Design by synthesis

Colm O’Riordan

School of Computer Science

Design by Synthesis - Background

Typically, we have the relation R and a set of functional
dependencies F.

We wish to create a decomposition D = Ry, Rs, ...Rp.

Clearly, all attributes of R must occur in a least one schema R;,
ie.,

Uir21 R/' = R

This is known as the attribute preservation constraint.

Functional dependencies

A functional dependency is a constraint between two sets of
attributes. A functional dependency X — Y exists if for all
tuples t; and b, if {[X] = k[X], then t[Y] = L[Y].

Usually only specify the obvious functional dependencies.
There may exist many more.

Given a set of functional dependencies F, the closure of F
(denoted F™) refers to all dependencies that can be derived
from F.

A set of inference rules exist, that allow us to deduce or infer all
functional dependencies from a given initial set.

Known as Armstrong’s Axioms |

Armstrong’s Axioms

@ Reflexivity: if X D Y, then X — Y

@ Augmentation: if X — Y, then XZ — YZ

@ Transitivity: if X - Y, Y - Z,then X - Z

@ Projectivity: if X — YZ,then X — Z

@ Additivity: if X — Y, X — Z,then X — YZ

@ Pseudo-transitivity: if X — Y, WY — Z,then WX — Z

The first three rules have be shown to be sound and complete.]

Given a set F specified on a relation R, any dependency we
can infer from F using the first three rules, holds for every state
r of R that satisfies the dependencies in F.

Complete

We can use the first three rules repeatedly to infer all possible
dependencies that be can be inferred from F.

For any set of attributes A, we can infer A", the set of attributes
that are functionally determined by A given a set of functional
dependencies.

Algorithm to determine the closure of A under F
At = A;
repeat
OldA+ = A"
for each functional dependency Y — Z € F do

if AT DY, then

At =AtUZ

until (AT == oldA™)

A set of functional dependencies, F, covers a set of functional
dependencies E, if every functional dependency in E is in F™

Equivalence

Two set of functional dependencies, E and F are equivalent is
E+ — F+

We can check if F covers E by calculating A™ with respect to F
for each functional dependency A — B and then checking that
AT includes the attributes of B

Minimal Cover Sets

A set of functional dependencies, F, is minimal if:

@ Every functional dependency in F has a single attribute for
its right hand side.

@ We cannot remove any dependency from F and maintain a
set of dependencies equivalent to F.

@ We cannot replace any dependency X — A with a
dependency Y — Awhere Y C X, and still maintain a set
of dependencies equivalent to F.

All functional dependencies X — Y, specified in F, should exist
in one of the schema R;, or should be inferrable from the
dependencies in R;.

This is known as the dependency preservation constraint. |

Each functional dependency specifies some constraint; if the
dependency is absent then some desired constraint is also
absent.

If a functional dependency is absent then we must enforce the
constraint in some other manner. This can be inefficient.

Given F and R, the projection of F on R;, denoted 7g,(F) where
R; is a subset of R, is the set X — Y in FT such that attributes
XUY e€R,.

A decomposition of R is dependency-preserving if
((mr,(F))U...U (7R, (F)))T = F*.

It is always possible to find a decomposition D with respect to F
such that:

@ the decomposition is dependency-preserving
Q all Rjin D are in 3NF

We can always guarantee a dependency-preserving
decomposition to 3NF.
Algorithm:

@ Find a minimal cover set G for F.
© for each left hand side X of a functional dependency in G,
create a relation X U Ay UAs ... Anin D, where

X — A1X — A,... are the only dependencies in G with X
as a left hand side.

© Group any remaining attributes into a single relation.

Lossless joins

Consider the following relation:
EMPPROJ: ssn, pnumber, hours, ename, pname, plocation

and its decomposition to:

EMPPROJ1: ename, plocation
EMPLOCAN: ssn, pno, hrs, pname, plocation

If we perform a natural join on these relations, we may generate
spurious tuples.

Lossless Joins
Also known as non-additive joins.

—

When a natural join is issued against relations, no spurious
tuples should be generated.

A decomposition D = {Ry, Ro, ... Ry} of R has the lossless join
property wrt to F on R if for every instance r the following holds:

> (7R, (r), ... mR,(r)) =)

We can automate procedure for testing for lossless property. J

Can also automate the decomposition of R into Ry, ... Ry such
that it possesses the lossless join property.

A decomposition D = { Ry, R>} has the lossless property iff:
@ functional dependency (R1 N Ro) — {Ry — Ro}isin F+
@ or functional dependency (R1 N Rx) — {R> — Ry} isin FT

Furthermore, if a decomposition has the lossless property, and
we decompose one of R; such that this also is a lossless
decomposition, then replacing that decomposition of R; in the
original decomposition will result in a lossless decomposition.

LetD=R

while there is a schema B in D that violates BCNF do
choose B
find functional dependency (X — Y) that violates BCNF
replace B with
(B—Y)and (XUY)

So, we guarantee a decomposition such that:

@ all attributes are preserved
@ lossless join property is enforced
@ all R; are in BCNF
It is not always possible to decompose R into a set of R; such

that all R; satisfy BCNF and properties of lossless joins and
dependency preservation are maintained.

We can guarantee a decomposition such that:

@ all attributes are preserved

@ all relations are in 3NF

@ all functional dependencies are maintained
@ the lossless join property is maintained

Algorithm: Finding a key for relation schema R

set K:=R.
For each attribute A € K.
compute (K — A)™ wrt to set of functional dependencies.
if e (K — A)™ contains all the attributes in R, the set K :=
K- {A}.

Summary

Given a set of functional dependencies F, we can develop a
minimal cover set.

Using this we can decompose R into a set of relations such that
all attributes are preserved, all functional dependencies are
preserved, the decomposition has the lossless join property
and all relations are in 3NF.

Advantages
@ Provides a good database design.
@ Can be automated.

Disadvantages
@ Oftentimes, numerous good designs are possible.

