something else is a
key element of avoiding deadlock

Dealing With Deadlocks: Ighore

 Strategy 1: Ignore the fact that deadlocks may occur
* Write code, put nothing special in
* Sometimes you have to re-boot the system

* May work for some unimportant or simple applications where deadlock does
not occur often

* Quite a common approach!

Dealing with Deadlock: Reactive

* Periodically check for evidence of deadlock

e E.g., add timeouts to acquiring a lock, if you timeout then it implies deadlock
has occurred and you must do something

e Recovery actions:
* Blue screen of death and reboot computer

* Pick a process to terminate, e.g., a low priority one
* Only works with some types of applications
* May corrupt data so process needs to do clean-up when terminated

Dealing with Deadlock: Proactive

* Prevent 1 of the 4 necessary conditions for deadlock

* No single approach is appropriate (or possible) for all circumstances
* Need techniques for each of the four conditions

Solution 1: No Mutual Exclusion

* Make resources shareable

* Example: read-only files
* No need for locks

* Example: per-process variables
e Counters per process instead of global counter

* Not possible for all bits of code/applications

Fixing our Sample Deadlock Code

60

Solution 1: Avoid Hold and Wait

Only request a resource when you have none
* |l.e., release a resource before requesting another

Process 1 Process 2
lock(x); lock(y);
A=A+10; B=B+10;
unlock(x); unlock(y);
lock(y); lock(x);
B=B+20; A=A+20;
unlock(y); unlock(x);
lock(x); lock(y);
A=A+30; B=B+30;
unlock (x); unlock(y);

Never hold x when want y:
Works in many cases
* But you cannot maintain a relationship between x and y

et
TE OLLSCOILNAGAILLIMUE
S UNIVERSITY oF GALWAY 61

Solution 2: Avoid Hold and Wait

Acquire all resources at once
* E.g., use a single lock to protect all data

* Having fewer locks is called lock coarsening Original code:

Process 1 Process 2
Process 1 Process 2 ':CK(Xl)é) 'E;’C;(Vl)é

=A+ ’ =b+ ’

lock(z); lock(z); lock(y): lock(x):
A=A+10; B=B+10; B=B+20; A=A+20;
B=B+20; A=A+20; A=A+30; B=B+30;
A=A+30; B=B+30; unlock(y); unlock(x);
unlock (z); unlock(z); unlock (x) unlock(y);

Problem: low concurrency
 All processes accessing A or B cannot run at the same time
 Even if they don’t access both variables!

oy
AT\ OLLSCOILNA GAILLIMHE

et

Y
- ul

8
s -

c:I"lEA UNIVERSITY oF GALWAY
LW

Prevention: Adding Pre-emption

* Locks cannot be pre-empted but other pre-emptive methods are possible

Strategy: pre-empt resources

* Example:

* If process A is waiting for a resource held by process B, then take the resource from B
and give it to A

Problems:
e Only works for some resources
e E.g., CPU and memory (using virtual memory)

* Not possible if a resource cannot be saved and restored
* Otherwise, taking away a lock causes issues

e Also, there is an overhead cost for “pre-empt” and “restore”

oy
AT\ OLLSCOILNA GAILLIMHE

et

Y
- ul

S
iz -

a8y UNIVERSITY OF GALWAY
LW

Prevention: Eliminate Circular Waits

Strategy: Impose an ordering on resources
* Processes must acquire the highest ranked resource first

Process 1 Process 2 Original code:

lock(x); lock(x); Process 1 Process 2
lock(y); lock(y); lock(x); lock(y);
A=A+10; B=B+10; A=A+10; B=B+10;
B=B+20; A=A+20; lock(y); lock(x);

A = A+B; A=A+B; B=B+20; A=A+20;
unlock(y); unlock(x); A=A+30; B=B+30;
A=A+30; B=B+30; unlock(y); unlock(x);
unlock (x); unlock(y); unlock (x) unlock(y);

Locks are always acquired in the same order
* We have eliminated the circular dependency
* Means you will need to lock a resource for a longer period

Ny
*‘ﬁﬁ\% OLLSCOILNA GAILLIMUE

O LI\ =

. S|z -
cjlnlfa UNIVERSITY oF GALWAY
LW

Preventing Circular Wait: Lock Hierarchy

Strategy: Define an ordering of all locks in your transfer (accl, accZ, amount) {
program acquire (accl.a lock);

* Always acquire locks in that order acquire (accz2.a_lock);
Problem: Sometimes you do not know the order accl.balance -= amount;
that the events will be used accz.balance += amount;

* Recall our code for transferring money from 1 release(accl.a lock);

account to another release (acc2.a lock);

How do we know the global order?

» Need extra code to find this out and then acquire
them In the right order

» It could get worse

OLLSCOILNA GAILLIMUE
UNIVERSITY OF GALWAY

I_OCk Iera rChy PrOb‘emS transfer (accl, acc?2, amount)

{
acclHash = hashCode (accl) ;
acc?2Hash = hashCode (acc?);
if (acclHash < acc?2Hash) {

Solution 1.1: acquire (accl.a lock);

acquire (acc2.a lock);

 Order based on hash code of variable accl.balance -= amount;
acc?2.balance += amount;
release (accl.a lock);

release (acc2.a lock);

Problem? Jelse!
. acquire (acc2.a lock);
 What about same account with the acquire (accl.a lock) ;
same hash code? accl.balance -= amount;

acc?2.balance += amount;
release (acc2.a lock);
release (accl.a lock);

oy
AT\ OLLSCOILNA GAILLIMHE

et

Y
- ul

\
gt

C:“:A UNIVERSITY oF GALWAY
LW

Lock

ierarchy Problems

Solution 1.2:

 Order based on hash code of the locked
variable

 Deal with ties

T
AT OLLSCOILNA GAILLIMHE
:A' UNIVERSITY OF GALWAY

lock tieLock; // a global lock

transfer (accl, acc?2, amount) {
acclHash = hashCode (accl) ;
acc2Hash = hashCode (acc2) ;
if (acclHash < acc2Hash) {

}else if

acquire (accl
acquire (acc?
accl.balance
acc2.balance
release (accl
release (acc?2

acquire (acc?
acquire (accl
accl.balance
acc2.balance
release (acc?2
release (accl

} else {

.a_ lock);
.a_ lock);
—= amount;
+= amount;
.a_ lock);
.a_ lock);

(acclHash > accZ2?Hash)

.a_ lock);
.a lock);
—= amount;
+= amount;
.a_ lock);
.a_ lock);

acqguire (tielLock) ;

acquire (accl
acquire (acc?
accl.balance
acc?2.balance
release (accl
release (acc?2

.a_ lock);
.a_ lock);
—= amount;
+= amount;
.a_ lock);
.a_ lock);

release (tielLock) ;

{

Extra Resources:

Mike Swift Concurrency videos:
e https://www.youtube.com/channel/UCBRYU9uye8e-ZUWQMPBAoYA/videos

LSCOILN ILLIMHE
ITY OF GALWAY 68

https://www.youtube.com/channel/UCBRYU9uye8e-ZuWQMPBAoYA/videos

