
Introduction Query processing Concurrency Control and Recovery

More Database Models: distributed databases

November 7, 2023

Distributed Database November 7, 2023 1 / 21



Introduction Query processing Concurrency Control and Recovery

In a centralised database management system all system components and data reside
at a single site
In recent years, there has been a growing trend towards distributed database systems.

Distributed nature of some database applications: a company may have many
different locations and data at each location

Increased reliability and availability: if data and DBMS s/w is distributed, then user
is not dependent on just one site

Data Sharing

Improved Performance: local queries may be executed more efficiently.

Distributed Database November 7, 2023 2 / 21



Introduction Query processing Concurrency Control and Recovery

Distribution leads to increased complexity in system design and implementation:

Additional functionality is required:
to allow access to remote sites
to keep track of data distribution data and replication
to devise execution strategies for queries and transactions that access many sites
to maintain consistency across sites
to allow recovery from new types of failures

Distributed Database November 7, 2023 3 / 21



Introduction Query processing Concurrency Control and Recovery

Data Fragmentation

Horizontal Fragmentation

Fragment tables into sub-tables based on certain SELECT restrictions.

Vertical Fragmentation

Sets of attributes from a table are stored at different sites. This type of fragmentation
can be defined by a PROJECT operation.
Vertical fragmentation is never totally disjoint as the key attributes must be stored at
each site. Necessary in order to reconstruct the table.

Hybrid fragmentation

Defined by a sequence of SELECTs and PROJECTs

Distributed Database November 7, 2023 4 / 21



Introduction Query processing Concurrency Control and Recovery

Fragmentation Schema

A fragmentation schema (which will be in every data catalog for each client) is a full set
of fragmentation definitions.

Allocation Schema
An allocation schema (also in the catalog) defines the location of fragments

Distributed Database November 7, 2023 5 / 21



Introduction Query processing Concurrency Control and Recovery

Replication

Useful in improving availability of data

Full Replication: store whole database at each site

Partial Replication: replicate certain fragments

No replication

Distributed Database November 7, 2023 6 / 21



Introduction Query processing Concurrency Control and Recovery

Query processing

Distributed Database November 7, 2023 7 / 21



Introduction Query processing Concurrency Control and Recovery

In a centralised DBMS, we attempt to maximise efficiency by reducing the size of
intermediate tables.

In distributed DBMS, the most significant measure of cost is the quantity of data
transferred.

The most common execution strategies are based on reducing network traffic.

The semi − join “operator”, is the standard approach where no redundant tuples
or attributes are transferred. Only attributes needed in join conditions or in the final
result are transferred.

Distributed Database November 7, 2023 8 / 21



Introduction Query processing Concurrency Control and Recovery

Distributed Query Processing: small example

Assume relations employee, dept, and project are stored at site1, site2 and site3
respectively.

Assume also no fragmentation or replication of these relations.

We wish to join tables to obtain the result at some site sitei , i.e we need to
compute employee ./ dept ./ project.

No one strategy is always the best.

The relations involved, their size, selectivity of joins etc. will all vary over time.

Distributed Database November 7, 2023 9 / 21



Introduction Query processing Concurrency Control and Recovery

Distributed Query Processing: semi-join

The semi-join operator is a commonly adopted approach to guarantee some
degree of efficiency.
Let relations r and s be at site1 and site2 respectively. We wish to calculate r ./ s.
Often, there will be many tuples in r and s that will not be included in the result.

Distributed Database November 7, 2023 10 / 21



Introduction Query processing Concurrency Control and Recovery

Distributed Query Processing: semi-join

1 Create tmp1 comprising the join attributes of r

2 Ship tmp1 to site2

3 Execute s ./ tmp1 : −tmp2 at site2

4 Ship tmp2 to site1

5 Evaluate r ./ tmp2 at site1

Usually reduces the number of spurious tuples to be transferred.

Distributed Database November 7, 2023 11 / 21



Introduction Query processing Concurrency Control and Recovery

Concurrency Control and Recovery

Distributed Database November 7, 2023 12 / 21



Introduction Query processing Concurrency Control and Recovery

Concurrency Control and Recovery

Numerous problems arise in distributed databases that do not exist in a centralised
DBMS:

Dealing with multiple copies of data items. The concurrency control mechanism
must ensure consistency between these items

Failure of individual sites: The DBMS should continue to operate; and when the
site recovers it should be brought up to date

Failure of communication links

Distributed Commit

Distributed Deadlock

Distributed Database November 7, 2023 13 / 21



Introduction Query processing Concurrency Control and Recovery

Recovery

In order to facilitate recovery we must generate atomicity of transactions.

This becomes a more difficult problem in distributed databases as a transaction
must commit at all sites or must fail at all sites.

A two-phase commit procedure is usually adopted.

A transaction coordinator is located at one site, sitei

When a transaction T completes execution coordinator is informed.

Distributed Database November 7, 2023 14 / 21



Introduction Query processing Concurrency Control and Recovery

Phase 1

[prepare,T ] is added to log at sitei ; log is force-written.

[prepare,T ] message is sent by the coordinator to all involved sites.

Transaction managers at sites return an [abort ,T ] message or a [ready ,T ]
message (whether T has successfully terminated or not).

If [ready ,T ] entry is sent by a site, individual logs are then force-written.

Distributed Database November 7, 2023 15 / 21



Introduction Query processing Concurrency Control and Recovery

Phase 2

if all sites respond with a [ready ,T ] (within in given time), the transaction is
considered committed.

[commit ,T ] is added to the log. Force-write log.

else, [abort ,T ] is placed. Force-write log.

Coordinator then informs all sites as to whether T has committed or not.

Variations on this approach. Most of these variations attempt to increase the
efficiency of recovery.

Distributed Database November 7, 2023 16 / 21



Introduction Query processing Concurrency Control and Recovery

These algorithms require a coordinator. The coordinator is usually chosen in
advance. Measures have to be taken to ensure correctness if the coordinator
happens to crash.

Backup Coordinator: maintains up-to-date copy of coordinator. Can be extended
to have a chain of backups.

Election protocols: If the coordinator crashes, any involved sites may try to
assume control. If they obtain the majority of votes, they assume control and
inform all others.

Distributed Database November 7, 2023 17 / 21



Introduction Query processing Concurrency Control and Recovery

Concurrency Control

Most approaches merely extend centralised approaches of 2-phase locking and
time-stamping:

With locking a single Lock Manager can be chosen: one site chosen as lock
manager. All locks are granted by the lock manager at this site.

Advantage: Easy to implement.

Disadvantages: Leads to bottleneck at lock manager site; particularly if
fine-grained locking used.

Over-dependence on one site

Distributed Database November 7, 2023 18 / 21



Introduction Query processing Concurrency Control and Recovery

Multiple lock managers

Each site possesses its own lock manager for items present at that site.

For non-replicated items, no real problems arise.

For items replicated at many sites, a transaction issuing a write_item needs to
send a request to all lock managers. Each lock manager sends an acceptance or
a rejection.

A majority protocol is typically used, i.e., if the majority of responses are grants,
then transaction obtains lock.

Distributed Database November 7, 2023 19 / 21



Introduction Query processing Concurrency Control and Recovery

Distributed Deadlock

One potential problem of distributed locking protocols is the possibility of
distributed deadlock.

Further complicated by the potential of phantom deadlocks.

Many algorithms exist to try and efficiently deal with this problem.

Distributed Database November 7, 2023 20 / 21



Introduction Query processing Concurrency Control and Recovery

Timestamping

Time-stamping can also be extended:

Timestamps generated at each local site

Difficulties arise with respect to ordering transactions. If some sites have higher
throughput, they will have higher timestamps and hence timestamp ordering will
be invalid.

Usually create timestamp by actualy taking combining actual timestamp and site
identifier.

Ordering is usually enforced by using logical clock schemes.

Distributed Database November 7, 2023 21 / 21


	Introduction
	Query processing
	Concurrency Control and Recovery

