
- CT101 -
Computing Systems

Dr. Frank Glavin

Room 404, IT Building

Frank.Glavin@NUIGalway.ie

School of Computer Science,

National University of Ireland, Galway

Introduction to Computing Systems

School of Computer Science2

Computing Systems in a Nutshell

Application Software

Operating Systems

CPU Architecture & Microarchitecture

Sequential & Combinatorial Digital Logic

Physics & Devices

3
School of Computer Science

Input -> Process -> Output model

• Computer system is supposed to perform a useful operation,
such as word processing, retrieval and manipulation of data,
bookkeeping, etc.
• i.e. a credit card transaction operation

• Regardless of the type of operation to be performed, the work of
a computer can be characterized as an

input->process->output model:
• The program retrieves input from a disk file, mouse, keyboard or other

type of input,
• Processes the input
• Produces the output to a disk, terminal, printer or some other type of

output device

• All of the above operations are repetitive in nature

4
School of Computer Science

File Edit Workflow

Keyboard

Document
modifications

Document
validation

Storage
(Disk/RAM)

Display Print

5
School of Computer Science

Computing System Components

• Hardware – provides the physical mechanisms to input and output
data, manipulating data and controlling the various input, output,
storage and communication components

• Software – both application and system, which provides instructions
that tell the hardware exactly what tasks are to be performed and in
what order

• Data being manipulated – can be alphanumeric, graphic or any other
form. In all cases it is represented in a form that the computer will
understand and manipulate

6
School of Computer Science

Architecture versus Organization

• Architecture

• Refers to those attributes of a system visible to a programmer

• The architecture of a CPU is actually its instruction set, number of bits used for data
representation, addressing techniques, etc…

• Organization

• Refers to the operational units and their interconnections that realize the
architectural specifications

• Hardware details transparent to the programmer, such as control signals between
different functional units, memory type (i.e. dynamic RAM or static RAM, etc…),
registers type (static or dynamic), etc..

• It is an architectural issue whether a computer will or will not have a specific
instruction (i.e. multiply), but it is an organization issue whether that
instruction will be implemented by a special arithmetic unit or it will be
implemented using the adder of the system by repetitive add operations

7
School of Computer Science

Computing Systems Description

• Top down approach
• Starting from a top view and decomposing the system into its

subparts

• Bottom up approach
• Starting from the bottom and building up a complete description

• Top-down approach seems to be the clearest and most
effective.
• However we will use both approaches trying to apply the best

approach to a specific area

8
School of Computer Science

Structure versus Function

• Computing systems are complex machines made out of
millions and millions of different components.
• How can one clearly describe them??

• The key is to recognize the hierarchical nature of most complex
systems, including the computer.

• Hierarchical system organized in a number of levels. Each level is
characterized by structure and function:

• Structure: the way the components are interconnected

• Function: the operation of each individual component as part of the
structure

9
School of Computer Science

Computing Systems Function

• Data Processing
• Fundamental types of data

• Fundamental types of processing

• Data Storage
• Short term storage

• Long term storage

• Data Movement
• Input/Output for devices directly

connected (peripherals)

• Data communication for moving data
over long distances

• Control
• External (users)

• Internal (manage resources)

10

Computing System Structure

11

CPU Structure

12
School of Computer Science

Computing Systems Software

• Application software

• Performs specific tasks for users: spreadsheets, database
systems, desktop publishing, program development, games, etc…

• System software

• Provides infrastructure for application software

• Consists of operating system and utility software

13
School of Computer Science

Kernel

Memory
Manager

File
Manager

Device I/O
Manager

User Interface

Operating System Components

14
School of Computer Science

Application Programming Interface

Review Question 1

Architecture of a CPU refers to:

A. Its instruction set, number of bits used for data representation,
addressing techniques, etc

B. Details on how the instructions are implemented

C. Details on how various subsystems (Arithmetic and Logic Unit,
Registers and Control Unit) are interconnected

D. The operations of the control unit

15
School of Computer Science

Review Question 2

Out of the options below, identify one that is NOT a function of
a computing system

A. Data storage

B. Power consumption

C. Data processing

D. Data movement

16
School of Computer Science

Review Question 3

Out of the options below, identify the one that is NOT part of a
computing system structure

A. CPU

B. Memory

C. Buses

D. Data

17
School of Computer Science

References

• “The Architecture of Computer Hardware and Systems Software”,
Irv Englander, ISBN: 0-471-36209-3

• “Computer Systems”, J Stanley Warford, ISBN: 0-7637-16633-2

18
School of Computer Science

- CT101 -
Computing Systems

Dr. Fatemeh Ahmadi Zeleti

Fatemeh.ahmadizeleti@NUIGalway.ie

School of Computer Science,

National University of Ireland, Galway

Introduction to Operating Systems

School of Computer Science

2

Contents

• The History of Operating Systems

• Operating System Architecture

• Coordinating the Machine’s Activities

• Handling Competition Among Processes

• Security

3
School of Computer Science

Operating System

• Interface between the user and the hardware

4
School of Computer Science

Functions of Operating Systems

• Oversee operation of computer

• Store and retrieve files

• Schedule programs for execution

• Coordinate the execution of programs

Other important yet hidden functions of an OS

• manage the computer's resources, such as the central processing unit,

memory, disk drives, and printers,

• establish a user interface, and

• execute and provide services for applications software

5
School of Computer Science

OS – Resource

Manager

CPU Memory I/O

Evolution of Shared Computing

• Batch processing OS

• Requires batches of jobs of the same type

• Multiprogramming OS

• Implemented by Multiprogramming

• Multitasking OS / Time-sharing / Fair share

• An extension of multiprogramming

• Multiprocessing OS

• Require multiprocessor machines

• Interactive processing OS/ Real Time OS

• Requires real-time processing

• Embedded OS

• FYI other OSs: Distributes OS, Multiuser OS…
6

School of Computer Science

Batch Processing

7
School of Computer Science

Multiprogramming OS and Time Sharing /

Multitasking OS

• Users seeking services from same machine at the same

time – time sharing

• Implemented using a technique called multiprogramming (time is divided into

multiple intervals, execution of one job is limited to a single time interval)

• Multiple terminals connected to same machine

• Driven by the fact that in the past computers were very expensive

• When multiprogramming is applied to single-user

environments is usually called multitasking

8
School of Computer Science

Multiprocessing OS

• Provide time sharing/multi-tasking capabilities by assigning different

tasks to different processors as well as sharing the time of one single

processor

• Problems to solve:

• Load balancing – dynamically allocating tasks to the various processors so that

all of them are used efficiently

• Scaling – breaking tasks into sub-tasks compatible with the number of

processors available

• Trend to develop a network wide operating system rather than

networks of individual operating systems

9
School of Computer Science

Interactive Processing/ Real-Time OS

10
School of Computer Science

Embedded OS

• Embedded OSs can be found in mobile phones, cars, large laser

printers, some home appliances etc.

• Other examples: Embedded Linux - Of which Android is a subset

• Limited data storage and power conservation are the big challenges

• Embedded operating system does not load and execute

applications. Therefore, the system is only able to run a single

application

• The applications are built into the OS or part of the OS, so they are

loaded immediately when the OS starts

11
School of Computer Science

Types of Software

• Application software

• Performs specific tasks for users: spreadsheets, database systems,

desktop publishing, program development, games, etc…

• System software

• Provides infrastructure/platform for application software to run

• Consists of operating system and utility software

12
School of Computer Science

Software Classification

13

Operating System Components

• Shell: Communicates with users

• Text based

• Graphical user interface (GUI)

• Kernel: Performs basic required functions

• Storage / File manager

• Device drivers

• Memory manager

• Process manager (Scheduler, dispatcher, etc..)

14
School of Computer Science

The shell as an interface between users and the operating system

15

Storage/Hard Disk Management with the

help of File Management

• Role – coordinate the use of machine’s mass storage facilities

• Hierarchical organization

• Directory (or Folder): A user-created bundle of files and other directories

(subdirectories)

• Directory Path: A sequence of directories within directories

• Access/operations to files is provided by file manager via a file

descriptor

16
School of Computer Science

I/O Device Management

• Part of OS presented as a collection of device drivers –

specialized software that communicate with the controllers

to carry out operations on peripheral devices connected to

the computer

• Each driver is specifically designed for its type of device

(e.g. printer, monitor, etc..) and translates generic requests

into device specific sequence of operations

17
School of Computer Science

Memory Management /Main Memory/RAM

• Has the task of coordinating the use of main memory –

allocates/deallocates space in main memory

• When the total required memory space exceeds the physical

available space.

• May create the illusion that the machine has more memory than it

actually does (virtual memory) by playing a “shell game” in which

blocks of data (pages) are shifted back and forth between main

memory and mass storage

18
School of Computer Science

Processes

• Process: The activity of executing a program

• Program – static set of directions (instructions)

• Process – dynamic entity whose properties change as time

progresses. It is an instance in execution of a program.

• Process State: Current status of the activity

• Program counter

• General purpose registers

• Related portion of main memory

19
School of Computer Science

Process Management

• Scheduler – the part of kernel in charge with the strategy

for allocation/de-allocation of the CPU to each competing

process

• Maintains a record of all processes in the OS (via a process

table), introduces new processes to this pool and removes the

ones that completed

• Dispatcher is the component of the kernel that overseas the

execution of the scheduled processes

• Achieved by multiprogramming

20
School of Computer Science

Scheduler

• Scheduler: Adds new processes to the process table/memory and

removes completed processes from the process table

• Process table contains

• Memory area assigned to the process

• Priority of the process

• State of the process (ready or waiting)

21
School of Computer Science

Dispatcher

• Dispatcher: Controls the allocation of CPU (of time slices)

to the processes in the process table/memory

• The end of a time slice is signaled by an interrupt.

• Each process is allowed to execute for one time slice

• It performs “process switch” – procedure to change from

one process to another

• ProcessA→ Dispatcher→ ProcessB

22
School of Computer Science

Time-sharing between process A and process B

23
School of Computer Science

Security
• One of the role of OS is to provide security

• Attacks from outside

• Problems

• Insecure passwords

• Sniffing software

• Counter measures

• Auditing software

• Example:

• SW that would impersonate the Operating System’s user login screen

• Attacks from inside (Security at the process level: No process can
interfere with the other one)

• Securing the CPU to ensure that only one process can run at the same
time

• In case of Multiprocessing, securing all the processes in all the CPUs

24
School of Computer Science

Security (continued)

• Attacks from inside

• Problem: Unruly processes

• Counter measures: Control process activities via privileged modes

and privileged instructions

• Examples on attacker SW:

• Alters the timer of OS – extend its own time slice and dominate the machine

• Access to peripheral devices directly – access to files that otherwise access

would have been denied

• Access memory cells outside its allowed area, it can read and alter data from

other processes

25
School of Computer Science

Handling Competition for Resources

• Important task of OS is to allocate resources to the

processes

• Semaphore: A “control flag”

• Critical Region: A group of instructions that should be

executed by only one process at a time

• Mutual exclusion: Requirement for proper implementation

of a critical region so that only one process at a time will

execute the sequence of instructions part of a critical region

26
School of Computer Science

Deadlock

• Another problem of resource allocation - Processes block each other

from continuing

• Conditions required for deadlock

1. Competition for non-sharable resources

2. Resources requested on a partial basis

3. An allocated resource can not be forcibly retrieved

27
School of Computer Science

A deadlock resulting from competition for non-

shareable railroad intersections

28

Getting OS Started (Bootstrapping)

• Booting: Procedure that transfers the OS from mass

storage (permanent) into the main memory (volatile-thus

empty when machine is turned on)

• Bootstrap: Program in ROM (example of firmware)

• Run by the CPU when power is turned on (PC starts at pre-defined

address when power is applied)

• Transfers operating system from mass storage to main memory

• Executes jump to operating system

29
School of Computer Science

The Booting Process

30

Reference

• J Glenn Brookshear “Computer Science – An Overview”,

ISBN: 0-321-54428-5

31
School of Computer Science

- CT101 -
Computing Systems

Dr. Frank Glavin

Room 404, IT Building

Frank.Glavin@NUIGalway.ie

School of Computer Science,

National University of Ireland, Galway

Data Representation

School of Computer Science2

Computing Systems Data

• Usually computing systems are complex devices, dealing with a vast
array of information categories

• Computing systems store, present, and help us to modify:

• Text

• Audio

• Images and graphics

• Video

3
School of Computer Science

Digital vs. Analog (1)

• Computing systems are finite machines. They store a limited amount
of information, even if the limit is very big.
• The goal, is to represent enough of the world to satisfy our computational needs

and our senses of sight and sound.

• The information can be represented in one or two ways:
• analog or digital.

4
School of Computer Science

Digital vs Analog (2)

• Analog data is a continuous representation, analogous to the actual
information it represents.

• In example, a mercury thermometer is an analog device. The mercury rises in a
continuous flow in the tube in direct proportion to the temperature.

• Digital data is a discrete representation, breaking the information up into
separate (discrete) elements.

• Computers can’t work with analog information, so they need to digitize the analog
information.

• This is done by breaking the analog information into pieces and representing those
pieces using binary digits

5
School of Computer Science

Digital vs. Analog (3)

• Why digital signal?
• Both electronic signals (analog and digital) degrade as they move

down a line. The voltage of the signal fluctuates due to environmental
effects.

• As soon as an analog signal degrades, information is lost. Since any
voltage level within the range is valid, it is impossible to know that the
original signal was even changed

• Digital signals jump sharply between two extremes (high and low
state). A digital signal can degrade quite a bit until the information is
lost, because any value over a certain threshold is considered high
value and below the threshold is considered low value

• Answer: Signal Integrity can be maintained!

6
School of Computer Science

Digital vs. Analog (4)

7
School of Computer Science

• You can still retrieve the information from a
reasonably degraded digital signal

• Periodically a digital signal is reclocked to
regain its original shape. As long as it is
reclocked before too much degradation, no
information is lost.

Binary Representation (1)

• One bit can be either 0 or 1. Therefore, one bit can
represent only two things.

• To represent more than two things, we need multiple bits.
Two bits can represent four things because there are four
combinations of 0 and 1 that can be made from two bits: 00,
01, 10,11.

• In general, n bits can represent 2n things because there are
2n combinations of 0 and 1 that can be made from n bits.
Note that every time we increase the number of bits by 1,
we double the number of things we can represent.

8
School of Computer Science

Binary Representation (2)

• Why binary representation (as opposed to decimal or octal, etc..)?

• Because the devices that store and manage the digital data are far
less expensive and complex for binary representation.

• They are also far more reliable when they have to represent one out
of two possible values.

• Because the electronic signals are easier to maintain if they carry
only binary data.

9
School of Computer Science

Binary Representation

10
School of Computer Science

 A byte is made up of 8 bits

 A byte can represent 256 different pieces of information
 2 to the power of 8

Review Question 1

• Why is a digital signal better than an analogue signal in computing
systems

A. Signal integrity can be maintained relatively easy

B. Information is never lost

C. Digital signal is more precise

D. Digital signal can hold more information

11
School of Computer Science

Review Question 2

How many things can a bit represent ?

A. One

B. Two

C. Ten

D. Eight

12
School of Computer Science

Review Question 3

How many things can one byte represent ?

A. 2

B. 8

C. 256

D. 128

13
School of Computer Science

Data Formats - How to Interpret Data

• Meaning of internal representation must be appropriate for the
type of processing to take place:
• Images & sound: have to be digitized

• Images – need detailed description of the data, how color is represented at
each data point

• Sound – need sampling rate

• Proprietary formats
• Unique to a product or company
• E.g., Microsoft Word, Excel, PowerPoint

• Standards
• Evolve two ways:

• Proprietary formats become standards (e.g., Adobe PostScript, Apple Quick
Time)

• Committee is struck to solve a problem (Motion Pictures Experts Group,
MPEG)

14
School of Computer Science

Why Standards? (1)

• Convenient – sometimes the time to market is very important
whenever trying to finish a product, therefore existing standards
may be used to save time elaborating own protocols and
interfaces

• Efficient – most of the standards are put together by committees
with wide experience in the specific area

• Flexible – usually the standards allow for manufacturer or OEM
specific extensions

• Appropriate – address a specific problem in a specific domain

15
School of Computer Science

Why Standards? (2)

• Allow communication and sharing of information

• Allow computing systems and software to interoperate
(at both hardware and software levels)

• Sometimes standards are arbitrary and have some
“blast from the past” (due to historical evolution)

16
School of Computer Science

Standards Organizations

• ISO – International Standards Organization

• IEEE – Institute for Electrical and Electronics Engineers

• CSA – Canadian Standards Association

• ANSI – American National Standards Institute

• NSAI – National Standards Authority of Ireland

17
School of Computer Science

Examples of Standards

18
School of Computer Science

Type of Data Standards

Alphanumeric ASCII, Unicode

Image JPEG, GIF, PCX, TIFF, BMP,
etc

Motion picture MPEG-2, MPEG-4, etc

Sound WAV, AU, MP3, etc..

Outline graphics/fonts PostScript, TrueType, PDF

- CT101 -
Computing Systems

Dr. Fatemeh Ahmadi Zeleti

Fatemeh.ahmadizeleti@NUIGalway.ie

School of Computer Science,

National University of Ireland, Galway

Combinational Logic Design

2School of Computer Science

Contents

• Overview

• Basic Gates and Boolean algebra

• Boolean functions manipulation and
implementation

• Complex combinatorial circuit elements
(multiplexers, decoders, encoders, comparators,
adders)

• CLC Design & Implementation

3School of Computer Science

Overview

• Gates, latches, memories and other logic components are used to
design computer systems and their subsystems

• Two types of digital logic:
• Combinatorial Logic: output is a function of inputs
• Sequential logic: output is a complex function of current inputs, previous

inputs or state and previous outputs

• Neither combinatorial logic nor sequential logic is better than the
other. In practice, both are used as appropriate in circuit design.

4School of Computer Science

Boolean Algebra

• Review Boolean algebra, basic functions and methods used to
combine, manipulate and transform Boolean functions &
application to the implementation of combinatorial logic circuitry

• A Boolean algebra value can be either true or false.

• Digital logic uses 1 to represent true and 0 to represent false.

• Main operations of Boolean algebra are:
• The conjunction and denoted as ∧ or . (multiplication)

• the disjunction or denoted as ∨ or + (sum/addition) and

• the negation not denoted as ¬

5School of Computer Science

AND (multiplication/dot notation)

x

y

out

Y(t)

X(t)

out(t)= x(t) and y(t)

amplitude

1

11

110 0

0 0

000

• Output is one if every input has

value of 1

• More than two values can be

“and-ed” together

• For example xyz = 1 only if

x=1, y=1 and z=1

x y out = x⋅y

0 0 0

0 1 0

1 0 0

1 1 1

6

OR (addition/plus notation)

x

y

out

x y out = x+y

0 0 0

0 1 1

1 0 1

1 1 1

Y(t)

X(t)

out(t)= x(t) or y(t)

amplitude

0 0

0 0

0

1 1

1 1

1 1 1

• Output is 1 if at least one input

is 1.

•More than two values can be

“or-ed” together.

• For example x+y+z = 1 if at

least one of the three values is 1.
7

NOT (negation/logical complement)

• This function operates on a

single Boolean value.

•Its output is the complement of

its input.

•An input of 1 produces an

output of 0 and an input of 0

produces an output of 1

x(t)

x'(t)

amplitude

0 0

1 0

1 1

1 0

x x'
x x'

0 1

1 0

8

XOR (Exclusive OR)

x

y

out

Y(t)

X(t)

out(t)= x(t) xor y(t)

amplitude

0 0

0 0

0

1 1

1 1

1 1 0

x y out =

0 0 0

0 1 1

1 0 1

1 1 0

• The number of inputs that are 1

matter.

• More than two values can be

“xor-ed” together.

• General rule: the output is equal

to 1 if an odd number of input

values are 1 and 0 otherwise

yx

9

XOR is a logical operation that outputs true or 1 only when inputs differ

NAND (negative AND/multiplication)

x

y

out

out(t)= x(t) NAND y(t)

Y(t)

X(t)

amplitude

0

11

110 0

0 0

111

• Output value is the

complemented output from an

“AND” function.

x y out = x NAND y

0 0 1

0 1 1

1 0 1

1 1 0

10

NAND is a logic gate which produces false or 0 only if all its inputs are true or 1

NOR (negative OR/addition)

x y out = x NOR y

0 0 1

0 1 0

1 0 0

1 1 0

• Output value is the

complemented output from an

“OR” function.

x

y

out

amplitude

Y(t)

X(t)

out(t)= x(t) nor y(t)

0 0

0 0

1

1 1

1 1

0 0 0

11

NOR is a logic gate which produces true or 1 if both the inputs to the gate are 0

XNOR (exclusive negative OR/addition)

x

y

out

x y out =x xnor y

0 0 1

0 1 0

1 0 0

1 1 1

Y(t)

X(t)

out(t)= x(t) xnor y(t)

amplitude

0 0

0 0

1

1 1

1 1

0 0 1

• Output value is the

complemented output from an

“XOR” function.

12

Manipulating Boolean Functions

x y z xy' yz xy'+yz

0 0 0 0 0 0

0 0 1 0 0 0

0 1 0 0 0 0

0 1 1 0 1 1

1 0 0 1 0 1

1 0 1 1 0 1

1 1 0 0 0 0

1 1 1 0 1 1

• Consider a function that must be 1 if either x = 1 and

y = 0 or y = 1 and z = 1

• We express it as: f(x,y,z) = xy’+ yz

13

Combinatorial Logic Circuit

• Combinatorial Logic Circuit that implements the function
f(x,y,z)=xy’+yz

14School of Computer Science

X

y

z

xy'+yz

DeMorgan’s Laws

(ab)’=a’+b’ => AND to OR

(a+b)’=a’b’ => OR to AND

• Property for generating equivalent functions
• Allows conversion of AND function to an equivalent OR

function and vice-versa

• Could allow the simplification of complex functions,
that will allow a simpler design

• It is useful in generating the complement of a function

15School of Computer Science

Using DeMorgan’s law
• Generate complement of f(x,y,z)=xy’+yz

• (xy’ + yz)’ = (xy’)’(yz)’ = (x’ + y)(y’ + z’) = x’y’ + x’z’ + yy’ + yz’ (because
yy’=0) => x’y’ + x’z’ + yz’

16School of Computer Science

x y z x'y' x'z' yz' x'y’ + y'z’ + yz'

0 0 0 1 1 0 1

0 0 1 1 0 0 1

0 1 0 0 1 1 1

0 1 1 0 0 0 0

1 0 0 0 0 0 0

1 0 1 0 0 0 0

1 1 0 0 0 1 1

1 1 1 0 0 0 0

Karnaugh Map (K map)
• Pictorial Method for minimizing logic

• The rows and columns of the K-map correspond to the possible
values of the function's input

• Each cell in the K-map represents a minterm (i.e. a three variables
function has: x’y’z’, x’y’z, x’yz’, x’yz, xy’z’, xy’z, xyz’ and xyz)

17

Gray Code order:
input values do not
follow the linear
progression

Gray Code

• The 1-bit Gray code serves as basis for the 2-bit Gray code, the 2-bit
Gray code is the basis for 3-bit Gray code, etc…

• Gray code sequences are cycles: 000 -> 001 -> 011 -> 010 -> 110 ->
111 -> 101 -> 100 -> 000 ….

• Adjacent values differ by only one bit

18

K-map Example
• Consider (xy’+yz)’ = x’y’ + x’z’ +

yz’

• Group together the 1s in the
map:
• g1: x’y’z’+x’y’z=x’y’(z’+z)=x’y’
• g2: x’yz’+xyz’ = yz’(x’+x)=yz’
• g3: x’yz’+x’y’z’=x’z’(y+y’)=x’z’

• Must select the fewest groups
that cover all active minterms
(1s): (xy’ + yz)’= x’y’ + yz’

x y z x'y'+y'z'+yz'

0 0 0 1

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 0

19

K-map for more complex function

The final minimized function is: x’z’ + wx’ + w’xyz

20School of Computer Science

w’x’y’z’ + w’x’yz’ + wx’y’z’ + wx’y’z + wx’yz + wx’yz’ + w’xyz

Possible Implementations

21

Past Exam Question

• Consider the following four input variable function:

• f(X3,X2,X1,X0) = X3’X2’X1’X0 + X3’X2’X1X0 + X3’X2X1’X0’ +
X3X2X1’X0’ + X3X2’X1’X0 + X3X2’X1X0

• Determine the minimum form of the function using a Karnaugh map.

22School of Computer Science

- CT101 -
Computing Systems

Dr. Frank Glavin

Room 404, IT Building

Frank.Glavin@NUIGalway.ie

School of Computer Science,

National University of Ireland, Galway

Alphanumeric Data

• Standards for representing letters (alpha) and numbers

• ASCII – American Standard Code for Information Interchange

• Unicode

19
School of Computer Science

Codes and Characters

• The problem:

• Representing text strings, such as
“Hello, world”, in a computer

• Each character is coded as a byte (= 8 bits)

• Most common coding system is ASCII

• ASCII = American National Standard Code for Information
Interchange

• Defined in ANSI document X3.4-1977

20
School of Computer Science

ASCII Features

• 7-bit code

• 8th bit is unused (or used for a parity bit)

• 27 = 128 codes

• Two general types of codes:

• 95 are “Graphic” codes (displayable on a console)

• 33 are “Control” codes (control features of the
console or communications channel)

21
School of Computer Science

000 001 010 011 100 101 110 111
0000 NULL DLE 0 @ P ` p
0001 SOH DC1 ! 1 A Q a q
0010 STX DC2 " 2 B R b r
0011 ETX DC3 # 3 C S c s
0100 EDT DC4 $ 4 D T d t
0101 ENQ NAK % 5 E U e u
0110 ACK SYN & 6 F V f v
0111 BEL ETB ' 7 G W g w
1000 BS CAN (8 H X h x
1001 HT EM) 9 I Y i y
1010 LF SUB * : J Z j z
1011 VT ESC + ; K [k {
1100 FF FS , < L \ l |
1101 CR GS - = M] m }
1110 SO RS . > N ^ n ~
1111 SI US / ? O _ o DEL

Most significant bit

Least significant bit
22

000 001 010 011 100 101 110 111
0000 NULL DLE 0 @ P ` p
0001 SOH DC1 ! 1 A Q a q
0010 STX DC2 " 2 B R b r
0011 ETX DC3 # 3 C S c s
0100 EDT DC4 $ 4 D T d t
0101 ENQ NAK % 5 E U e u
0110 ACK SYN & 6 F V f v
0111 BEL ETB ' 7 G W g w
1000 BS CAN (8 H X h x
1001 HT EM) 9 I Y i y
1010 LF SUB * : J Z j z
1011 VT ESC + ; K [k {
1100 FF FS , < L \ l |
1101 CR GS - = M] m }
1110 SO RS . > N ^ n ~
1111 SI US / ? O _ o DEL

i.e. ‘a’ = 11000012 = 9710 = 6116

23

95 Graphic codes

 000 001 010 011 100 101 110 111
0000 NULL DLE 0 @ P ` p
0001 SOH DC1 ! 1 A Q a q
0010 STX DC2 " 2 B R b r
0011 ETX DC3 # 3 C S c s
0100 EDT DC4 $ 4 D T d t
0101 ENQ NAK % 5 E U e u
0110 ACK SYN & 6 F V f v
0111 BEL ETB ' 7 G W g w
1000 BS CAN (8 H X h x
1001 HT EM) 9 I Y i y
1010 LF SUB * : J Z j z
1011 VT ESC + ; K [k {
1100 FF FS , < L \ l |
1101 CR GS - = M] m }
1110 SO RS . > N ^ n ~
1111 SI US / ? O _ o DEL

24

33 Control codes

000 001 010 011 100 101 110 111
0000 NULL DLE 0 @ P ` p
0001 SOH DC1 ! 1 A Q a q
0010 STX DC2 " 2 B R b r
0011 ETX DC3 # 3 C S c s
0100 EDT DC4 $ 4 D T d t
0101 ENQ NAK % 5 E U e u
0110 ACK SYN & 6 F V f v
0111 BEL ETB ' 7 G W g w
1000 BS CAN (8 H X h x
1001 HT EM) 9 I Y i y
1010 LF SUB * : J Z j z
1011 VT ESC + ; K [k {
1100 FF FS , < L \ l |
1101 CR GS - = M] m }
1110 SO RS . > N ^ n ~
1111 SI US / ? O _ o DEL

25

Alphabetic codes

000 001 010 011 100 101 110 111
0000 NULL DLE 0 @ P ` p
0001 SOH DC1 ! 1 A Q a q
0010 STX DC2 " 2 B R b r
0011 ETX DC3 # 3 C S c s
0100 EDT DC4 $ 4 D T d t
0101 ENQ NAK % 5 E U e u
0110 ACK SYN & 6 F V f v
0111 BEL ETB ' 7 G W g w
1000 BS CAN (8 H X h x
1001 HT EM) 9 I Y i y
1010 LF SUB * : J Z j z
1011 VT ESC + ; K [k {
1100 FF FS , < L \ l |
1101 CR GS - = M] m }
1110 SO RS . > N ^ n ~
1111 SI US / ? O _ o DEL

26

“Hello, world” Example

27
School of Computer Science

=
=
=
=
=
=
=
=
=
=
=
=

Binary
01001000
01100101
01101100
01101100
01101111
00101100
00100000
01110111
01101111
01110010
01101100
01100100

Hexadecimal
48
65
6C
6C
6F
2C
20
77
6F
72
6C
64

Decimal
72

101
108
108
111
44
32
119
111
114
108
100

H
e
l
l
o
,

w
o
r
l
d

=
=
=
=
=
=
=
=
=
=
=
=

=
=
=
=
=
=
=
=
=
=
=
=

Note: 12 characters – requires 12 bytes
Each character requires 1 byte

Numeric codes

000 001 010 011 100 101 110 111
0000 NULL DLE 0 @ P ` p
0001 SOH DC1 ! 1 A Q a q
0010 STX DC2 " 2 B R b r
0011 ETX DC3 # 3 C S c s
0100 EDT DC4 $ 4 D T d t
0101 ENQ NAK % 5 E U e u
0110 ACK SYN & 6 F V f v
0111 BEL ETB ' 7 G W g w
1000 BS CAN (8 H X h x
1001 HT EM) 9 I Y i y
1010 LF SUB * : J Z j z
1011 VT ESC + ; K [k {
1100 FF FS , < L \ l |
1101 CR GS - = M] m }
1110 SO RS . > N ^ n ~
1111 SI US / ? O _ o DEL

28

“4+15” Example

29
School of Computer Science

=
=
=
=

Binary
00110100
00101011
00110001
00110101

Hexadecimal
34
2B
31
35

Decimal
52
43
49
53

4
+
l
5

=
=
=
=

=
=
=
=

“4+15” is represented as
“00110100 00101011 00110001 00110101”

or “34162B1631163516”

000 001 010 011 100 101 110 111
0000 NULL DLE 0 @ P ` p
0001 SOH DC1 ! 1 A Q a q
0010 STX DC2 " 2 B R b r
0011 ETX DC3 # 3 C S c s
0100 EDT DC4 $ 4 D T d t
0101 ENQ NAK % 5 E U e u
0110 ACK SYN & 6 F V f v
0111 BEL ETB ' 7 G W g w
1000 BS CAN (8 H X h x
1001 HT EM) 9 I Y i y
1010 LF SUB * : J Z j z
1011 VT ESC + ; K [k {
1100 FF FS , < L \ l |
1101 CR GS - = M] m }
1110 SO RS . > N ^ n ~
1111 SI US / ? O _ o DEL

Punctuation, etc.
30

Common Control Codes

• CR 0D carriage return

• LF 0A line feed

• HT 09 horizontal tab

• DEL 7F delete

• NULL 00 null

31
School of Computer Science

000 001 010 011 100 101 110 111
0000 NULL DLE 0 @ P ` p
0001 SOH DC1 ! 1 A Q a q
0010 STX DC2 " 2 B R b r
0011 ETX DC3 # 3 C S c s
0100 EDT DC4 $ 4 D T d t
0101 ENQ NAK % 5 E U e u
0110 ACK SYN & 6 F V f v
0111 BEL ETB ' 7 G W g w
1000 BS CAN (8 H X h x
1001 HT EM) 9 I Y i y
1010 LF SUB * : J Z j z
1011 VT ESC + ; K [k {
1100 FF FS , < L \ l |
1101 CR GS - = M] m }
1110 SO RS . > N ^ n ~
1111 SI US / ? O _ o DEL

32

Escape Sequences

• Extend the capability of the ASCII code set

• For controlling terminals and formatting output

• Defined by ANSI in documents X3.41-1974 and X3.64-1977

• The escape code is ESC = 1B16

• An escape sequence begins with two codes:

• Example:
• Erase display: ESC [2 J

• Erase line: ESC [K

1B16 5B16

ESC [

33

Unicode (1)

• The extended version of the ASCII character set is not enough for
international use.

• The Unicode character set uses 16 bits per character. Therefore, the
Unicode character set can represent 216, or over 65 thousand,
characters.

• Unicode was designed to be a superset of ASCII. That is, the first 256
characters in the Unicode character set correspond exactly to the
extended ASCII character set.

34
School of Computer Science

Unicode (2)

• Current version: Unicode 13 (March 2020)

• Added characters brings total to 143,859. These additions
include various new scripts and new emoji characters.

• The new scripts and characters add support for lesser-used
languages worldwide.

http://www.unicode.org
35

Audio Information Representation (1)

• Sound is perceived when a series of air compressions
vibrate a membrane in our ear, which sends signals to our
brain

• A stereo sends an electrical signal to a speaker to produce
sound. This signal is an analog representation of the sound
wave. The voltage in the signal varies in direct proportion to
the sound wave

• To digitize the signal we periodically measure the voltage of
the signal and record the appropriate numeric value. The
process is called sampling

• In general, a sampling rate of around 40,000 times per
second is enough to create a very good high-quality sound
reproduction

38
School of Computer Science

Audio Information Representation (2)

Sampling an audio signal
39

Audio Formats

• Several popular formats are: WAV, AU, AIFF, VQF, and MP3.
Currently, the dominant format for compressing audio data is
MP3.

• MP3 is short for MPEG-2, audio layer 3 file.

• Compressed formats usually employ both lossy and lossless
compression.
• Analyzes the frequency spread and compares it to mathematical models

of human psychoacoustics (the study of the interrelation between the ear
and the brain) and it discards information that can’t be heard by humans.

• Then the bit stream is compressed using a form of Huffman encoding to
achieve additional compression.

40
School of Computer Science

- CT101 -
Computing Systems

Dr. Fatemeh Ahmadi Zeleti

Fatemeh.ahmadizeleti@NUIGalway.ie

School of Computer Science,

National University of Ireland, Galway

Combinational Logic Design

2School of Computer Science

Digital Logic (Covered)

3

Combinational
Circuits

4

Buffers

• A digital buffer (or a voltage buffer) is an electronic circuit
element that is used to boost power without changing
voltage waveform

• Used to isolate the input from the output, providing either
no voltage or a voltage that is same as the input voltage

5School of Computer Science

in out

Buffers

• Regular buffer - always passes the input to the output

• Its purpose being to boost the signal of the input to a higher level
(maintain 0 or 1 values to ensure that the system performs properly)

• It will introduce a delay (as any other gate), known as propagation time through buffers.

• If they are not used wisely, they can be a dangerous source of hazard in
digital logic circuits

6

in out
in out

0 0

1 1

Buffers
• The tri-state buffer: it has a data input, just like regular buffers,

but also has an ENABLE/CONTROLLER input.
• If ENB=1 then the buffer is enabled (input is passed to output)
• if ENB=0, the buffer is disabled (regardless of the input, output will be in a

high impedance state Z)

• High Impedance/Resistance State
• I = V/R (Ohm Law) if R (impedance) -> very big then the I (current) goes

nearly to zero (I-> 0)
• They can be disabled to essentially break connections.

7

ENB
in out ENB

in out

in ENB out

x 0 Z

0 1 0

1 1 1

in ENB out

x 1 Z

0 0 0

1 0 1

Multiplexers
• It is a combinational circuit that selects binary information from

one of the input lines and directs it to the output line

• It is a selector.
• Chooses one of its data inputs and passes it to the output according to

some other selection inputs

• Consider four binary data inputs as inputs of a multiplexer.
• Two select signals will determine which of the four inputs will be passed

to the output.

• Figure (a) presents the internal structure of a four inputs
multiplexer, b and c present the multiplexer schematic
representation with active high enable signal (b) and active low
enable signal (c)

8School of Computer Science

Multiplexer internal structure

Multiplexer

9School of Computer Science

Multiplexer

- The four AND gates include the following pair of
inputs, besides the data inputs: S1’S0’, S1’S0, S1S0’
and S1S0.

- If S1=0 and S0=0 then the inputs at the top AND
gate are input0, S1’(1) and S0’(1). The output of
this AND gate is the value of the Input0. The other
three AND gate inputs are either S1 or S0 or both
… that means that the output of those gates is
zero. The inputs of the OR gate are Input0 and
three zeros => the output is Input0

- Setting S1 and S0 to 01, 10 or 11 produces outputs
of the value of Input1, Input2, respectively Input3

- Finally the values are passed to a tri-state buffer. If
the buffer is Enabled (E=1) than the value is passed
to the output of the multiplexer. Otherwise, the
output is high impedance value Z.

- To summarise, the values for S1 and S0 will decide
which input is chosen.

10School of Computer Science

Multiplexer

schematic

representation

with active high

enable signal

Multiplexer

schematic

representation

with active low

enable signal

Multiplexers

11

Multiplexer
• Multiplexers can be cascaded to select from a large

number of inputs

• 4-to-1 multiplexer made of 2-to-1 multiplexers

12

Encoders
• An encoder is a circuit that changes set of signals into codes

• Encoder receives 2n inputs and outputs a n bit value corresponding to
the one input that has a value of 1

• A 4-to-2 encoder and its schematic representations are presented in
(a), (b) and (c) .

• Exactly zero or one input is

active
- It will fail if more than one input is

high

- The encoder will output S1 S0 = 00

if either input 0 is active or no input

is active.

- The V signal distinguishes between

these two cases 13

Encoders

14

Priority Encoders
• A priority encoder works just a regular encoder, with one exception:

whenever one or more input is active, the output is set to
correspond to the highest active input

• For example, in a 4-to-2 encoder, if Inputs 0, 1, and 3 are hight, then
the S1 S0 = 11 output is set, corresponding to the input 3.

- This circuitry disables a given input if a

higher numbered input is active

- This guarantees that not more than one

active signal is passed to the rest of the

circuitry, which can be the same as the

regular encoder 15

Decoders
• The decoder is the exact opposite of the encoder.

• A decoder is a circuit that changes a code into a set of signals

• Accepts a binary value as input and decodes it.
• It has n inputs and 2n outputs, numbered from 0 to 2n -1.
• Each output represents one minterm of the inputs

• The output corresponding to the value of the n inputs is activated
• For example, a decoder with three inputs and eight outputs will activate

output 6 whenever the input values are 110.

• Figure (a) shows a two to four decoder internal structure, (b) and
(c) show its schematic representation with active high enable
signal and active low enable signal 16School of Computer Science

• For inputs S1 S0 = 00, 01, 10 and

11 the outputs 0, 1, 2 and

respectively 3 are active

• As with the multiplexer, the

output can tri-state all outputs

Decoders

17School of Computer Science

Decoders

• Can have active high or active low enable signals.

• Other variants:

• Have active low outputs (the selected output has a value 0 and all the other
outputs have a value 1)

• Output all 0 when not enabled instead of state Z (the ones in the figure).

18

Comparators
• Compares two input values or voltages (connects analog to digital

world)

• A comparator compares two n-bit binary values to determine
which is greater or if they are equal (Reference voltage/input vs.
detected voltage/input)
• Consider the simple 1-bit comparator to illustrate the design

• It is possible to extend the design for multi-bit numbers

19School of Computer Science

X>Y only if Xi=1, Yi=0

X<Y only if Xi=0, Yi=1

X=Y only if Xi=Yi=0 or

Xi=Yi=1

1 bit comparator

1-bit comparator with propagated inputs

20School of Computer Science

N bit comparator

21School of Computer Science

• If: X = Yin is active then the numbers are equal so far

• If X>Yin or X<Yin is active, that value is simply passed

through; This corresponds to the case where we have checked the

high-order bits and already know which value is larger.

Adders/Half Adder
• Used not only to perform addition but also to perform subtraction,

multiplication and division

• The most basic of the adders is the half adder
• Inputs two 1-bit value, x and y, and outputs their 2-bit sum as bits C and S

• Bit C is the carry and bit S is the sum
• In real world, circuits that

perform addition are more than 1

bit wide

• A wider than 1-bit adder can’t use

this circuit, because there is no way

to input carry information from the

previous bits

22

Full Adder

• Three inputs:
• Two data inputs

• One carry input

• Functions 23School of Computer Science

CinYinXinS =

YinCinXinCinXinYinC ++=

N-bit adders
• With the carry input, full adders can be

cascaded to produce an n bit adder by
connecting output C from one adder to
input Cin of the next adder

• Such an adder is called Ripple adder
(because the bits ripple through the
adder). Consider the worst-case
scenario (X=1111 and Y=0001) and
follow the carry through the circuit

• A four-bit ripple adder is presented

24School of Computer Science

Memory Circuits

• Group of circuits used to store data
• It is not strictly combinatorial in design, but it can be used as combinatorial

component in circuit design; for that reason we will include a brief presentation of
the memory circuitry in this presentation

• Has some number of memory locations, each of which stores a binary
value of some fixed length

• The number of locations and the size of locations is variable from memory
chip to memory chip, but it is the same within the same chip

• The size is denoted as the number of locations times the number of bits in
each location

25School of Computer Science

Memory

• The address input of a memory chip choose one of its locations.
• A memory chip with 2n locations requires n address inputs, usually labeled An-1An-2 …

A0 (512 X 8 memory has address lines A8A7A6 … A0)

• The data pins on a memory chip are used to access the data. There is one
pin per bit in each location.
• For chips with m bits per location, these pins are Dm-1Dm-2 … D0 (512 X 8 memory has

address lines D7D6D5 … D0)

• Other pins:
• Chip enable (CE) enables or disables the chip. When disabled, the data pins output

the high impedance Z; CE may be active high or low
• Some other type of pins, dependent upon the class of the memory

26School of Computer Science

Memory

• Two main memory classes:
• ROM (Read Only Memory) (a)
• RAM (Random Access Memory) (b)

27School of Computer Science

ROM (Read Only Memory)

• Data is programmed into the chip using an external ROM programmer
• The programmed chip is used as a component in the circuit
• The circuit doesn’t change the content of the ROM

• Can be used as lookup tables to implement various Boolean functions – can be used
implement CLCs

• Used by PCs to store the instructions that form their Basic Input/Output System (BIOS)

• When power is removed from a ROM chip, the information is not lost, so it is a non-
volatile type of memory

• It has an OE (Output Enable) specific control pin. Both OE and CE must be enabled in
order for the ROM to output data; otherwise its data output is tri-stated.

28School of Computer Science

RAM (Random Access Memory)
• Read/write memory, that initially doesn’t contain any data

• The computing system that it is used in usually stores data at various
locations to retrieve it later from these locations

• Its data pins are bidirectional (data can flow into or out of the chip via
these pins), in contrast to those of ROM that are output only

• It loses its data once the power is removed, so it is a volatile memory

• It has a directional select signal R/W’; When R/W’=1, the chip outputs
data to the rest of the circuit; when R/W’ = 0 it inputs data from the
rest of the circuit

29School of Computer Science

Application of the
Combinatorial Circuit Design (LED Display)

• Some useful components can be designed using the gates and the
components described so far during the course

• This part describes the design of a binary coded decimal (BCD) to
7 segment decoder, which is used in digital displays

• This design will use only combinatorial logic gates, making use of
the minimization logic techniques we have described

• Alternative design can be done using lookup tables for each logical
function stored in ROM

30School of Computer Science

Design Requirements for
7 segments display decoder

a

b

c

d

e

f gBCD to 7

Segment

Decoder

a

b

c

d

e

f

g

X3

X2

X1

X0

31School of Computer Science

Design the logic circuitry that will drive a seven segment

LED display and will be able it to represent numbers

from 0 to 9

Possible numbers and their representation on 7 segment display

a

b

c

d

e

f b

c

a

b

d

e

g

a

b

c

d

g
b

c

f g

a

c

d

f g

a

c

d

e

f g

a

b

c

a

b

c

d

e

f g

a

b

c

f g

32School of Computer Science

Truth Table (Encoder and Decoder for the LED
Display)

X3 X2 X1 X0 a b c d e f g

0 0 0 0 1 1 1 1 1 1 0

0 0 0 1 0 1 1 0 0 0 0

0 0 1 0 1 1 0 1 1 0 1

0 0 1 1 1 1 1 1 0 0 1

0 1 0 0 0 1 1 0 0 1 1

0 1 0 1 1 0 1 1 0 1 1

0 1 1 0 1 0 1 1 1 1 1

0 1 1 1 1 1 1 0 0 0 0

1 0 0 0 1 1 1 1 1 1 1

1 0 0 1 1 1 1 0 0 1 1

1 0 1 0 x x x x x x x

1 0 1 1 x x x x x x x

1 1 0 0 x x x x x x x

1 1 0 1 x x x x x x x

1 1 1 0 x x x x x x x

1 1 1 1 x x x x x x x

33School of Computer Science

0000 – Displays 0

0001 – Displays 1

0001 binary to decimal = 1

1001 – Displays 9

Signal a K-map implementation

34School of Computer Science

X1X0

00 01 11 10X3X2

00 1 0 1 1

01 0 1 1 1

11 X X X X

10 1 1 X X

a = f(X3, X2, X1, X0) =

X3

+ X1

+ X2X0

+ X2’X1’X0’

X3

X2

X1

X0

a

To make the K-map, look the truth table in the previous slide and see where a is 1

Signal b implementation

35School of Computer Science

X1X0

00 01 11 10X3X2

00 1 1 1 1

01 1 0 1 0

11 X X X X

10 1 1 X X

b = f(X3, X2, X1, X0) =

X1’X0’

+ X1X0

+ X2’

X3

X2

X1

X0

b

Signal c implementation

36School of Computer Science

X1X0

00 01 11 10X3X2

00 1 1 1 0

01 1 1 1 1

11 X X X X

10 1 1 X X

c = f(X3, X2, X1, X0) =

X1’+

+ X0

+ X2

X3

X2

X1

X0 c

Signal d implementation
X1X0

00 01 11 10X3X2

00 1 0 1 1

01 0 1 0 1

11 X X X X

10 1 0 X X

d = f(X3, X2, X1, X0) =

X3X1’X0’+
+ X2’X1’X0’
+ X3’X2’X1
+ X2X1’X0
+ X1X0’

X3

X2

X1

X0
d

37

Signal e implementation
X1X0

00 01 11 10X3X2

00 1 0 0 1

01 0 0 0 1

11 X X X X

10 1 0 X X

e = f(X3, X2, X1, X0) =

X1X0’

+ X2’X1’X0’

X3

X2

X1

X0 e

38

Signal f implementation
X1X0

00 01 11 10X3X2

00 1 0 0 0

01 1 1 0 1

11 X X X X

10 1 1 X X

f = f(X3, X2, X1, X0) =

X3

+ X2X0’

+ X2X1’

+ X1’X0’

X3

X2

X1

X0

f

39

Signal g implementation
X1X0

00 01 11 10X3X2

00 0 0 1 1

01 1 1 0 1

11 X X X X

10 1 1 X X

g = f(X3, X2, X1, X0) =

X3

+ X2’X1

+ X2X1’

+ X1X0’

X3

X2

X1

X0

g

40

7 segment display

• All the cathode of the LED are connected together

• The common connection must be grounded, and power must be
applied to appropriate segment in order to illuminate that
segment

• The current to light the active LED is generated by the logic
component, which generates the logic 1

41School of Computer Science

7447 TTL IC
• Real world example

of BCD to 7 segment
decoder

• Outputs of the
decoder are active
low and a common
anode 7 segment
display is used

42School of Computer Science

References

• “Computer Systems Organization &
Architecture”, John D. Carpinelli, ISBN: 0-201-
61253-4

43School of Computer Science

- CT101 -
Computing Systems

Dr. Frank Glavin

Room 404, IT Building

Frank.Glavin@NUIGalway.ie

School of Computer Science,

National University of Ireland, Galway

Representing Images and Graphics (1)

• Color is our perception of the various frequencies of light
that reach the retinas of our eyes

• Our retinas have three types of color photoreceptor cone
cells that respond to different sets of frequencies.
• These photoreceptor categories correspond to the colors of Red,

Green, and Blue

• Color is often expressed in a computer as an RGB (red-
green-blue) value, which is actually three numbers that
indicate the relative contribution of each of these three
primary colors

• For example, an RGB value of (255, 255, 0) maximizes the
contribution of red and green, and minimizes the
contribution of blue, which results in a bright yellow

41
School of Computer Science

Representing Images and Graphics (2)

Three-dimensional color space
42

Representing Images and Graphics (3)

• The amount of data that is used to represent a color is
called the color depth.

• HiColor is a term that indicates a 16-bit color depth.

• Five bits are used for representing the R and B components.

• Six bits are used for representing the G component, because the
human eye is more sensitive to G;

• TrueColor indicates a 24-bit color depth. Therefore, each
number in an RGB value is represented using eight bits.

43
School of Computer Science

Representing Images and Graphics (4)

RGB Value

ColorRed Green Blue
0 0 0 black

255 255 255 white

255 255 0 yellow

255 130 255 Pink

146 81 0 brown

157 95 82 purple

140 0 0 maroon

44

Digitized Images and Graphics

• Digitizing a picture is the act of representing it as a collection of
individual dots called pixels.

• The number of pixels used to represent a picture is called the
resolution.

• The storage of image information on a pixel-by-pixel basis is called a
raster-graphics format.

• Several popular raster file formats including bitmap (BMP), GIF, and JPEG.

45
School of Computer Science

BMP Raster Image Example

• The smiley face in the top left
corner is a bitmap image.

• When enlarged, individual pixels
appear as squares.

• Each pixel is described by a value
for red, green and blue.

46
School of Computer Science

Vector Graphics

• Instead of assigning colors to pixels as we do in raster
graphics, a vector-graphics format describe an image in
terms of lines and geometric shapes.

• A vector graphic is a series of commands that describe a line’s
direction, thickness, and color. The file size for these formats tend
to be small because every pixel does not have to be accounted for.

• Vector graphics can be resized mathematically, and these
changes can be calculated dynamically as needed.

• However, vector graphics is not good for representing real-
world images.

47
School of Computer Science

Example of Vector Image

• Effect of vector graphics versus
raster graphics.

• Magnification of 7x as a vector
image vs same magnification as
a bitmap image.

• Examples of vector image
formats: SVG (Scalable Vector
Graphics), EPS (Encapsulated
Post Script), etc..

48

Video

• What is video?

• The technology of electronically capturing, recording, processing, storing, transmitting and
reconstruction a sequence of still images representing scenes in motion

• It is a collection of still images

• How does video camera work?

• The lens of the camera focuses an image onto a sensor, and the sensor converts the image
into an electronic signal that is stored on disc, hard-drive, or memory card (in a compressed or
raw format).

• What about sound?

• Video cameras usually record sound along with images. Almost all video cameras have
microphones, but even though images and sound are usually recorded to the same disc, or
card they are two different types of information - so sometimes it helps to think of them
separately.

• You might record a beautiful visual scene with terrible noise, but you know that you won’t use
the sound. Or you might record some beautiful sound with your video camera while the lens
cap is on because you just want the sound.

49
School of Computer Science

Representing Video

• Frame rate: the number of still images (or frames) recorded every second.

• Usually frame rate is expressed in frames per second (fps)

• Resolution: how many pixels the image has.

• Resolution is usually expressed by numbers for horizontal and vertical: 640 by 480 means
640 pixels wide, by 480 pixels tall.

• Multiply the numbers and you get the total number of pixels. In this case 640x480 =
307,200.

• Aspect Ratio: what defines the width and height of your images.

• The most common aspect ratios are 3:2, 4:3, and 16:9.

• Compression and Format: to save space the movie gets compressed to make it
smaller.

• The way a camera compresses the image data and records it is the recording format.

50
School of Computer Science

Representing Video

• A video codec Compressor/De-compressor refers to the methods used
to shrink the size of a movie
• Almost all video codecs use lossy compression to minimize the huge amounts

of data associated with video.

• Two types of compression: temporal and spatial.

• Temporal compression looks for differences between consecutive
frames. If most of an image in two frames has not changed, why
should we waste space to duplicate all of the similar information?

• Spatial compression removes redundant information within a frame.
• For instance, a line compression algorithm, instead of representing a white line

as a series of dots with individual color info, it can represent it as how many dots
of white color (saving storage space)

• This problem is essentially the same as that faced when compressing still
images.

51
School of Computer Science

Video Formats

• There are different layers of video transmission and storage, each with its own set of
formats to choose from.

• Video gets transported via a physical connector and signal protocol ("video connection
standard“)

• A given physical link can carry certain "display standards" which specify a particular
refresh rate, display resolution and colour space (digital and analogue television and
computer display standards).

• There are a number of standards for storage:

• Analogue and digital tape formats

• Digital video files can also be stored on a computer file system (with its own standards/formats)
on different media (optical – DVD, Blue-ray or magnetic - HDD).

• In addition to the physical format used by the storage or transmission medium, the
stream of ones and zeros that is sent must be in a particular digital video "encoding“
format (MPEG-2, MPEG-4, etc..)

52
School of Computer Science

Data Compression

• It is important that data be represented efficiently for two
reasons: storage and transmission

• For now, we will study some common text compression
techniques:

• Keyword encoding

• Run-length encoding

• Huffman encoding

56
School of Computer Science

Keyword Encoding

Word Symbol
as ^

the ~

and +

that $

must &

well %

those #

• Frequently used
words are replaced
with a single
character. For
example:

57

Keyword Encoding

• The following paragraph:

• The human body is composed of many independent systems, such
as the circulatory system, the respiratory system, and the
reproductive system. Not only must all systems work independently,
they must interact and cooperate as well. Overall health is a function
of the well-being of separate systems, as well as how these separate
systems work in concert.

58
School of Computer Science

Keyword Encoding

• The encoded paragraph is:

• The human body is composed of many independent systems, such ^ ~
circulatory system, ~ respiratory system, + ~ reproductive system. Not only
& each system work independently, they & interact + cooperate ^ %.
Overall health is a function of ~ %- being of separate systems, ^ % ^ how #
separate systems work in concert.

59
School of Computer Science

Keyword Encoding

• There are a total of 349 characters in the original paragraph including
spaces and punctuation. The encoded paragraph contains 314
characters, resulting in a savings of 35 characters. The compression
ratio for this example is 349/314 or approximately 1.11:1.

The space saving is 0.1003 (approx. 10%)

• Compression Ratio =
• Uncompressed size / Compressed size

• Space Saving =
• 1 – (Compressed size / Uncompressed size)

60
School of Computer Science

Run-Length Encoding (1)

• A single character may be repeated over and over again in a long
sequence. This type of repetition does not generally take place in
English text, but often occurs in large data streams.

• In run-length encoding, a sequence of repeated characters is replaced
by a flag character, followed by the repeated character, followed by a
single digit that indicates how many times the character is repeated.

61
School of Computer Science

Run-Length Encoding (2)

• AAAAAAA would be encoded as: *A7

• *n5*x9ccc*h6 some other text *k8eee would be decoded into the
following original text:

nnnnnxxxxxxxxxccchhhhhh some other text kkkkkkkkeee

• The original text contains 51 characters, and the encoded string
contains 35 characters. What is the compression rate and space
saving for this example?

• Since we are using one character for the repetition count, it seems that
we can’t encode repetition lengths greater than nine. Instead of
interpreting the count character as an ASCII digit, we could interpret it
as a binary number.

62
School of Computer Science

Huffman Encoding (1)

• Why should the character “X”, which is seldom used in text,
take up the same number of bits as the blank, which is used
very frequently?
• Huffman codes using variable-length bit strings to represent each

character.

• A few characters may be represented by five bits, and
another few by six bits, and yet another few by seven bits,
and so forth.

• If we only use a few bits to represent characters that appear
often and reserve longer bit strings for characters that don’t
appear often, the overall size of the document being
represented is small

63
School of Computer Science

Huffman Encoding (2)

Huffman code Character

00 A

01 E

100 L

110 O

111 R

1010 B

1011 D

• Consider the
following
Huffman
codes:

64

Huffman Encoding (3)

• DOORBELL would be encoded in binary as:
• 1011 110 110 111 1010 01 100 100.

• If we used a fixed-size bit string to represent each character (say, 8
bits), then the binary form of the original string would be 64 bits.

• The Huffman encoding for that string is 25 bits long, giving a
compression ratio of 64/25, or approximately 2.56:1.

• An important characteristic of any Huffman encoding is that
no bit string, used to represent a character, is the prefix of
any other bit string used to represent a character.

65
School of Computer Science

Huffman Encoding (4)

• Decode the following message using the code table:

• 101011101001011

66
School of Computer Science

Huffman code Character

00 A

01 E

100 L

110 O

111 R

1010 B

1011 D

References

• “The Architecture of Computer Hardware and Systems Software”, Irv
Englander, ISBN: 0-471-36209-3

• “Computer Science Illuminated”, Nell Dale, John Lewis, ISBN: 0-
7637-1760-6

69
School of Computer Science

- CT101 -
Computing Systems

Dr. Frank Glavin

Room 404, IT Building

Frank.Glavin@NUIGalway.ie

School of Computer Science,

National University of Ireland, Galway

Number Systems

School of Computer Science2

Overview

• Know the different types of numbers

• Describe positional notation

• Convert numbers in other bases to base 10

• Convert base 10 numbers into numbers of other bases

• Describe the relationship between bases 2, 8, and 16

• Fractions

• Negative Numbers Representation

• Floating Point Numbers Representation

3
School of Computer Science

Number Systems

• Number categories

• Many categories: natural, negative, rational, irrational and many others
important to mathematics but irrelevant to the understanding of computing

• Number – unit belonging to an abstract mathematical system and
subject to specified laws of succession, addition and multiplication

• Natural number is the number 0 or any other number obtained by repeatedly
adding 1 to this number.

• A negative number is less than 0 and it is opposite in sign to a positive
number.

• An integer is any of the positive or negative natural numbers

• A rational number is an integer or the quotient of any two integer numbers

• ….is a value that can be expressed as a fraction

4
School of Computer Science

Number Systems

• The base of number system represents the number of digits that are
used in the system. The digits always begin with 0 and continue
through to one less than the base

• Examples:

• There are two digits in base two (0 and 1)

• There are eight digits in base 8 (0 through 7)

• There are 10 digits in base 10 (0 through 9)

• The base also determines what the position of the digits mean

5
School of Computer Science

Positional Notation

• It is a system of expressing numbers in which the digits are arranged in succession
and, the position of each digit has a place value and the number is equal to the sum
of the products of each digit by its place value

• Example:

• Consider the number 954:

• 9 * 102 + 5 * 101 + 4 * 100 = 954

• Polynomial representation - formal way of representing numbers, where X is the base of
the number:

• 9 * X2 + 5 * X1 + 4 * X0

• Formal representation – consider that the base of representation is B and the
number has n digits, where di represents the digit in the ith position.

• dn * Bn-1 + dn-1 * Bn-2 + …+ d2B +d1

• 642 is:
63 * 102 + 42 * 10 + 21 * 10 0

6
School of Computer Science

Other bases

• What if 642 has the base of 13?

• 642 in base 13 is equivalent to 1068 in base 10

7
School of Computer Science

+ 6 x 13² = 6 x 169 = 1014
+ 4 x 13¹ = 4 x 13 = 52
+ 2 x 13º = 2 x 1 = 2

= 1068 in base 10

Binary, Octal and Hexadecimal

• Decimal base has 10 digits (0, 1, 2, 3, 4, 5, 6, 7, 8, 9)

• Binary is base 2 and has two digits (0 and 1)

• Octal is base 8 and has 8 digits (0, 1, 2, 3, 4, 5, 6, 7)

• Hexadecimal is base 16 and has 16 digits (0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
A, B, C, D, E, F)

8
School of Computer Science

Converting Octal to Decimal

• What is the decimal equivalent of octal number 642?

• Remember that octal base has only 8 digits

(0, 1, 2, 3, 4, 5, 6, 7)

9
School of Computer Science

6 x 8² = 6 x 64 = 384
+ 4 x 8¹ = 4 x 8 = 32
+ 2 x 8º = 2 x 1 = 2

= 418 in base 10

Converting Hexadecimal do Decimal

• What is the decimal equivalent of the hexadecimal number DEF?

• Remember that hexadecimal base has 16 digits

(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F)

10
School of Computer Science

D x 16² = 13 x 256 = 3328
+ E x 16¹ = 14 x 16 = 224
+ F x 16º = 15 x 1 = 15

= 3567 in base 10

Converting Binary to Decimal

11
School of Computer Science

1 x 24 = 1 x 16 = 16
+ 0 x 23 = 0 x 8 = 0
+ 1 x 22 = 1 x 4 = 4
+ 1 x 21 = 1 x 2 = 2
+ 0 x 20 = 0 x 1 = 0

= 22 in base 10

 What is the equivalent decimal of the binary 10110 number?

 Remember that binary base has only 2 digits (0, 1)

Arithmetic in Binary

• The rules of arithmetic are analogous in other bases as in decimal
base

Addition

1 1 0 0

+ + + +

1 0 1 0

10 1 1 0

Should read 1+1=0 with a
carry of 1 similar to base 10
where 9 + 1 = 0 with a carry of
1 = 10

Subtraction

1 1 0 0

- - - -

1 0 1 0

0 1 11 0

-1 can be stated as 1 with a
borrow of 1. Leading 1 we
consider to be the sign, so 11
means -1

15

Addition in Binary

16
School of Computer Science

In the fourth case, a binary addition is creating a sum of
(1 + 1 = 10). That is, the 0 is written in the given column
with a carry of 1 over to the next column to the left.

Addition in Binary

• Base 2: 1+1 operation - the rightmost digit reverts to 0 and
there is a carry into the next position to the left

• We can check if the answer is correct by converting the both
operands in base 10, adding them and comparing the result

17
School of Computer Science

Carry Values1 1 1
0 1 0 1

+ 1 0 1 1
1 0 0 0 0

Subtraction in Binary

• In the fourth case, when we are subtracting 1 from 0 we need to
“borrow” 1.

18
School of Computer Science

Subtracting in Binary

• The rules of the decimal base applies to binary as well. To be
able to calculate 0-1, we have to “borrow one” from the next left
digit.

• More precisely, we have to borrow one power of the base (2)

• You can check if the result is correct by converting the operands
in decimal and making the calculus.

19
School of Computer Science

1 2
0 2 0 2
1 0 1 0

- 0 1 1 1
0 0 1 1

Review Question 4

• Add 4 bit number 0100 with 0111. The answer is:

A. 1001

B. 1011

C. 1110

D. 1111

20
School of Computer Science

Review Question 5

• Subtract 4-bit number 0100 from 1111. The answer is:

A. 1001

B. 1011

C. 1110

D. 0100

21
School of Computer Science

- CT101 -
Computing Systems

Dr. Frank Glavin

Room 404, IT Building

Frank.Glavin@NUIGalway.ie

School of Computer Science,

National University of Ireland, Galway

Power of Two Number Systems

Binary Octal Decimal

000 0 0

001 1 1

010 2 2

011 3 3

100 4 4

101 5 5

110 6 6

111 7 7

1000 10 8

1001 11 9

1010 12 10

• Binary and octal numbers
have a very special
relationship between them:
given a binary number, can
be read in octal and given
an octal number can be
read in binary (i.e. have 753
in octal, in binary you have
111 101 011 by replacing
each digit by its binary
representation)

• Table represents counting in
binary with octal and
decimal representation

22

Converting Binary to Octal

• Start at the rightmost binary digit and mark the digits in groups of three

• Convert each group individually

• The reason that binary can be immediately converted in octal and
vice-versa is because 8 is power of 2

• There is a similar relationship between binary and hexadecimal

23
School of Computer Science

10101011 10 101 011
2 5 3

10101011 is 253 in base 8

Converting Binary to Hexadecimal

• Start at the rightmost binary digit and mark the digits in
groups of four

• Convert each group individually

24
School of Computer Science

10101011 1010 1011
A B

10101011 is AB in base 16

Converting Decimal to Other Bases

• Involves dividing by the base into which you convert the
number

• Algorithm:
• Dividing the number by the base you get a quotient and a

remainder
• While the quotient is not zero:

• Divide the decimal number by the new base
• Make the remainder the next digit to the left in the answer
• Replace the original dividend with the quotient

• The base 10 number 680 is what number in base 16?

25
School of Computer Science

Converting Decimal to Hexadecimal

• 680 in decimal

• 16 ^ 2 = 256, 16^1 = 16, 16^0 = 1

• 680 divided by 256 = 2 (remainder is 680 – 512 = 168)
• First digit of hexadecimal number is 2

• Divide remainder by 16 = 10 (new remainder is 168-160=8)

• Second digit of hexadecimal is A

• Third digit of hexadecimal is the new remainder: 8

• Therefore the hexadecimal number is: 2A8

• Divide initial number by 256, remainder by 16 and the final remainder is the final
hexadecimal digit

26

Converting Decimal to Hexadecimal

27
School of Computer Science

680 / 256

Quotient: 2

Remainder: 168

2 A 8

8 / 1

Quotient: 8

Remainder: 0

168 / 16

Quotient: 10

Remainder: 8

256 16 1

Review of Binary Values in Computing Systems

• Modern computers are binary machines

• A digit in binary system is either 0 or 1

• The binary values in a computer are encoded using
voltage levels:
• 0 is represented by a 0V signal (or low voltage)

• 1 is represented by a 5V signal (i.e. in TTL logic), or by a high
voltage signal.

• Bit – is a short expression for binary digit

• Byte – eight binary digits

• Word – a group of one or more bytes; the number of bits in
a word is the word length in a computer

28
School of Computer Science

Fractions

• Representation and conversion of fractional numbers is
more difficult because there is not necessarily an exact
relationship between fractional numbers in different number
bases.

• Fractional numbers that can be represented exactly in one
number base, may be impossible to represent exactly in
another

• Example:
• The decimal fraction 1/3 is not representable as a decimal value in

base 10: 0.333333310…; this can be represented exactly in base 3
as 0.13

• The decimal fraction 1/10 (or 0.110) cannot be represented exactly
in binary form. The binary equivalent begins: 0.0001100110012…

32
School of Computer Science

Fractions

• The strength of each digit is B times the strength of its right neighbour
(where B is the base for a given number).

• If we move the number point to the right, the value of the number will
be multiplied by the base:
• 139010 is 10 times as large as 139.010

• Then 1002 is twice as big as 102

• The opposite is also true – if we move the number point to the left one
place, then the value is divided by the base

• A given number .D1D2D3 …Dn will be represented as:
• D1 * B-1 + D2 * B-2 + D3 * B-3 + .. + DnB-n

• 0.2589 = 2 * (1/10) + 5 * (1/100) + 8 * (1/1000) + 9 * (1/10000)

• 0.1010112 = (½) + (1/8) + (1/32) + (1/64)

33
School of Computer Science

Fractional Conversion Methods

• The intuitive method:

• Determine the appropriate weights for each digit, multiply each digit by its weight and
then add the values

• Example:

• Convert 0.122013 to base 10 = (1/3) + 2 * (1/9) + 2 * (1/27) + (1/243) = 0.63374

• Convert the number into a natural number (and record what was the multiplier) and
then divide the result by the multiplier

• Example:

• convert 0.1100112 to base 10 – shifting the binary point six places to the right and
converting, we have: 32 + 16 +2 +1 = 51; shifting the point back is the equivalent of 26 or
64, so we can obtain the final number by dividing 51 by 64 = 0.796875

• Variation of the division method shown earlier: we multiply the fraction by the
base value, repeatedly, and record, then drop the values that move to the left
of the point.

• This is repeated until the level of accuracy is obtained or until the value being
multiplied is zero

34
School of Computer Science

Fractions Base Conversion

35
School of Computer Science

Fraction Conversions between Bases of Power of Two

• The conversion between bases where one base is an integer power of
the other can be performed for fractions by grouping the digits in the
smaller base as before

• For fractions, the grouping must be done from the left to right; the
method is otherwise identical

• Example:

• Convert 0.101112 to base 8: 0.101_110 = 0.568

• Convert 0.1110101 to base 16: 0.1110_1010 = 0.EA16

36
School of Computer Science

- CT101 -
Computing Systems

Dr. Frank Glavin

Room 404, IT Building

Frank.Glavin@NUIGalway.ie

School of Computer Science,

National University of Ireland, Galway

Representing Negative Numbers

• Are negative numbers just numbers with a minus sign in the front?
This is probably true…but there are issues to represent negative
numbers in computing systems

• Common schemas:

• Sign-magnitude

• Complementary representations:

• 1’s complement

• 2’s complement – most common & important

40
School of Computer Science

Sign Magnitude

41
School of Computer Science

• Left most bit used to represent sign
• 0 = positive value
• 1 = negative value
• behaves like a “flag”

• It is important to decide how many bits we will use
to represent the number

• Example: Representing +5 and -5 on 8 bits:
• +5: 00000101
• -5: 10000101

• So the very first step we have to decide on the
number of bits to represent the number

Difficulties with Sign Magnitude

• Two representations of zero

• Using 8-bit sign-magnitude…

• 0: 00000000

• 0: 10000000

• Arithmetic is awkward!

• 8-bit sign-magnitude:

• 00000001 + 00000010 = 00000011

• 00000010 + 10000001 = 00000001

• It requires a different algorithm, can’t just add and carry,
meaning more complexity in hardware in order to
implement an ALU

42
School of Computer Science

Complementary Representations

• 9’s (Decimal) complement

• 1’s (Binary) complement

• 10’s (Decimal) complement

• 2’s (Binary) complement

43
School of Computer Science

9th Decimal Complement

• Decide on the number of digits (word length) to represent
numbers

• Then represent the negative numbers by the largest number
minus the absolute value of the negative number.

• Example:
• 2-digit 9’s complement of –12

• 99 – 12 = 87

• To get back the abs value, invert again; i.e. 99 – 87 = 12

• Most negative number:
• representation 50 ……… 99 | 0 ……… 49

• original number -49………...-0 | 0 ……… 49

44
School of Computer Science

9th Decimal Complement Problems

• Two representations of zero
• Using 2-digit 9’s complement…

• 0: 00

• 0: 99

• Arithmetic is still a little awkward, meaning that complex
hardware will be required to build arithmetic units for this logic.

45

1’s Binary Complement

• Decide on the number of bits (word length) to represent
numbers

• Then represent the negative numbers by the largest number
minus the absolute value of the negative number.

• Example:
• 8-digit 1’s complement of –101

• 11111111 – 00000101 = 11111010 (= (28 –1) –5 in base 10)
• Notice: very easy to flip or “invert” the 1’s and 0’s to compute 1’s complement of

a number

• To get back the abs value, invert again

• Most negative:
• representation 10000000 …11111111 | 0… 01111111
• original number -01111111 …-00000000 | 0… 01111111

46
School of Computer Science

Difficulties with 1’s Complement

• Two representations of zero
• Using 6-digit 1’s complement…

• 0: 000000

• 0: 111111

• Arithmetic is still a little awkward!

47

10’s Complement

• Again decide on the number of bits (word length) to represent
numbers

• Then represent the negative numbers by the [largest number+1]
minus the absolute value of the negative number

• Example
• 2-digit 10’s complement of –12

• 100 – 012 = 88

• To get back the abs value, invert again; i.e. 100 – 88 = 12

• Most negative number:
• representation 50 ……… 99 | 0 ……… 49

• original number -50………..-1 | 0 ……… 49

48
School of Computer Science

10’s Complement

• Notice: unique representation of 0

• 10’s complement = 9’s complement +1

49
School of Computer Science

2’s Complement

• It is similar to 10’s complement representation for decimal.

• Decide on the number of digits (word length) to represent numbers

• Then represent the negative numbers by the [largest number + 1]
minus the absolute value of the negative number.

• Example:
• 8-digit 2’s complement of -5

• 100000000 – 00000101 = 11111011(= 28 –5 in base 10)

• To get back the abs value, subtract again from 28

50
School of Computer Science

2’s Complement

• The 2’s complement of a number can be found in two ways
• Subtract the value from the modulus [largest number +1]

• Find 1’s complement (by inverting the value) and adding 1 to the
result (2’complement = 1’s complement +1)

51

1’s Complement versus 2’s Complement

• Both methods are used in computer design

• 1’s complement

• Offers a simpler method to change the sign of a number

• Algorithm must test for and convert -0 to 0 at the and of each operation.

• 2’s complement

• Simplifies the addition operation

• Additional add operation required every time a sign change is required (by
inverting and adding 1)

52
School of Computer Science

Binary Complements Tips and Tricks

• Positive numbers are always represented by themselves

• Small negative numbers (close to 0) have representations that start
with large numbers of 1’s. The number -2 in 8 bit 2’s complement is
represented as 11111110

• Since there is only a difference in value of 1 between 1’s and 2’s
complement representations of negative numbers (of course the
positive representations are always the same), you could get a quick
idea of the value (in either of the representations) by inverting all the
1’s and 0’s and approximating the value from the result

53
School of Computer Science

- CT101 -
Computing Systems

Dr. Frank Glavin

Room 404, IT Building

Frank.Glavin@NUIGalway.ie

School of Computer Science,

National University of Ireland, Galway

Overflow and Carry Conditions

• Overflow occurs when the result of the calculation doesn’t fit
into the fixed number of bits available for the result.
• In 2’s complement, an addition or subtraction overflow occurs

whenever the result overflows into the sign bit – if the sign of the
result is different than the sign of the both operands

• In addition, computing systems provide for a carry flag that
is used to correct for carries and borrows that occurs when
large number have to be separated into parts to perform
additions and subtractions.

57
School of Computer Science

Overflow and Carry Conditions

• Example:
• CPU has only 32-bit wide instructions, but has to add 64-bit numbers

• The 64-bit number are divided in two 32 bits parts, the least significant 32-bit
parts are added with carry, and the most significant parts are added using also
as input any carry that was generated from the previous addition operation.

• Carry and overflow are occurring independently of each other:
• Overflow occurs when you cannot properly represent the result as a signed

value (you overflowed into the sign bit).

• Carry occurs when you cannot properly represent the result as an unsigned
value (no sign bit required).

58
School of Computer Science

Overflow and Carry Conditions for 4-bit numbers

(+4) + (+2)
0100
0010
0110 = (+6)
no overflow
no carry
the result is correct

(+4) + (+6)
0100
0110
1010 = (-6)
overflow
no carry
the result is incorrect

(-4) + (-2)
1100
1110

11010 = (-6)
no overflow
carry
Ignoring the carry, the result is
correct

(-4) + (-6)
1100
1010

10110 = (+6)
overflow
carry
Ignoring the carry, the result is
incorrect

59

More Overflow and
Carry (on 8-bit

words)

Binary Hex Unsigned Signed

(1) 1010 1000 xA8 168 -88

0010 1101 x2D 45 45

=============== === ===

1101 0101 xD5 213 -43 C = 0 V = 0

(2) 1101 0011 xD3 211 -45

1111 0100 xF4 244 -12

=============== === ===

11100 0111 x1C7 455 -57 C = 1 V = 0

(3) 0010 1101 x2D 45 45

0101 1000 x58 88 88

=============== === ===

1000 0101 x85 133 -123 C = 0 V = 1

(4) 1101 0011 xD3 211 -45

1010 1000 xA8 168 -88

=============== === ===

10111 1011 x17B 379 -133 C = 1 V = 1
Note:
Producing a carry, C = 1, indicates unsigned overflow, it does not indicate signed overflow.
To recognize signed overflow, two conditions must be present:

The operands must have the same sign, and
the sum must have the opposite sign. C= Carry V= Overflow60

Floating Point Numbers

• Real or floating-point number are used in computing systems when the
number to be expressed is outside of the integer range or when the
number contains a decimal fraction

• The number is represented by a fixed number of digits of precision
together with a power that shifts the point to make the number larger
or smaller

• We need to understand the properties of floating-point numbers, how
they are represented and how calculations are performed

• First, as usual, we will present the techniques in base 10, since
working with decimal numbers is more familiar. Then we will extend
the discussion to binary numbers.

63
School of Computer Science

Review of Exponential Notation

• Consider the number 12345. Here are a number of alternative
representations:

• 12345 * 100

• 0.12345 * 105

• 123450000 * 10-4

• 0.0012345 * 107 (OR 0.00123 * 107 if we have limited digits of magnitude)

• The way of representing the above number is known as exponential
notation (scientific notation)

64
School of Computer Science

Exponential Notation

• Four components are required to define a number
using this notation:
• The sign of the number (+ in our example)

• The magnitude of the number (known as mantissa,
12345 in our example)

• The sign of the exponent (+ in our example)

• The magnitude of the exponent (say it is 3)

65
School of Computer Science

Exponential Notation

• Two additional pieces of information are required to complete the
representation:
• The base of the exponent (in this case 10) – in the computer is usually specified

to be 2.

• The location of the decimal (or binary point if we are working in base 2) point – in
the computer the binary point is set at a particular location in the number, most
common at the beginning or the end of the number. Since its location never
changes, it is not necessary to actually store the point. Knowing the location of
the point is essential

• In our example, the location of the decimal point was not specified, so
reading the data suggests that the number might be +12345 * 103,
which is wrong. The actual placement of the decimal point should be
12.345 * 103

66
School of Computer Science

Example

• The number to be represented is -0.0000003579

• One possible representation of this number is:

67
School of Computer Science

Sign of
mantissa

Location of
decimal point Mantissa

Exponent

Sign of
exponent

Base

-0.3579 x 10-6

Floating Point Format

• Typical representation is using 8 digits: SEEMMMMM,
where:
• S – one digit for the sign of the mantissa

• EE – two digits for the exponent

• MMMMM- the mantissa representation

68
School of Computer Science

-0.35790 x 10-6

Floating Point Format

• There is no provision for the sign of the exponent. Use some
method that includes it:

• One method, is to use complementary representation for the exponent

• Another method is to use an offset representation: if we pick a value
somewhere in the middle of the possible values of the exponent (0-
99), say 50 and declare that this value corresponds to 0, then every
value lower than that will be negative and those above will be positive.

69
School of Computer Science

Floating Point Format – Excess N Representation

• This method is known as Excess-N notation, where N is the chosen mid-value

• It is simpler to use for exponents than the complementary form and appropriate for the
calculations required on exponents

• Allows to store an exponential range of -50 to 49

• If we assume that the decimal point is located at the beginning of the five-digit mantissa,
excess-50 notation allows us magnitude range of

0.00001 * 10-50 < number< 0.99999 * 10+49

70
School of Computer Science

Floating Point Exceptions

• Overflow – using/resulting in a number of magnitude too large to be
stored

• Underflow - where the number is a decimal fraction with magnitude
too small to be stored

71
School of Computer Science

Examples: SEEMMMMM

• The exponent is represented in excess of 50.

• The computer is aware of storing only numbers, no signs
nor position of the decimal point.

• Decimal point is at the beginning of the mantissa

• Sign is represented as: 0 a positive sign, 5 represents a negative
sign (arbitrary representation in base 10)

72
School of Computer Science

• 05324657 = 0.24657 * 103 = 246.57
• 54810000 = -0.10000 * 10-2 = - 0.001
• 55555555 = -0.55555 * 105 = 55555
• 04925000 = 0.25000 * 10-1 = 0.025

Normalization and Formatting

• The number of digits used will be determined by the desired precision

• To maximize precision for a given number of digits, numbers will be
stored with no leading zeros.

• Normalization – when necessary, numbers are shifted left by
increasing the exponent until leading zeros are eliminated

• Example – our format will consist of a sign, five digits with the decimal
point located at the beginning of the number and two exponent digits:

.MMMMM * 10EE

73
School of Computer Science

Normalization and Formatting (SEEMMMMM)

• Normalization (246.8035)
1. Provide an exponent of 0 for the number if an exponent wasn’t already

specified (246.8035 * 100)
2. Shift the decimal point left or right by increasing or decreasing the

exponent, until the decimal point is in the proper position (0.2468035 *
103)

3. Shift the decimal point right, if necessary, until there are no leading
zeros in the mantissa (no adjustment required)

4. Correct the precision by adding or discarding digits as necessary, to
meet the specification (0.24680 * 103)

• Formatting:
Put it into a standard exponential form, by converting the exponent into
50-excess notation and place the digits into their correct locations in the
word (0 53 24680)

positive
Exponent is 3

74

 Overflow occurs when you cannot properly represent the result as a signed value

 (Meaning you overflowed into the sign bit).

 Carry occurs when you cannot properly represent the result as an unsigned value

 (Meaning no sign bit is required).

The following table of binary representations is important to understand these examples:

(Remember: we are flipping all the bits and adding one to get the negative binary representation)

In the following example, we have the addition of 0100 (+4) and 0010 (+2). The result is 0110 (+6)

which is correct and does not involve an overflow nor a carry.

In the following example, we have the addition of 0100 (+4) and 0110 (+6) which results in an overflow

(into the sign bit). The is no carry in this case as there is no extra carried number brought to the left if

we treat the calculation as unsigned numbers.

In the following example, we have the addition of 1100 (-4, see table above) and 1110 (-2). There is

no overflow because the signed value (-6) is given as the result. There is a carry in this case as there is

a one “carried over” to the left after the last addition. If we ignore this carried digit, and stick with our

4-bit number then the result is correct.

In the following example, we have the addition of 1100 (-4) and 1010 (-6). There is overflow because

the addition directly affects the sign bit. Again like the previous example, we have a carry from the

calculation but this time, if we ignore it, the result will still be incorrect.

- CT101 -
Computing Systems

Dr. Fatemeh Ahmadi Zeleti

Fatemeh.ahmadizeleti@NUIGalway.ie

School of Computer Science,

National University of Ireland, Galway

Number Systems

Week 7

Part 9 and Part 10

School of Computer Science2

Floating Point in Computing Systems

• The leading bit of the mantissa must be 1 if the number is normalized

• The leading bit can be treated implicitly (similar with the binary point)

• Disadvantages:
• Leading bit is always 1, means that we can’t represent too small numbers, limiting

the small end of the range
• Any format that might require a 0 in the leading bit can’t be represented
• This method requires that we provide a separate way to store the number 0.0, since

the requirement to have the leading bit 1, makes the mantissa 0.0 an impossibility

• The additional bit doubles the available precision of the mantissa, the
slightly narrowed range is usually an acceptable trade off. The number 0.0
is represented by selecting a particular 32-bit word and assigning it the
value 0.0.

3School of Computer Science

IEEE 754 Standard

• Most common standard for representing floating point numbers

• Single precision: 32 bits, consisting of...
• Sign bit (1 bit)

• Exponent (8 bits)

• Mantissa (23 bits)

• Double precision: 64 bits, consisting of…
• Sign bit (1 bit)

• Exponent (11 bits)

• Mantissa (52 bits)

4School of Computer Science

Single Precision Format

5School of Computer Science

32 bits

Mantissa (23 bits)

Exponent (8 bits)

Sign of mantissa (1 bit)

Single Precision Format

• The mantissa is normalized

• Has an implied “1” on left of the point. Normalized form of the
mantissa is 1.MMMMM…

• Example:
• Mantissa:

• Representation:

6School of Computer Science

10100000000000000000000

1.1012 = 1.62510

Note: convert each side of the point

using techniques described in previous

lectures

Single Precision Format

• The exponent is formatted using excess-127 notation, with an implied base
of 2
• Example:

• Exponent: 10000111
• Representation: 135 – 127 = 8

• The stored values 0 and 255 of the exponent are used to indicate special
values, the exponential range is restricted to 2-126 to 2127

• The number 0.0 is defined by a mantissa of 0 together with the special
exponential value 0

• The standard allows also values +/-∞ (represented as mantissa +/-0 and
exponent 255)

• Allows various other special conditions

7School of Computer Science

Double Precision Floating Point

8School of Computer Science

64 bits

Mantissa (52 bits)

Exponent (11 bits)

Sign of mantissa (1 bit)

Double Precision Floating Point

• Same format as single precision floating point
representation

• Excess-1023 exponent representation

• An implied base of 2 and an implied most significant bit at
the left of an implied binary point

• Range of more than 10-300 to 10300

9School of Computer Science

Conversion between base 10 and base 2

• The whole and fractional parts of numbers with an embedded
decimal or binary point must be converted separately

• Numbers in exponential form must be reduced to a pure decimal or
binary mixed number or fraction before the conversion can be
performed

10School of Computer Science

Examples
Decimal value of 32-bit floating-point number:

11School of Computer Science

1 10000010 11110110000000000000000

Mantissa: 1.11110112 = 1.960937510

Exponent: 100000102 = 13010 (because is excess-127) = 3

Sign: 1 (negative number)

Mantissa conversion:

1. First the whole number: 12 = 110

2. Then the fractional number: 0.11110112

= ½ + ¼ + 1/8 + 1/16 + 1/64 + 1/128 = (64 + 32 + 16 + 8 + 2 + 1)/128 = 0.9609375

Answer: - 1.9609375 * 23 = -15.6875

Examples

• Express 3.14 as 32-bit floating-point number

• Note: use 10 significant bits for the mantissa

• Normalize the number
• Convert the whole and fractional parts independently

• 310 = 112

• 0.1410 = 0.001000111100000000000002 , this is obtained using the multiplication method
presented in one of the previous lecturers (see the next slide)

• 11.0010001111 = 1.100100011110000000000000 * 2
• The exponent is 1, represented in excess-127 is: 10000000
• the mantissa is 10010001111000000000000
• The sign is positive (0)

• Answer: 0 10000000 10010001111000000000000

12School of Computer Science

Reminder for fraction decimal to binary conversion

13School of Computer Science

0.00100011110.14 * 2

0.28 * 2

0.56 * 2

1.12 * 2

0.24 * 2

0.48 * 2

0.96 * 2

1.92 * 2

1.84 * 2

1.68 * 2

1.36 * 2 …

0.00100011110.14 * 2

0.28 * 2

0.56 * 2

1.12 * 2

0.24 * 2

0.48 * 2

0.96 * 2

1.92 * 2

1.84 * 2

1.68 * 2

1.36 * 2 …

Conversion – Class Exercise

• Convert 45.45 to IEEE 754 single precision format

14

= 0100 0010 0011 0101 1100

Arithmetic with Floating Point Numbers
• On the computer, it is more difficult than integers

• Addition & Subtraction:
• ..need to “line up” the exponents (by making the smaller one match the

larger one, moving the point in the mantissa) and perform addition on
the mantissa

• Multiplication & Division
• ..need to do separate operations to mantissa and exponent:

multiply/divide mantissa and correspondingly add/subtract and adjust
the exponent

15School of Computer Science

Addition Example

• Perform the addition 310 + 1.510

• Convert the numbers in floating point representation
• First Operand N1 = 310 = 112

• N1 = 11.000000… = 1.10000000000000000000000 * 21

• The exponent is E1 = 1, represented in excess-127 is: 1000 0000
• The mantissa is M1 = 1.100 0000 0000 0000 0000 0000
• The sign is positive (0)

• Second Operand N2 = 1.510 = 1.12 , this is obtained using the multiplication method
presented in one of the previous lecturers
• N2 = 1.100000… = 1.10000000000000000000000 * 20

• The exponent is E2 = 0, represented in excess-127 is: 0111 1111
• The mantissa is M2 = 1.100 0000 0000 0000 0000 0000
• The sign is positive (0)

16School of Computer Science

Addition Example

• In order to perform the addition, we need to “line up” the exponents (by making the
smaller one match the larger one, moving the point in the mantissa) and perform
addition on the mantissa

• E1 is the largest exponent, so we will make the modifications on the second number:
• E2’ = 1 (1000 0000)
• M2’ = 0.110 0000 0000 0000 0000 0000

• Perform the addition on the mantissas:
• M1 + M2’ = 10.010 0000 …

• Remember that the common exponent is 1000 0000

• We need to normalize again the result, so the mantissa of the resulting number is M =
1.001, and the exponent of the result is E = 1000 0001

• The answer is 0 1000 0001 001 0000 0000 0000 0000 0000
• 1.001 * 22

2 = 4.510

17School of Computer Science

1.10000..+

0.11000..

10.01000..

• Add X and Y

X = 0100 0010 0000 1111 0000 0000 …

Y = 0100 0001 1010 0100 000 0000…

18

Addition – Class Exercise

0100 0010 0110 0001 0000 0000…

- CT101 -
Computing Systems

Dr. Fatemeh Ahmadi Zeleti

Fatemeh.ahmadizeleti@NUIGalway.ie

School of Computer Science,

National University of Ireland, Galway

Number Systems

Multiplication of Floating-Point Numbers

School of Computer Science2

Multiplication Example

• Perform the multiplication 310 * 1.510

• Convert the numbers in floating point representation
• First Operand N1 = 310 = 112

• N1 = 11.000000… = 1.10000000000000000000000 * 21

• The exponent is E1 = 1, represented in excess-127 is: 1000 0000
• The mantissa is M1 = 1.100 0000 0000 0000 0000 0000
• The sign is positive (0)

• Second Operand N2 = 1.510 = 1.12 , this is obtained using the
multiplication method presented in one of the previous lecturers
• N2 = 1.100000… = 1.10000000000000000000000 * 20

• The exponent is E2 = 0, represented in excess-127 is: 0111 1111
• The mantissa is M2 = 1.100 0000 0000 0000 0000 0000
• The sign is positive (0)

3School of Computer Science

Multiplication Example

• We need to do separate operations to mantissa and exponent:
• multiply/divide mantissa

• M1 * M2 = 1.1 * 1.1 = 10.01

• Correspondingly add/subtract and adjust the exponent
• E1 + E2 -127 = 1000 0000 + 0111 1111 = 1111 1111 – 127 = 1000 0000

• Normalize the number:
• M = 1.001

• E = 1000 0001

• Resulting number: 0 1000 0001 001 0000 0000 0000 0000 0000

• The resulting number is 4.510 representation

1.1 *

1.1

1 1

1 1

10.0 1

4

- CT101 -
Computing Systems

Dr. Fatemeh Ahmadi Zeleti

Fatemeh.ahmadizeleti@NUIGalway.ie

School of Computer Science,

National University of Ireland, Galway

Computer Systems Organization

School of Computer Science
2

Contents

• Describe the operation of a computer at the functional level

• Explain the function of the main components of a computer

system

• Detail the interaction of computer sub-systems

• Detail the organization of computer sub-systems

3
School of Computer Science

Computer Organization

• Instruction set architecture (ISA) provides a good understanding of
what a microprocessor can do; provides no information on how to use
the processor in a bigger system.

• In order to design a computing system, more information is needed
than the instruction set

• Computer system subsystems:

• CPU

• Buses

• Memory

• Input/Output

4
School of Computer Science

Basic Computing Systems Organization

5
School of Computer Science

System Buses

• Set of wires, that interconnects all the components (subsystems)

of a computer

• A source component sources out data onto the bus

• A destination component inputs data from the bus

• May have a hierarchy of buses

• Address, data and control buses to access memory and an I/O controller.

• Second set of buses from I/O controller to attached devices/peripherals

• PCI (Peripheral Component Interconnect) bus is an example of a very

common local bus

6
School of Computer Science

Address Bus

• CPU reads/writes data from the memory by addressing a unique
location; outputs the location of the data (aka address) on the address
bus; memory uses this address to access the proper data

• Each I/O device (such as monitor, keypad, etc) has a unique address
as well (or a range of addresses); when accessing a I/O device, CPU
places its address on the address bus. Each device will detect if it is its
own address and act accordingly

• Devices always receive data from the CPU; CPU never reads the
address bus (it is never addressed)

7
School of Computer Science

Data Bus

• When the CPU fetches data from memory, it first outputs the address

on the address bus, then the memory outputs the data onto the data

bus; the CPU reads the data from data bus

• When CPU is writing data onto the memory, the CPU outputs first the

address on the address bus, then outputs the data onto the output

bus; memory then reads and stores the data at the proper location

• The process to read/write to a I/O device is similar

8
School of Computer Science

Control Bus

• Address and data buses consist of n lines, which combine to transmit

one n bit value; control bus is a collection of individual control signals

• These signals indicate whether the data is to be read into or written

out the CPU, whether the CPU is accessing memory or an I/O device,

and whether the I/O device or memory is ready for the data transfer

• This bus is mostly a collection of unidirectional signals

9
School of Computer Science

CPU

• The Central Processing Unit (CPU a.k.a. Processor) is the chip
which acts as a control center for all operations. It executes
instructions (a program) which are contained in the memory
section.

• Basic operations involve

• the transfer of data between itself and the memory section

• manipulation of data in the memory section or stored internally

• the transfer of data between itself and input/output devices

• The CPU is said to be the brains of any computer system. It
provides all the timing and control signals necessary to transfer
data from one point to another in the system.

10
School of Computer Science

Programs: Instructions and Operands

• A program = a number of CPU instructions.

• Instruction components:

• an instruction code (aka OPCODE)

• one or more operand's (data which the instruction
manipulates)

• The instruction specifies to the CPU what to do,
where the data is located, and where the output
data (if any) will be put.

• Instructions are held in the memory section of the
computer system. Instructions are transferred one
at a time into the CPU, where they are decoded
then executed. Instructions follow each other in
successive memory locations.

• Memory locations are numbered sequentially. The
CPU keeps track of the instruction it is executing by
using an internal counter (location in the memory)
known as the program counter (sometimes called
instruction pointer).

11
School of Computer Science

Von Neumann and Harvard architectures

• Von Neumann
• Allows instructions and data to be mixed and stored in the

same memory module

• More flexible and easier to implement

• Suitable for most of the general-purpose processors

• Harvard:
• Uses separate memory modules for instructions and for data

• It is easier to pipeline and there are no memory alignment
problems

• Higher memory throughput

• Suitable for DSP (Digital Signal Processors)

12
School of Computer Science

Computer Memory

• Memory contains instructions for the processor to execute or data it operates on

• Address Locations - Memory consists of a sequential number of locations, each of
which are a specific number of bits wide.

• 8 bits (PC-8088) which is a byte wide memory

• 16 bits (XT-8086, AT-80286)

• 32 bits (386DX, 486SX, 486DX)

• 64 bits (Modern systems – Pentium and up)

• Each memory location is referred to as an address, and generally expressed in
hexadecimal notation (using base 16 numbers).

• The size is denoted as the number of locations times the number of bits in each
location - 32 bits limited to 2^32 which is equivalent to about 4GB of main memory

• The processor selects a specific address in memory by placing the address on the
address bus . The value on this address bus is used by the memory system to find
the data at the specific location

13
School of Computer Science

Computer Memory

• The total number of address locations which can be accessed by the
processor is known as its physical address space. How large this is
determined by the size of the address bus and is often expressed in terms of
Kilobytes (x1024), Megabytes or Gigabytes.

• 16 bits address bus = 64K (65536 locations)

• 20 bits address bus = 1MB (IBM PC)

• 32 bits address bus = 4GB (486DX)

• Access Times - Access time refers to how long it takes the processor to
read or write to a specific memory location within a chip. The limiting factor is
the type of technology used to implement the memory cells inside the chip.

• Volatility - This refers to whether or not the contents of the memory is lost
when power is turned off. If the contents are lost, the memory is volatile. If
the contents are retained, then the memory is non-volatile.

14
School of Computer Science

Memory Read/Write operations

• a) Memory read operation

• b) Memory write operation

15
School of Computer Science

Input/Output Devices

• Peripheral devices allow input and output to occur.

• Examples of peripheral devices are

• disk drive controllers

• keyboards

• mice

• video cards

• parallel and serial cards

• real-time clocks

• The processor is involved in the initialization and servicing of
these peripheral devices.

16
School of Computer Science

I/O Read/Write Operations

• The I/O read and write operations are similar to the memory
read and write operations.

• A processor may use:

• memory mapped I/O (when the address of the I/O device is in the
direct memory space, and the sequence to read/write data in the
device are the same with the memory read/write sequence)

• isolated I/O – the process is similar, but the processor has a second
set of control signals to make the distinction between a memory
access and an I/O access (memory locations and I/O devices can be
located at the same address, which makes this extra control signal
necessary); for I/O operations, the processor holds IO/M (or similar)
signal high for the duration of the I/O operation

17
School of Computer Science

CPU Function – Instruction Cycle

• The instruction cycle is the procedure of processing an
instruction by the microprocessor:

• Fetches (reads) the instruction from the memory

• Decodes the instruction, determining which instruction is to be executed
(what instruction has been fetched)

• Executes the instruction – performs the operations necessary to
complete what the instruction is supposed to do (different from instruction
to instruction, may read data from memory, may write data to memory or
I/O device, perform only operations within CPU or combination of those)

• Each of the functions fetch -> decode -> execute consist of a
sequence of one or more operations inside the CPU (and
interaction with the subsystems)

18
School of Computer Science

Fetch Cycle

• In the first phase, the processor generates the necessary timing signals to fetch the next instruction from
the memory system.

• The instruction is transferred from memory to an internal location inside the processor (the instruction
register)

• In the above image, the processor is ready to begin the Fetch cycle. The current contents of the
instruction counter (program counter) is address 0100. This value is placed on the address bus, and a
READ signal is activated on the control bus. The memory receives this and finds the contents of the
memory location 0100, which happens to be the instruction MOV AX, 0.

• The memory places the instruction on the Data Bus, and the processor then copies the instruction from
the Data Bus to the Instruction Register.

19
School of Computer Science

Decode Cycle

• The processor transfers the instruction from the instruction register to the Decode Unit.

• It compares the instruction to an internal table, and when a match is found, the table contains
the list of macro instructions (a number of steps) which are required to perform the instruction.

• In our case, the instruction means place the value 0 into the AX register. The decode unit now has all
the details of how to do this.

• During this phase the processor (if required by the instruction) will get any operands required
by the instruction.

• The final effect of instruction MOV AX, 0 is to set the value of the AX register of the processor to the
constant value 0. The processor has the instruction (MOV AX), but now needs the constant value 0
to complete the instruction before executing it. In this instance, the processor will fetch the constant
value 0 from the next location in memory (it is found immediately after the instruction, in the next
memory location 0101)

20
School of Computer Science

Execute Cycle

• In the last phase, the processor executes the instruction. In the example above, this

involves setting the contents of the internal register AX to the constant value 0

• The final part of execute phase is to adjust the Instruction Counter to point to the

next instruction to be executed, which is found at address 0102

21
School of Computer Science

Fetch/Decode/Execute

Animated fetch decode execute

22
School of Computer Science

References

• “Computer Systems Organization & Architecture”, John D. Carpinelli,

ISBN: 0-201-61253-4

• “Operating Systems – A Modern Perspective”, Garry Nutt, ISBN 0-

8053-1295-1

23
School of Computer Science

- CT101 -
Computing Systems

Dr. Frank Glavin

Room 404, IT Building

Frank.Glavin@NUIGalway.ie

School of Computer Science,

National University of Ireland, Galway

Sequential Logic Design

2
School of Computer Science

Contents

• Basic Sequential Components

• Flip-Flop, Latches, Counters

• Programmable Logic Devices

• PLD, PLA, CPLDs & FPGAs

3
School of Computer Science

Overview

• The most fundamental sequential components are the
latch and flip-flop

• They store one bit of data and make it available to other
components

• The main difference between a latch and a flip-flop is that
the former is level-triggered and the latter are edge
triggered

• Flip-flops and latches have a clock input

4
School of Computer Science

Clock

• It is usually derived from an oscillator or other circuitry that alternates
its output between 1 and 0

• It is used to synchronize the flow of data in a digital system

5
School of Computer Science

0

1

Rising (positive)
Edge

Falling (negative)
Edge

Positive Level

Negative Level

D flip-flop

• Flip-flop:
• One data input D

• When the clock input changes from 0 to 1 (positive edge), the data on the D
input is loaded

• The data is made available via output Q and its complement via Q’

• Some variations have also a load signal (LD) that has to be high (active) in order
for data to be loaded into the flip-flop

6
School of Computer Science

D latch

• Positive level triggered latch
• It loads data as long as both its clock and load signals are 1. If both are one, the

value of data D is passed to the Q output. If D changes while clock and load are
1, then the output changes accordingly

• If either the clock or load signals go to 0, the Q value is latched and held

7
School of Computer Science

D latch with clear/set capabilities

• Some variants of D latch and flip-flops have asynchronously set and
clear capabilities – they can be set and clear regardless of the value of
the other inputs to the latch (including the clock and load inputs)

8
School of Computer Science

SR latch

• The S input sets the latch to 1 and the R input resets the latch to 0
• When both S and R are 0 the output remains unchanged

• Doesn’t have a clock input
• Only sequential component without a clock input

• The output of the latch is undefined when both the S and R are 1; the designer
has to ensure that S and R inputs are never set to 1

9
School of Computer Science

JK flip-flop

• Resolves the problem of undefined outputs associated with SR latch
• J=1 sets the output to 1 and K=1 resets the output to 0. JK=11 inverts the stored

current value of the output

• It is often used instead of SR latch

10
School of Computer Science

T (toggle) flip-flop

• The T input doesn’t specify a value for its output, it specifies only
whether or not the output should be changed

• On the rising edge of the clock, if T = 0 then the output of the flip-flop
is unchanged; if T=1, the output is inverted.

11
School of Computer Science

Observations

• All of the flip-flops and latches shown so far are positive edge
triggered or positive level triggered. They also have active high load,
set and clear inputs.

• It is possible for those components to be negative edge triggered or
negative level triggered and have active low control signals as well.

• Flips-flops and latches can be combined in parallel to store data with
more than one bit

12
School of Computer Science

4-bit D flip-flop

• Control signals are tied together

• Act as one unified data register

• They usually output only the data (not the complement of the
data as the 1-bit flip-flops)

13
School of Computer Science

Counters

• Store a binary value and when signaled to do so, it increments or
decrements its value

• Can be loaded with an externally supplied value

INC=1

Current Counter Value: 1111
Next Counter Value: 0000

14

Counters

• Counters can be designated as asynchronous or synchronous

• Asynchronous counters are relatively slow because the output from
one flip-flop triggers a change in the status of the next flip-flop

• In a synchronous counter, all of the flip-flops change state at the same
time. This is the kind used in CPUs

15
School of Computer Science

Up/down counter with parallel load

• Ability to load external data as well as count

• Down counter decrements its value rather than increment and
generates a borrow rather than a carry out

• Up/down counter can do both operations according to the signal U/D’

16
School of Computer Science

Shift Registers

• Can shift its data one-bit position to the right or left

• It is useful for hardware multipliers/dividers

• It may shift left, right or both directions under certain control
conditions (like the up/down counter)

17
School of Computer Science

- CT101 -
Computing Systems

Dr. Frank Glavin

Room 404, IT Building

Frank.Glavin@NUIGalway.ie

School of Computer Science,

National University of Ireland, Galway

Programmable Logic Devices

• Most of the circuits presented so far are available on a TTL IC chip.
Circuits can be constructed using these chips and wiring them
together

• An alternative to this method would be to program all the components
into a single chip, saving wiring, space and power

• One type of such device is PLA (Programmable Logic Array) that
contains one or more and/or arrays.

18
School of Computer Science

Programmable Logic Array (PLA)

• The inputs and their complements
are made available to several AND
gates.
• An X indicates that the value is input

to the AND gate

• The output from the AND gates are
input into the OR gates, which
produce the chip’s outputs

• Functions:
• b = X2’ + X1’X0’+X1X0

• c = X2 + X1’ + X0

19
School of Computer Science

Programmable Array Logic (PAL)

• Programmable Array of Logic – its OR
blocks are not programmable
• Certain AND gates serve as input to specific

OR gates

• Same b and c function implementation:

b = X2’ + X1’X0’+X1X0

c = X2 + X1’ + X0

• PLA and PAL are limited because they
can implement only combinatorial logic,
they don’t contain any latches nor flip-
flops

20
School of Computer Science

Programmable Logic Device (PLD)

• Programmable Logic Device is a more complex component that is
needed to realize sequential circuits

• It is usually made up of logic blocks with the possibility to interconnect
them.

• Each logic block is made out of macro cells, that may be equivalent to
a PAL with an output flip-flop

• The input/output pins of an PLD can be configured to the desired
function (unlike for PLA or PAL, where they are fixed)

• Used in more complex design than the PAL or PLA

21
School of Computer Science

Complex Programmable Logic Device (CPLDs)

• Array of PLDs

• Has global
routing resources
for connections
between PLDs
and between
PLDs to/from IOs

22

Field Programmable Gate Array (FPGAs)

• Field Programmable Gate Array is one of the most powerful and
complex programmable circuit available

• Contain an array of cells, each of which can be programmed to
realize a function

• There are programmable interconnects between the cells, allowing
connections to each other

• Includes flip-flops allowing the design and implementation of
complex sequential circuit on a chip (of the complexity of a
processor)

• Often contains the equivalent of 100k to a few million simple logic
gates on a single chip

23
School of Computer Science

FPGAs

• Configuration Memory

• Programmable Logic Blocks
(PLBs)

• Programmable Input/Output Cells

• Programmable Interconnect

24

25

1110011010001000100101010001011100010
100101010101001001000100010101001001
0011001001000011110001100101000100001
100100010100010010010010001010010101
010010010010100010100101000101001010
010001001010101110101010101010101010
10101111011111000000000000001101001111
1000010011100000111001001010000000011
1110010010001010011100100101000011110
001110001001010101010101010101001010
010101010010010101010101010100100100
1101010001011100010100101010101001001
0001000101010010010011001001000011110
001100101000100001100100010100010010
010010001010010101010010010010100010
100101000101001010010001001010101110
1010101010101010101010111101111100000

Basic FPGA Operation

• Load Configuration Memory
• Defines system function

(Input/Output Cells, Logic in
PLBs, Connections between
PLBs & I/O cells)

• Changing configuration
memory => changes system
function

• Can change at anytime
• Even while system function is

in operation

• Run-time reconfiguration
(RTR)

26
School of Computer Science

Programmable Logic Blocks

• PLBs can perform any logic function
• Look-Up Tables (LUTs)

• Combinational logic

• Memory (RAM)

• Flip-flops

• Sequential logic

• Special logic

• Add, subtract, multiply

• Count up and/or down

• #PLBs per FPGA: 100 to 500,000

27
School of Computer Science

LUT/
RAM

FF

LUT/
RAM

FF

LUT/
RAM

FF

LUT/
RAM

FF

PLB architecture

Programmable Interconnect
• Wire segments & Programmable Interconnect Points (PIPs)

• cross-point PIPs – connect/disconnect wire segments

• To turn corners

• break-point PIPs – connect/disconnect wire segments

• To make long and short signal routes

• multiplexer (MUX) PIPs select 1 of many wires for output

• Used at PLB inputs

• Primary interconnect media for new FPGAs

configuration
memory
element

wire A wire B

cross-point PIP

wire A

wire B

wire A wire B

break-point PIP

wire A wire B

output

multiplexer PIP

wire C

28

References

• “Computer Systems Organization & Architecture”,
John D. Carpinelli, ISBN: 0-201-61253-4

29
School of Computer Science

- CT101 -
Computing Systems

Dr. Frank Glavin

Room 404, IT Building

Frank.Glavin@NUIGalway.ie

School of Computer Science,

National University of Ireland, Galway

Finite State Machine Design

Contents

• Finite State Machine (FSM) theory

• Front to end design of FSMs, both Mealy and Moore types.

• Design example is provided for a Modulo 6 counter

• Other Design Examples

• String Checker

• Tollbooth Controller

3
School of Computer Science

FSM Overview

• Finite State Machine is a tool to model the desired behavior of a
sequential system.
• The designer must develop a finite state model of the system behavior and then

designs a circuit that implements this model

• An FSM consists of several states. Inputs into the machine are
combined with the current state of the machine to determine the new
state or next state of the machine.

• Depending on the state of the machine, outputs are generated based
on either the state or the state and inputs of the machine.

4
School of Computer Science

FSM Structure

• X represents the range of
possible input values (2n)

• Y represents the range of
output values (2m)

• Q represents the range of the
possible states of the system
(2k)

• Transfer functions:
• f: X x Q -> Y

• g: X x Q -> Q

5

CLC with n+k
inputs and m+k
outputs

Y = f(X(t), Z(t))

Q+=g(X(t), Z(t))

d1

d2

dk

y1
y2
y3

ym

x1
x2
x3

xn

w1(t)

w2(t)

wk(t)

z1(t)

z2(t)

zk(t)

zk(t) = wk(t-d)

Delay
elements

z2(t) = w2(t-d)

z1(t) = w1(t-d)

Next State q+(t)Present State q(t)

q(t) = q+(t-d) q(t+d) = q+(t)

School of Computer Science

FSM Representation

• FSM = (X, Y, Q, f, g)
• If there is no state in the Q range (Q≡Ø, the circuitry has no history),

then:

• g: X x Ø->Ø, there is no state transition function

• f: X x Ø -> Y is becoming f: X -> Y

• In this case, the FSM is equivalent to a CLC

• FSM| Q≡Ø = CLC = (X, Y, f)

6
School of Computer Science

Asynchronous vs. Synchronous

• Async FSM – the next state becomes the present state after the
delays through the delay elements

• Sync FSM – obtained by replacing the delay elements di with memory
elements (registers).

• The wi bits of the next state will be written in the registers (memory elements)
only on the clock (on edge or level).

7
School of Computer Science

Sync FSM with Immediate Outputs

Y(t) = f(X(t), Q(t))

Q+(t)= g(X(t),Q(t))
CLC

Registers

Q(t)

CLK

t t+1 t+2

Q(t+1) = Q+(t)

X(t)

Synchronous FSM with immediate outputs

8

The FSM where the outputs, after they have been calculated, are used immediately
(of course in the stable period of the state interval), is called an immediate state
machine.

School of Computer Science

Sync FSM with Delayed Outputs

The next state is assigned as present state on the next clock cycle. Similarly, we can
proceed with the outputs, obtaining the delayed state machine. Each bit of the output is
passed through a memory element.

School of Computer Science
9

Timing diagram for Synchronous FSM

10
School of Computer Science

FSM Example

• Events:
• Wake up at fixed time every day
• Weekends: you don’t need alarm, so you wake up, turn off the

alarm and resume sleep

• FSM modeling this chain of events, with:
• Three states:

• Asleep

• Awake but still in bed

• Awake and up

• Inputs:
• Alarm

• Weekday (determines you how to react to alarm)

• Outputs:
• Turn off the alarm

11
School of Computer Science

State Tables

• Similar to the truth table
• Doesn’t contain the system clock when specifying its transitions

(it is implicit that transitions occur only when allowed by clock)

• Unless otherwise stated, all the transitions are occurring
on the positive edge of the clock

12

Present
State

Inputs Next
State

Outputs

School of Computer Science

Alarm Clock State Table

• When you are asleep and alarm goes on, you go from being asleep to being
awake in bed; you also turn off the alarm

• The next two rows encode your actions:
• You get up
• You go back to sleep

• This table doesn’t cover what you wouldn’t do…(i.e. if you are asleep and the
alarm doesn't go off, you remain asleep, etc..)

13

Present
State

Alarm Weekday Next State Turn off alarm

Asleep On X Awake in
bed

Yes

Awake in
bed

Off Yes Awake and
up

No

Awake in
bed

Off No Asleep No

School of Computer Science

Alarm Clock State Table

• Covers all the cases
• First row covers the situation you are asleep, the alarm doesn’t

go off and you remain asleep

• Last row covers the situation you are awake and up and you
remain awake and up

• The third row covers the case you are already up and the alarm
goes off. You turn it off and remain Awake in bed

14

Present State Alarm Weekday Next State Turn off alarm

Asleep Off X Asleep No

Asleep On X Awake in bed Yes

Awake in bed On X Awake in bed Yes

Awake in bed Off Yes Awake and up No

Awake in bed Off No Asleep No

Awake and up X X Awake and up No

School of Computer Science

State Diagram

• Graphical representation of the state table
• Each state is represented by a circle vertex

• Each row of the state table is represented as a directed arc from
present state vertex to the next state vertex

• In this diagram, the outputs are associated with the states

15
School of Computer Science

Alternative State Diagram

• The outputs are associated with the arcs
• An output of 1 represents that “turn off the alarm” is Yes

• By convention, inputs which we don’t care about and
inactive outputs are not shown.

16
School of Computer Science

- CT101 -
Computing Systems

Dr. Frank Glavin

Room 404, IT Building

Frank.Glavin@NUIGalway.ie

School of Computer Science,

National University of Ireland, Galway

Mealy and Moore machines

• Moore machine:

• Associates its outputs with states

• The outputs are represented either within the vertex corresponding to a state or
adjacent to the vertex

• Mealy machine:

• Associates its outputs with the transitions

• In addition to the input values, each arc also shows the output values generated
during the transition; the format of the label of each arc is Inputs/Outputs

• Both can be used to represent any sequential system and each has its
advantages.

17
School of Computer Science

Moore FSM

• Output is dependent only
on the current state

• Immediate Moore FSM:
the output is obtained
with a clock period delay,
since the next state
becomes present state

• Delayed Moore FSM: the
output is actually
obtained with two clock
period delay, because of
the Registers Bank 2

18

Registers
Bank 1

Q(t)
CLC1

g

Clock

X(t)

Q+(t) = g[(X(t), Q(t)]
Q(t+1) = Q+(t)
Y(t+1) := f[Q+(t)]

Moore with
immediate output

Y(t+1)CLC2
f

Q(t+1) = Q+(t)

X(t)
Registers

Bank 1
Q(t)

CLC1
g

Clock

Q+(t) = g[(X(t)]
Q(t+1) = Q+(t)
Y(t+2) := f[Q+(t)]

Moore with delayed
output

Y(t+2)CLC2
f

Q(t+1) = Q+(t)

Registers
Bank 2

School of Computer Science

Mealy FSM

• Output is dependent on the inputs and the current state

• Delayed output FSM implies the fact that the calculated output for an
input, applied at time t, is assigned at time t+1. This is correct for a
Mealy FSM

19
School of Computer Science

Moore Machine Diagram

• Self arcs can be missing (since its outputs are associated with the states
and not with the arcs)

• Offers a simpler implementation when the output values depend only on
the state and not on the transitions

• It is well suited for representing the control units of microprocessors

20
School of Computer Science

Mealy Machine Diagram

• Self arcs must be shown (because the output values are shown on the arcs)

• Can be more compact than Moore machine, especially when two or more
arcs with different output values go into the same state

21
School of Computer Science

Modulo 6 Counter - Specification

• A modulo 6 counter is a 3-bit counter that counts through the
following sequence:
• 000->001->010->011->100->101->000->…

• 0 -> 1 -> 2 -> 3 -> 4 -> 5 -> 0 …

• It doesn’t use value 6 (110) nor 7 (111)

• It has an input U that controls the counter:
• When U=1 the counter increments its value on the rising edge of the clock

• When U=0 the counter retains its value on the rising edge of the clock

• The value of the count is represented as three-bit value (V2V1V0)

• There is an additional output C (Carry) that is 1 when going from 5
to 0 and 0 otherwise (the C output remains 1 until the counter
goes from 0 to 1)

22
School of Computer Science

Modulo 6 Counter – State Table

• For each state examine what
happens for all possible values of
the inputs
• In state S0 input U can be either 0

or 1
• If U=0 the state machine remains in

state S0 and outputs C=1 and
V2V1V0=000

• If U=1 the state machine goes in
state S1, outputs C=0 and
V2V1V0=001

• In the same manner, each state
goes to the next state if U=1 and
remains in the same state if U=0

23

Present
State

U Next
State

C V2V1V0

S0 0 S0 1 000

S0 1 S1 0 001

S1 0 S1 0 001

S1 1 S2 0 010

S2 0 S2 0 010

S2 1 S3 0 011

S3 0 S3 0 011

S3 1 S4 0 100

S4 0 S4 0 100

S4 1 S5 0 101

S5 0 S5 0 101

S5 1 S0 1 000

School of Computer Science

Modulo 6 Counter - Mealy State Diagram

• The outputs are represented on the arcs as U/CV2V1V0

24
School of Computer Science

Modulo 6 Counter – Moore state diagram

• The outputs are represented adjacent to the state

• The inputs are represented on the arcs

25
School of Computer Science

FSM Implementation

• Converting a problem to an equivalent state table and state diagram is just
the first step in the design process

• The next step is to design the system hardware that implements the state
machine.

• This section deals with the process involved to design the digital logic to
implement a finite state machine.

• First step is to assign a unique binary value to each of the states that the
machine can be in. The state must be encoded in binary.

• Next, we design the hardware to go from the current state to the correct next
state. This logic converts the current state and the current input values to the
next state values and stores that value.

• The final stage would be to generate the outputs of the state machine. This is
done using combinatorial logic.

26
School of Computer Science

Assigning State Values

• Each state must be assigned to a unique binary value; for a
machine with n states we have [log2n] bits;

• For the modulo 6 counter example, we have six states. We will
assign state value 000 to S0, 001 to S1, and so on, up to 101 to
S5.

27
School of Computer Science

Assigning State Values

• Any values can be assigned to the states, some values can be better than others (in
terms of minimizing the logic to create the output and the next state values)

• This is an iterative process: first the designer creates a preliminary design to
generate the outputs and the next states, then modifies the state values and repeats
the process. There is a rule of thumb, that simplifies the process: whenever possible,
the state should be assigned the same with the output values associated with that
state. In this case, the same logic can be used to generate the next state and the
output

28
School of Computer Science

Mealy and Moore Machine Implementations

• The current state value is stored into the
register

• The state value together with the
machine inputs, are input to a logic block
(CLC) that generates the next state value
and machine outputs

• The next state is loaded into the register
on the rising edge of the clock signal

29

Mod 6 Counter – Mealy Implementation

• The logic block (CLC) is specific to
every system and may consist of
combinatorial logic gates,
multiplexers, lookup ROMs and
other logic components

• The logic block can’t include any
sequential components, since it
must generate its value in one
clock cycle

• The logic block contains two parts:
• One that generates the outputs

(f function, CLC1)

• One that generates the next state
(g function, CLC2)

30
School of Computer Science

Mod 6 Counter – Moore Implementation

• The outputs depend only on the present state and not on its inputs
• Its configuration is different than the Mealy machine

• The system output depends only on the present state, so the implementation of the
output logic is done separately

• The next state is obtained from the input and the present state (same as for the
Mealy machine)

School of Computer Science
31

Generating the Next State

• Since the Mealy and Moore machines must traverse the same states
under the same conditions, their next state logic is identical

• We will present three methods to generate the next state logic:

• (i) Combinatorial logic gates

• (ii) Using multiplexers

• (iii) Using lookup ROM

• To begin with, we need to setup the truth table for the next state logic

32
School of Computer Science

Modulo 6 Counter - Next State Logic (i)

• The system inputs and the present
states are the inputs of the truth table

• Next state bits are the outputs

• We have to construct a Karnaugh map
for each output bit and obtain its
equation

• After that we design the logic to match
the equations

33

Present
State

P2P1P0

U Next
State

N2N1N0

000 0 000

000 1 001

001 0 001

001 1 010

010 0 010

010 1 011

011 0 011

011 1 100

100 0 100

100 1 101

101 0 101

101 1 000

School of Computer Science

Modulo 6 Counter – Next State Logic (i)

• N2 = P2P0’ + P2U’ +P1P0U

• N1 = P1P0’ + P1U’ + P2’P1’P0U

• N0 = P0’U + P0U’

34
School of Computer Science

• Modulo 6 Counter –
Next State
implementation using
logic gates (i)

35

Modulo 6 Counter – Next State Logic (ii)

• An alternative approach to design the next state logic is to use
multiplexers.

• Each input to the multiplexer corresponds to the next state under one
possible value of the system inputs; the inputs drive the input signals
of the multiplexer

• For the modulo 6 counter, we use the U input to drive the multiplexer;
U is choosing one of two possible next states, the next state if U=0
and the next state if U = 1

• To determine the inputs of the multiplexer we begin with splitting the
truth table into multiple truth tables, one for each possible value of the
system inputs

• Then we follow the procedure we have used to obtain the next state
using combinatorial logic gate

36
School of Computer Science

Modulo 6 Counter – Next State Logic (ii)

• Initial truth table is broken into two tables:

• One for U=0

• One for U=1

• Create Karnaugh maps from these tables to obtain the equations for
N2, N1 and N0 when U=0 and when U=1

37

Present
State

P2P1P0

Next
State

N2N1N0

000 000

001 001

010 010

011 011

100 100

101 101

Present
State

P2P1P0

Next
State

N2N1N0

000 001

001 010

010 011

011 100

100 101

101 000

U = 1U = 0

School of Computer Science

Modulo 6 Counter – Next State Logic (ii)

• U = 0 we observe that
the next state is the
same as current state:
• N2 = P2

• N1 = P1

• N0 = P0

• U = 1:
• N2 = P2P0’+P1P0

• N1 = P1P0’ + P2’P1’P0

• N0 = P0’

38

P1P0

00 01 11 10P2

0 0 0 1 0

1 1 0 x x

P1P0

00 01 11 10P2

0 0 1 0 1

1 0 0 x x

P1P0

00 01 11 10P2

0 1 0 0 1

1 1 0 x x

N2

N1

N0

U=1

Modulo 6 Counter – Next State Logic (ii)

Next state logic implementation using multiplexers and logic
gates. Please note that using multiplexers simplifies the
combinatorial logic circuitry

School of Computer Science
39

Modulo 6 Counter – Next State Logic (iii)

• Another approach to generate the
next state logic for an FSM is to
use a lookup ROM.

• In this approach, the present state
values and inputs are connected to
the address bus of a ROM; the
next state is obtained from the
ROM outputs

• The correct value must be stored in
each location of the ROM to
ensure proper operation

40
School of Computer Science

Modulo 6 Counter – Next State Logic (iii)

• The three bits that encode the
present state (P2P1P0) are
connected to the three high-order
address inputs to the ROM
(A3A2A1)

• The one condition bit U is
connected to the low order address
bit A0

• The data in each location is the
value of the next state for present
state and the input values

41
School of Computer Science

- CT101 -
Computing Systems

Dr. Frank Glavin

Room 404, IT Building

Frank.Glavin@NUIGalway.ie

School of Computer Science,

National University of Ireland, Galway

Generating System Outputs

• For both Mealy and Moore machines, we follow the
same design procedure to develop their output logic

• There are two approaches to generate the output
(similar to generate the next state logic):
• Using combinatorial logic gates
• Using lookup ROM

• We begin by creating the truth table:
• For a Mealy machine, the truth table inputs will be the

present state and the system inputs, and the table outputs
are the system outputs

• For a Moore machine, only the state bits are inputs of the
truth table, since only these bits are used to generate the
system outputs; the table outputs are the system outputs

42
School of Computer Science

Modulo 6 Counter Outputs (i)
P2P1P0 U C V2V1V0

000 0 1 000

000 1 0 001

001 0 0 001

001 1 0 010

010 0 0 010

010 1 0 011

011 0 0 011

011 1 0 100

100 0 0 100

100 1 0 101

101 0 0 101

101 1 1 000

P2P1P0 C V2V1V0

000 1 000

001 0 001

010 0 010

011 0 011

100 0 100

101 0 101

Mealy

Moore

School of Computer Science
43

Outputs - Mealy (i)

P0U

00 01 11 10P2P1

00 0 0 0 0

01 0 0 1 0

11 X X X X

10 1 1 0 1

P0U

00 01 11 10P2P1

00 0 0 1 0

01 1 1 0 1

11 X X X X

10 0 0 0 0

P0U

00 01 11 10P2P1

00 0 1 0 1

01 0 1 0 1

11 X X X X

10 0 1 0 1

P0U

00 01 11 10P2P1

00 1 0 0 0

01 0 0 0 0

11 X X X X

10 0 0 1 0

V2 = P2P0’ + P1P0U + P2U’ V1 = P2P1’P0U + P1P0’ + P1U’

V0 = P0’U + P0U’ C = P2’P1’P0’U’ + P2P0U44

Modulo 6 Counter Outputs (i)

• Mealy machine (note that the equations for V2, V1, V0 are
exactly the same as for the N2, N1, N0. This is the result of
optimally assigning the state values. Same combinatorial logic
can be used to obtain the outputs):
• V2 = P2P0’+P2U’+P1P0U
• V1 = P1P0’+P1U’+P2P1’P0U
• V0 = P0’U+P0U’
• C = P2’P1’P0’U’+P2P0U

• Moore machine:
• V2 = P2
• V1 = P1
• V0 = P0
• C = P2’P1’P0’ = (P2+P1+P0)’

45
School of Computer Science

Modulo 6 Counter – Mealy Implementation (i)

46
School of Computer Science

Modulo 6 Counter – Moore Implementation (i)

47
School of Computer Science

Modulo 6 Counter System Outputs (ii)

• It is possible to generate the system outputs using a
lookup ROM

• The inputs of the lookup ROM are the present states
and the system inputs. The outputs of the ROM are
the system outputs

• We can use same ROM to generate next state and
system outputs

• Since for the Mealy machine V2 = N2, V1 = N1 and
V0 = N0, only one output is used for each pair. If the
outputs weren’t the same as the next state, separate
output bits would be needed.

48
School of Computer Science

Modulo 6 Counter – Moore Implementation (ii)

49
School of Computer Science

FSM Alternative Design

• There are some other methods to implement an FSM;
one of them is to use a counter to store the current
state and a decoder to generate signals
corresponding to each state

• The counter can be incremented, cleared or loaded
with a value to go from one state to another.

• Unlike the other methods, you don’t have to generate
the same state value in order to remain in the same
state; this can be accomplished by neither
incrementing, clearing nor loading the counter

50
School of Computer Science

FSM with Counter and Decoder

• The counter plays the role of the register in Mealy and Moore designs, as well as a
portion of the next state logic

• The state value is input into a decoder; each output of the decoder represents one
state

• The decoder outputs and system inputs are input to the logic bloc that generates the
system outputs and the information needed to generate the next state value

School of Computer Science
51

FSM with Counter and Decoder

• If the system inputs are used to generate both the next
state and the system outputs, this design can be used to
implement a Mealy machine.

• If the system outputs are generated solely by using the state
value, and the system inputs are used only to generate the
next state, then it implements a Moore machine

• The Modulo 6 counter Moore implementation using this
approach is as follows…

52
School of Computer Science

Modulo 6 Counter Moore Implementation with Counter and Decoder

53
School of Computer Science

Unused States

• The FSM presented so far works well if it is in a known state

• There will be a problem if the machine enters an unused
state, also called unknown state or undefined state

• This could be caused by a flaw in the design but most of the
times, this happens when the machine powers-up.

54
School of Computer Science

Modulo 6 Counter Analysis

• The modulo 6 counter (consider Moore machine implementation)
has six states with binary state values from 000 to 101

• The state value is stored in the register of the finite state machine
hardware; an unused state is entered when an unused state is
stored in this register;

• The unused states for this design example are 110 and 111

55
School of Computer Science

Modulo 6 Counter – Revised (acceptable) diagram

• When present state is 110, the next state is 110 if U=0 or 111 if U=1

• When present state is 111, the next state is 111 if U=0 or 000 if U=1

School of Computer Science
56

Modulo 6 Counter – Revised (wrong) Diagram

• If a circuit that implements this diagram
powers-up in state 110 or 111 will never reach a
valid state

School of Computer Science
57

Modulo 6 Counter – State Diagram with Dummy States

• Create dummy states for all unused states
• Each dummy state would go to a known state on the next clock

cycle (usually to a reset state)
• Two dummy states: 110 and 111
• By convention, the values 1 on the arcs indicate that the transfer

is unconditional – that is always taken
• Note also the output values: C=0 and 111 indicates to the user

that the machine is in an invalid state (it is a design decision)

School of Computer Science
58

Modulo 6 Counter – State Table with Dummy States

• Use this table to construct Karnaugh
maps which yield to the following
values for next state and outputs:

• Next state:
• N2 = P2P1’P0’ + P2P1’U’ + P1P0U

• N1 = P2’P1P0’ + P2’P1U’ + P2’P1’P0U

• N0 = P2’P0’U + P1’P0’U + P1’P0U’

• Outputs:
• C = P2’P1’P0’

• V2 = P1

• V1 = P1

• V0 = P0 + P2P1

P2P1P0 U N2N1N0 C V2V1V0

000 0 000 1 000

000 1 001 0 001

001 0 001 0 001

001 1 010 0 010

010 0 010 0 010

010 1 011 0 011

011 0 011 0 011

011 1 100 0 100

100 0 100 0 100

100 1 101 0 101

101 0 101 0 101

101 1 000 1 000

110 0 000 0 111

110 1 000 0 111

111 0 000 0 111

111 1 000 0 111

School of Computer Science
59

String Checker - Specification

• Inputs a string of bits, one per clock cycle

• When the previous three bits form the pattern 110, it sets the output
match M=1; otherwise M=0

• The pattern is checked continuously through the entire bit stream; the
system DOES NOT check the first three bits and then the next three
bits and so on.

• The system checks bits 123 and then bits 234 and then bits 345 and
so on.

60
School of Computer Science

String Checker – State Table (i)

• The last three bits received represent
the state of the system

• Bits are received from right to left (i.e.
the current state is S0 (000), if a new
bit with value 1 is received, then the
next value of the state is S1 (001)

• Each state goes from one state in
two possible next states, depending
on the value of I

• Example S2 corresponds to the case
where last three bits were 010:
• I=0 next state is S4 (100), output is M=0
• I=1 next state is S5 (101), output is M=0

Present
State

I Next
State

M

S0 (000) 0 S0 0

S0 (000) 1 S1 0

S1 (001) 0 S2 0

S1 (001) 1 S3 0

S2 (010) 0 S4 0

S2 (010) 1 S5 0

S3 (011) 0 S6 1

S3 (011) 1 S7 0

S4 (100) 0 S0 0

S4 (100) 1 S1 0

S5 (101) 0 S2 0

S5 (101) 1 S3 0

S6 (110) 0 S4 0

S6 (110) 1 S5 0

S7 (111) 0 S6 1

S7 (111) 1 S7 0
School of Computer Science

61

String Checker – State diagrams (i)

62

String Checker – Hardware Implementation

• Assign values to the states

• S0 assign 000 and so on

• Start to design the hardware for this
implementation, starting with generic

• Design the next state logic

• Design the output logic

63

P2P1P0 I N2N1N0

000 0 000

000 1 001

001 0 010

001 1 011

010 0 100

010 1 101

011 0 110

011 1 111

100 0 000

100 1 001

101 0 010

101 1 011

110 0 100

110 1 101

111 0 110

111 1 111

School of Computer Science

– N2 = P1

– N1 = P0

– N0 = I

P0I

00 01 11 10P2P1

00 0 0 0 0

01 1 1 1 1

11 1 1 1 1

10 0 0 0 0

N2
P0I

00 01 11 10P2P1

00 0 1 1 0

01 0 1 1 0

11 0 1 1 0

10 0 1 1 0

P0I

00 01 11 10P2P1

00 0 0 1 1

01 0 0 1 1

11 0 0 1 1

10 0 0 1 1

N1

N0

String Checker – Next State Logic

School of Computer Science
64

String Checker – Moore Machine

• The output logic is straight forward; when the machine is in state
S6 the M is 1, otherwise is 0. This can be implemented as:

• M = P2P1P0’

65
School of Computer Science

String Checker – Mealy Machine

• M = P1P0I’

P0I

00 01 11 10P2P1

00 0 0 0 0

01 0 0 0 1

11 0 0 0 1

10 0 0 0 0

MP2P1P0 I M

000 0 0

000 1 0

001 0 0

001 1 0

010 0 0

010 1 0

011 0 1

011 1 0

100 0 0

100 1 0

101 0 0

101 1 0

110 0 0

110 1 0

111 0 1

111 1 0
Clock

Register

MI

LD

P0
P1
P2

N0
N1
N2

66

String Checker – State Table (ii)

• Sometimes there are simpler alternative
methods:

• S0 – no bits matched

• S1 – one bit matched

• S2 – two bits matched

• S3 – three bits matched

• In each state, consider the possible values
of the input bit and determine which next
state is appropriate

67

Present
State

I Next State M

S0 (---) 0 S0 (---) 0

S0 (---) 1 S1 (--1) 0

S1 (--1) 0 S0 (---) 0

S1 (--1) 1 S2 (-11) 0

S2 (-11) 0 S3 (110) 1

S2 (-11) 1 S2 (-11) 0

S3 (110) 0 S0 (---) 0

S3 (110) 1 S1 (--1) 0

School of Computer Science

String Checker – State Diagrams (ii)

68
School of Computer Science

Toll Booth Controller - Specification

• Has two input sensors:
• Car sensor C (car in toll booth) = 1 if there is a car or 0 if there is no car

• Coin sensor (and its value):

• I1I0 = 00 – no coin has been inserted

• I1I0 = 01 – a 5 cents coin has been inserted

• I1I0 = 10 – a 10 cents coin has been inserted

• I1I0 = 11 – a quarter coin has been inserted

• Two output lights and one alarm output
• When a car pulls into the toll booth, a red light (R) is lit until the driver deposits at least

35 cents, when the red light goes off and the green light (G) is lit;

• The green light remains lit until the car leaves the toll booth, when this happen, the red
light is lit again

• If the car leaves the toll booth without paying the full amount, the red light is lit and the
alarm (A) sound

• The alarm remains active until another car pulls into the booth

69
School of Computer Science

Toll Booth Controller – States Definition

70

State Condition R G A

Snocar No car in toll booth 1 0 0

S0 Car in toll booth, 0 cents paid 1 0 0

S5 Car in toll booth, 5 cents paid 1 0 0

S10 Car in toll booth, 10 cents paid 1 0 0

S15 Car in toll booth, 15 cents paid 1 0 0

S20 Car in toll booth, 20 cents paid 1 0 0

S25 Car in toll booth, 25 cents paid 1 0 0

S30 Car in toll booth, 30 cents paid 1 0 0

Spaid Car in toll booth, toll paid 0 1 0

Scheat Car left toll booth without paying full
toll

1 0 1

School of Computer Science

Toll Booth Controller – State table
Current

State
C I1I0 Next

state
R G A

Snocar 0 XX Snocar 1 0 0

Snocar 1 XX S0 1 0 0

Spaid 0 XX Snocar 1 0 0

Spaid 1 XX Spaid 0 1 0

Scheat 0 XX Snocar 1 0 1

S0 0 XX Scheat 1 0 1

S0 1 00 S0 1 0 0

S0 1 01 S5 1 0 0

S0 1 10 S10 1 0 0

S0 1 11 S25 1 0 0

S5 0 XX Scheat 1 0 1

S5 1 00 S5 1 0 0

S5 1 01 S10 1 0 0

S5 1 10 S15 1 0 0

S5 1 11 S30 1 0 0

S10 0 XX Scheat 1 0 1

S10 1 00 S10 1 0 0

S10 1 01 S15 1 0 0

S10 1 10 S20 1 0 0

S10 1 11 Spaid 0 1 0

Current
State

C I1I0 Next
state

R G A

S15 0 XX Scheat 1 0 1

S15 1 00 S15 1 0 0

S15 1 01 S20 1 0 0

S15 1 10 S25 1 0 0

S15 1 11 Spaid 0 1 0

S20 0 XX Scheat 1 0 1

S20 1 00 S0 1 0 0

S20 1 01 S25 1 0 0

S20 1 10 S30 1 0 0

S20 1 11 Spaid 0 1 0

S25 0 XX Scheat 1 0 1

S25 1 00 S25 1 0 0

S25 1 01 S30 1 0 0

S25 1 10 Spaid 0 1 0

S25 1 11 Spaid

S30 0 XX Scheat 1 0 1

S30 1 00 S30 1 0 0

S30 1 01 Spaid 0 1 0

S30 1 10 Spaid 0 1 0

S30 1 11 Spaid 0 1 071

Toll Booth Controller – Moore State Diagram

72

References

• “Computer Systems Organization & Architecture”,
John D. Carpinelli, ISBN: 0-201-61253-4

73
School of Computer Science

- CT101 -
Computing Systems

Dr. Frank Glavin

Room 404, IT Building

Frank.Glavin@NUIGalway.ie

School of Computer Science,

National University of Ireland, Galway

CPU Programming Models

Contents

• Review of computer organization

• Processor instruction cycle and organization

• Stack and GPR processor architectures

• Stack used to implement procedure calls

3
School of Computer Science

Basic Computer Organization

4
School of Computer Science

Computer Organization

School of Computer Science
5

Von Neumann and Harvard Architectures

• Von Neumann:
• Allows instructions and data to be mixed and stored in the same

memory module

• More flexible and easier to implement

• Suitable for most of the general-purpose processors

• Harvard:
• Uses separate memory modules for instructions and for data

• It is easier to pipeline

• Higher memory throughput

• Suitable for DSP (Digital Signal Processors)

6
School of Computer Science

Programs

• Instruction sequences that tell computer what to do

• To the computer, a program is made out of a sequence of numbers
that represent individual operations.

• Those operations are known as machine instructions or just instructions

• A set of instructions that a processor can execute is known as instruction set

7
School of Computer Science

The Processor - Instruction Cycles

• The instruction cycle is the procedure of processing an instruction by
the microprocessor:
• Fetches or reads the instruction from the memory

• Decodes the instruction, determining which instruction is to be executed (which
instruction has been fetched)

• Executes the instruction – performs the operations necessary to complete what
the instruction is suppose to do (different from instruction to instruction, may read
data from memory, may write data to memory or I/O device, perform only
operations within CPU or combination of those)

• Each of the phases fetch -> decode -> execute consist of a sequence
of one or more operations inside the CPU (and interaction with the
subsystems)

8
School of Computer Science

Processor Organization

9
School of Computer Science

Execution Unit Example

• //Code for a = b + c
• LD R3, b //copy value b from memory to R3
• LD R4, c //copy value c from memory to R4
• add R3, R4 //sum placed in R3
• ST R3, a //store the result into memory

10
School of Computer Science

Control Unit

• The control unit controls the execution of the instructions stored
in the main memory (retrieve and execute them)

11
School of Computer Science

Programming Models

• A processor programming model defines how instructions access their
operands and how instructions are described in processor’s assembly
language

• Processors with different programming models can offer similar set of
operations but may require very different approaches to programming

• We will study two different processor architectures and will learn what
differences in programming for the stack vs GPR models

12
School of Computer Science

Stack Based Architectures

• The Stack

• Implementing Stacks

• Stack based architecture instruction set

• Programs in stack-based architecture

13
School of Computer Science

The Stack (1)

• Is a last in first out (LIFO) data structure

• Consists of locations, each of which can hold a word of data

• It can be used explicitly to save/restore data

• Supports two operations

• PUSH – takes one argument and places the value of the argument in the top of the
stack

• POP – removes one element from the stack, saving it into a predefined register of
the processor

• It is used implicitly by procedure call instructions (if available in the
instruction set)

14
School of Computer Science

The Stack (2)

• When a new data is added to the stack, it is placed at the top of the
stack, and all the contents of the stack is pushed down one location

• Consider the code:
• PUSH #10

• PUSH #11

• POP

• PUSH #8

Top

.

.

.

10Top

.

.

.

11Top

.

.

.

10

10Top

.

.

.

8Top

.

.

.

10

Initial State
After PUSH #10 After PUSH #11 After PUSH #8After POP

School of Computer Science
15

Implementing Stacks

• Dedicated hardware stack

− It has a hardware limitation

− Very fast

• Memory implemented stack

− Limited by the physical memory of the system

− Slow compared with hardware stack, since extra memory addressing has to take
place for each stack operation

• Stack overflows can occur in both implementations

− When the amount of data in the stack exceeds the amount of space allocated to
the stack (or the hardware limit of the stack)

16
School of Computer Science

Stack Implemented in Memory

• Every push operation will increment the top of the stack pointer
(with the word size of the machine); Every pop operation will
decrement the top of the stack pointer

School of Computer Science
17

Instructions in a Stack Based Architecture

• Get their operands from the stack and write their results to the stack

• Advantage - Program code takes little memory (no need to specify
the address of the operands in memory or registers)
• Push is one exception, because it needs to specify the operand (either as

constant or address)

18

Stack

School of Computer Science

Simple Stack Based Instruction Set
PUSH #a Stack <-a

POP a<-Stack (the value popped is discarded)

ST a <-Stack

(a) <-Stack

LD a <-Stack

Stack <- (a)

ADD a <- Stack

b <- Stack

Stack <- a + b

SUB a <- Stack

b <- Stack

Stack <- b – a

AND a <- Stack

b <- Stack

Stack <- a & b (bit wise computation)

OR a <- Stack

b <- Stack

Stack <- a | b (bit wise computation)

School of Computer Science
19

Programs in Stack Based Architecture (1)

• Writing programs for stack-based architectures is not easy, since
stack-based processors are better suited for postfix notation rather
than infix notation
• Infix notation is the traditional way of representing math expressions, with

operation placed between operands

• Postfix notation – the operation is placed after the operands

• Once the expression has been converted into postfix notation,
implementing it in programs is easy

• Create a stack-based program that computes:
• 2 + (7&3)

20
School of Computer Science

Programs in Stack Based Architecture (2)

• First, we need to convert the expression into postfix notation:

• 2 + (7&3) = 2 + (7 3 &) = (2 (7 3 &)+)

• Convert the postfix notation into a series of instructions, using the
instructions from the instruction set presented earlier

• PUSH #2

• PUSH #7

• PUSH #3

• AND

• ADD

• To verify the result, we need to hand simulate the execution

21
School of Computer Science

- CT101 -
Computing Systems

Dr. Frank Glavin

Room 404, IT Building

Frank.Glavin@NUIGalway.ie

School of Computer Science,

National University of Ireland, Galway

General Purpose Register Architecture

• Instructions in a GPR architecture

• A GPR instruction set

• Programs in GPR architecture

22
School of Computer Science

General Purpose Register Architecture (1)

• The instructions read their operands and write their results to
random access register file.

• The general-purpose register file allows the access of any
register in any order by specifying the number (register ID) of
the register

• The main difference between a general-purpose register and
the stack is that reading repeatedly a register will produce the
same result and will not modify the state of the register file.
• Popping an item from a LIFO structure (stack) will modify the contents

of the stack

23
School of Computer Science

General Purpose Register Architecture (2)

• Many GPR architectures assign special values to some registers
in the register file to make programming easier

• i.e. sometimes, register 0 is hardwired with value 0 to generate this most
common constant

24
School of Computer Science

Instructions in GPR Architecture (1)

• GPR instructions need to specify the register that hold their input
operands and the register that will hold the result

• The most common format is the three operands instruction format.

• ADD r1, r2, r3 instructs the processor to read the contents of r2 and r3, add them
together and write the result in r1

• Instructions having two or one input are also present in GPR
architecture

25
School of Computer Science

Instructions in GPR Architecture (2)

• A significant difference between GPR architecture and stack-based
architecture is that programs can choose which values should be
stored in the register file at any given time, allowing them to cache
most accessed data
• In stack-based architectures, once the data has been used, it is gone.

• GP architectures have better performance from this point of view, at
the expense of needing more storing space for the program (since the
instructions are larger, needing to encode also addresses of the
operands)

26
School of Computer Science

Simple GPR Instruction Set

ST (ra), rb (ra) <- rb

LD ra, (rb) ra <- (rb)

ADD ra, rb, rc ra <- rb +rc

SUB ra, rb, rc ra <- rb -rc

AND ra, rb, rc ra <- rb & rc

OR ra, rb, rc ra <- rb | rc

MOV ra, rb ra <- rb

MOV ra,
#constant

ra <- constant

27

Sample instruction set, similar with the one presented for the
Stack-based architecture.

School of Computer Science

Programs in a GPR Architecture (1)

• Programming a GPR architecture processor is less
structured than programming a stack-based architecture one.

• There are fewer restrictions on the order in which the
operations can be executed
• On stack-based architectures, instructions should execute in the

order that would leave the operands for the next instructions on the
top of the stack

• On GPR, any order that places the operands for the next instruction
in the register file before that instruction executes is valid.

• Operations that access different registers can be reordered without making
the program invalid

28
School of Computer Science

Programs in GPR Architecture (2)
• Create a GPR based program that computes:

• 2 + (7&3)

• GPR programming uses infix notation:
• MOV R1, #7

• MOV R2, #3

• AND R3, R1, R2

• MOV R4, #2

• ADD R4, R3, R4

• The result will be placed in R4

29
School of Computer Science

Comparing Stack based and GPR Architectures

• Stack-based architectures
• Instructions take fewer bits to encode

• Reduced amount of memory taken up by programs

• Manages the use of register automatically (no need for programmer intervention)

• Instruction set does not change if size of register file has changed

• GPR architectures
• With evolution of technology, the amount of space taken up by a program is less important

• Compilers for GPR architectures achieve better performance with a given number of general
purpose registers than they are on stack-based architectures with same number of registers

• The compiler can choose which values to keep (cache) in register file at any time

• GPR architectures are used by modern computers (workstations, PCs, etc..)

30
School of Computer Science

Using Stacks to Implement Procedure Calls (1)

• Programs need a way to pass inputs to the procedures that they call and to
receive outputs back from them

• Procedures need to be able to allocate space in memory for local variables,
without overriding any data used by their calling program

• It is impossible to determine which registers may be safely used by the
procedure (especially if the procedure is located in a library), so a
mechanism to save/restore registers of calling program has to be in place

• Procedures need a way to figure out where they were called from, so the
execution can return to the calling program when the procedure completes
(they need to restore the program counter)

31
School of Computer Science

Using Stacks to Implement Procedure Calls (2)

• When a procedure is called, a block of memory in the stack is allocated. This is
called a stack frame
• The top of the stack pointer is incremented by the number of locations in the stack frame

32
School of Computer Science

Using Stacks to Implement Procedure Calls (3)

• Nested procedure calls – main program calls function f(),
function f() calls function g(), function g() calls function h()

33
School of Computer Science

References

• “Computer Systems Organization & Architecture”,
John D. Carpinelli, ISBN: 0-201-61253-4

34
School of Computer Science

- CT101 -
Computing Systems

Dr. Frank Glavin

Room 404, IT Building

Frank.Glavin@NUIGalway.ie

School of Computer Science,

National University of Ireland, Galway

Instruction Set Architecture

• Instruction Set Architecture

• Programming languages

• Instruction types

• Data types

• Instruction formats

• Addressing modes

• Instruction set design

2
School of Computer Science

Instruction Set Architecture

• Includes the microprocessor’s instruction set, the set of all the
assembly language instructions that the microprocessor can execute

• Specifies:
• The registers accessible to the programmer, their size and the instructions in the

instructions set that can use each register

• Information necessary to interact with the memory (e.g. alignment)

• How microprocessors react to interrupts (e.g. interrupt routines)

• Before getting into the details, we need to describe programming
languages

3
School of Computer Science

Programing Languages

• High level languages
• Hide all of the details about the computer and the operating system
• Platform independent

• Assembly language
• Platform dependent
• Processors are made usually backwards compatible

• Machine languages
• Contain the binary values that cause the processor to perform certain

operations
• Platform specific

4
School of Computer Science

Compiling Native Code

5

High-level Language
Program (C++, Fortran..)

Compiler for Pentium
Windows PC

Other
Pentium

Object Files

Pentium
Object Code

Pentium linker

Pentium executable file

Windows Pentium PC

Compiler:
• Checks to make sure every line in the code is valid
• Once the program is syntax error free, it will finish compiling

the source code and generates object code
• Object code is the machine language equivalent to the

source code
• At this point, the program has been complied successfully,

but is not ready to execute.

Linking:
• Some programs need object code from other programs or

libraries (other object files)
• A linker combines your object code with any other required

object code
• The combined code is stored as executable file, the code that

the computer runs.
• A loader copies the executable file into the memory, and then

the microprocessor runs the code contained in that file.

Assembling Programs

• Assembly language is specific to one
microcontroller

• Converts the source code into object
code

• The linker will combine the object code
of your program with any other required
object code to produce executable
code

• Loader will load the executable code
into memory, for execution

6
School of Computer Science

Java – Different way of programming

7
School of Computer Science

https://medium.com/@PrayagBhakar/lesson-2-behind-the-scenes-4df6a461f31f

Instruction Set Architecture

• Defines any aspects of the processor that an assembly language
programmer needs to know, in order to write a correct program

• Specifies:
• The registers accessible to the programmer, their size and the

instructions in the instructions set that can use each register

• Information necessary to interact with the memory

• Certain microprocessors require instructions to start only at specific memory
locations; this alignment of the instructions will be part of the instruction
architecture

• How microprocessor reacts to interrupts

• Some microprocessors have interrupts, that cause the processor to stop what is
doing and perform some other preprogrammed functions (interrupt routines)

8
School of Computer Science

RISC vs. CISC (1)

• The belief that better performance would be obtained by reducing the
number of instruction required to implement a program, led to design
of processors with very complex instructions (CISC)

• CISC – Complex Instruction Set Computers

• As compiler technologies improved, researchers started to wonder if
CISC architectures really delivered better performances than
architectures with simpler instruction set

• RISC – Reduced Instruction Set Computers

9
School of Computer Science

RISC vs. CISC (2)

• CISC

• Fewer instructions to execute a given task than RISC

• Programs for CISC take less storage space than programs for RISC

• Arithmetic or other instructions may read their operand from memory and could write
the result in memory

• RISC

• Simpler instructions, faster execution speeds per instruction, more instructions
executed in same amount of time than CISC

• Cheaper to implement (simple instruction set results in simple implementation
internal micro-architecture)

• Load/Store architecture – only load and store are used to access the external
memory

10
School of Computer Science

RISC vs. CISC (3)

• Addition of two operands from memory, with result written in memory, in
RISC and CISC architectures

• Having an operation broken into small instructions (RISC) allows the
compiler to optimize the code
• i.e. between the two LD instructions (memory is slow) the compiler can add some

instructions that don’t need memory access

• The CISC instruction has no option but to wait for its operands to come from
the memory, potentially delaying other instructions

11

RISC CISC

LD R4, (R1)

LD R5, (R2)

ADD R6, R4, R5

ST (R3), R6

ADD (R3), (R2), (R1)

School of Computer Science

Instruction types
• Data Transfer Instructions

• Operations that move data from one place to another

• These instructions don’t actually modify the data, they just copy it to the destination

• Data Operation Instructions
• Unlike the data transfer instructions, the data operation instructions do modify their

data values

• They typically perform some operation using one or two data values (operands) and
store the result

• Program Control Instructions
• Jump or branch instructions used to go in another part of the program; the jumps can

be absolute (always taken) or conditional (taken only if some condition is met)

• Specific instructions that can generate interrupts (software interrupts)

12
School of Computer Science

Data Transfer Instructions (1)

• Load data from memory into the microprocessor
• These instructions copy data from memory into microprocessor registers (i.e. LD)

• Store data from the microprocessor into the memory
• Similar to load data, except that the data is copied in the opposite direction (i.e.

ST)

• Data is saved from internal microprocessor registers into the memory

• Move data within the microprocessor
• These instructions move data from one microprocessor register to another (i.e.

MOV)

13
School of Computer Science

Data Transfer Instructions (2)

• Input data to the microprocessor
• A microprocessor may need to input data from the outside world, these are the

instructions that do input data from the input device into the microprocessor

• In example: microprocessor needs to know which key was pressed (i.e. IORD)

• Output data from the microprocessor
• The microprocessor copies data from one of its internal registers to an output

device

• In example: microprocessor may want to show on a display the content of an
internal register (the key that have been pressed) (i.e. IOWR)

14
School of Computer Science

Data Operation Instructions

• Arithmetic instructions
• add, subtract, multiply or divide: ADD, SUB, MUL, DIV, etc..

• Instructions that increment or decrement one from a value: INC,
DEC

• Floating point instructions that operate on floating point values (as
opposed to integer values): FADD, FSUB, FMUL, FDIV

• Logic Instructions: AND, OR, XOR, NOT, etc …

• Shift Instructions: SR, SL, RR, RL, etc…

15
School of Computer Science

Program Control Instructions (1)

• Conditional or unconditional jump and branch instructions

• JZ, JNZ, JMP, etc…

• Comparison instructions

• TEST

• Instructions to call a (and return from) routine; they can be as well,
conditional

• CALL, RET, IRET etc..

16
School of Computer Science

Program Control Instructions (2)

• Specific instructions to generate software interrupts; there are also
interrupts that are not part of the instruction set, called hardware
interrupts, generated by devices outside of a microprocessor
• INT

• Exceptions and traps – are triggered when valid instructions perform
invalid operations, such as dividing by zero

• Halt instructions - causes the processor to stop executions, such as at
the end of a program
• HALT

17
School of Computer Science

Data Types
• A microprocessor must operate with multiple data types; this has a direct

implication in the instruction architecture set, because the designer has to
include different instructions to perform the same operation on different data
types

• Numeric data representation:
• Integer representation

• Unsigned representation: n bit value range from 2n -1 to 0

• Signed representation: n bit value range from -2n-1 to 2n -1-1

• Floating point representation
• A processor may have special registers and instructions for floating point data

• Boolean data:
• Nonzero value is used to represent TRUE and zero value is used to represent

FALSE

• Character data
• Stored as binary value, encoded using ASCII, UNICODE, etc…
• A microprocessor may concatenate strings of characters, replace certain characters

in a string, etc..

• Some instruction sets do include instructions to directly manipulate character data

School of Computer Science
18

Instruction Formats

• An instruction is represented as a binary value with specific format,
called the instruction code

• It is made out of different groups of bits, with different significations:
• Opcode – represents the operation to be performed (it is the instruction

identifier)

• Operands – one, two or three represent the operands of the operation to be
performed

• A microprocessor can have one format for all the instructions or can
have several different formats

• An instruction is represented by a single instruction code

19
School of Computer Science

Instruction Formats

20
School of Computer Science

Instruction Formats

• Fewer operands translates into more instructions to accomplish
the same task

• The hardware required to implement the microprocessor
becomes less complex with fewer operands; microprocessors
whose instructions specify a fewer number of operands can
execute instructions more quickly than those that specify more
operands

• The example was simplified to show the difference between
three, two, one and zero operands instructions; in practice, the
instructions require many more bits than those used in these
examples; an operand field may specify an arbitrary memory
address, rather than one of the four registers; this could require
16, 32 or even more bits per operand

21
School of Computer Science

CPU Elements

• Program Counter or PC contains the address of the instruction
that will be executed next

• Stack – a data structure of last in first out type
• Dedicated hardware stack – it has a hardware limitation
• Memory implemented stack –limited by the physical memory of the

system
• A stack is described by a special register – stack pointer – that holds the

address of the last

• It can be used explicitly to save/restore data
• It is used implicitly by procedure call instructions (if available in the

instruction set)

• IR – Instruction Register that holds the current instruction being
processed by the microprocessor; it is not exposed through the
instruction set architecture; just an organization element

22
School of Computer Science

Implicit Stack Usage

• CALL – before the jump to the PR address, the call instruction will save the PC (program
counter) in the stack

• Return – will extract the address of the next instruction before jump and restore the PC
(program counter) value

Memory

1000

1001

CALL PR

…

2000 CALL PR
.
.
.

RETURN
PR ENDP

1001

Stack

SP

School of Computer Science
23

Explicit stack usage

•Typical Stack operations (assuming that the stack grows from higher
addresses towards lower addresses):

•PUSH (X):

•(SP)= (SP)-1

•((SP)) = X

•POP (X)

•X = ((SP))

•(SP) = (SP)+1

24
School of Computer Science

Addressing Modes

• When a microprocessor accesses memory, to either read or write
data, it must specify the memory address it needs to access

• Several addressing modes to generate this address are known, a
microprocessor instruction set architecture may contain some or all
those modes, depending on its design

• In the following examples we will use the LDAC instruction (loads data
from a memory location into the AC (accumulator) microprocessor
register)

25
School of Computer Science

Direct mode

• Instruction includes the A memory address
• LDAC 5 – accesses memory location 5, reads the data (10) and stores the data in the

microprocessor’s accumulator
• This mode is usually used to load variables and operands into the CPU

Address AOpcode

Instruction Memory

Operand

School of Computer Science
26

Indirect mode

• Starts like the direct mode, but it makes an extra memory access. The address
specified in the instruction is not the address of the operand, it is the address of a
memory location that contains the address of the operand.

• LDAC @5 or LDAC (5), first retrieves the content of memory location 5, say 10, and
then CPU goes to location 10, reads the content (20) of that location and loads the
data into the CPU (used for relocatable code and data by operating systems)

27

Address AOpcode

Instruction Memory

Pointer to operand

operand

School of Computer Science

Register direct mode

• It specifies a register instead a memory address
• LDAC R – if register R contains a value 5, then the value 5 is copied

into the CPU’s accumulator
• No memory access
• Very fast execution
• Very limited address space

28

Register Address ROpcode

Instruction Registers

Operand

School of Computer Science

Register indirect mode

• LDAC @R or LDAC (R) – the register contains the address of the
operand in the memory

• Register R (selected by the operand), contains value 5 which
represents the address of the operand in the memory (10)

• One fewer memory access than indirect addressing

29

Register Address ROpcode

Instruction Memory

Operand

Registers

Pointer to
operand

School of Computer Science

Immediate mode

• The operand is not specifying an address, it is the actual
data to be used

• LDAC #5 loads the actual value 5 into the CPU’s
accumulator

• No memory reference to fetch data

• Fast, no memory access to bring the operand

30
School of Computer Science

Implicit addressing mode

• Doesn’t explicitly specify an operand

• The instruction implicitly specifies the operand because it always
applies to a specific register

• This is not used for load instructions

• As an example, consider an instruction CLAC, that is clearing the
content of the accumulator in a processor and it is always referring to
the accumulator

• This mode is used also in CPUs that use a stack to store data; they
don’t specify an operand because it is implicit that the operand must
come from the stack

31
School of Computer Science

Displacement addressing mode

• Effective Address = A + (content of R)

• Address field hold two values
• A = base value

• R = register that holds displacement

• or vice versa

Register ROpcode

Instruction
Memory

Operand
Pointer to
Operand

Registers

Address A

+

School of Computer Science
32

Relative addressing mode
• It is a particular case of displacement addressing, where the

register is the program counter; the supplied operand is an
offset; Effective Address = A + (PC)

• The offset is added to the content of the CPU’s program counter
register to generate the required address

• The program counter contains the address of next instruction to
be executed, so the same relative instruction will produce
different addresses at different locations in the program

• Consider that the relative instruction LDAC $5 is located at
memory address 10 and it takes two memory locations; the next
instruction is at location 12, so the operand is actually located at
(12 +5) 17; the instruction loads the operand at address 17 and
stores it in the CPU’s accumulator

• This mode is useful for short jumps and relocatable code

33
School of Computer Science

Indexed addressing mode

• Works like relative addressing mode; instead of adding the A to the
content of program counter (PC), the A is added to the content of an
index register

• If the index register contains value 10, then the instruction LDAC 5(X)
reads data from memory at location (5+10) 15 and stores it in the
accumulator

• Good for accessing arrays

• Effective Address = A + R

• R++

34
School of Computer Science

Based addressing mode

• Works the same with indexed addressing mode, except that
the index register is replaced by a base address register

• A holds displacement

• R holds pointer to base address

• R may be explicit or implicit

35
School of Computer Science

Addressing modes

School of Computer Science
36

Instruction Set Architecture Design

• What is the processor able to do
• If it will be general purpose, then the ISA should be pretty rich to perform

a variety of tasks
• If it will be a specialized processor, then the ISA should perform a specific

set of tasks, well known in advance

• The instruction set has to have all the instructions to perform its
required tasks – completeness

• The instruction set has to be orthogonal – to minimize the
overlap between instructions

• The register set:
• Too few registers will cause too many accesses to the memory, thus

reducing performance
• Too many registers would be overkill for specialized microcontrollers

37
School of Computer Science

Instruction Set Architecture Design

• Does the microprocessor have to be backwards compatible with
other microprocessors?

• What type of data and sizes of data will the microprocessor deal
with?
• If floating point operation is needed, then the design must include

instructions that will work on floating point data; also registers to store
floating point data are needed;

• Are interrupts needed?
• If needed, the design should include the registers and instructions to deal

with interrupts

• Are conditional instructions needed?
• Usually, the conditions are stored in 1-bit registers that store the value of

various conditions; typical flags include the zero flag (set 1 when an
operation produces a result of zero), sign flag (set to one when an
instruction produces a negative result), etc…

38
School of Computer Science

References

• “Computer Systems Organization & Architecture”, John D. Carpinelli,
ISBN: 0-201-61253-4

39
School of Computer Science

- CT101 -
Computer Systems

Dr. Frank Glavin

Room 404, IT Building

Frank.Glavin@NUIGalway.ie

School of Computer Science,

National University of Ireland, Galway

Processor Design

• GPR processor – non-pipeline implementation

• Pipeline

• GPR processor – pipeline implementation

• Performance issues in pipeline

2
School of Computer Science

GPR Example processor (1)

• Consider a simple GPR architecture
• 32 GPR registers, R0 to R31

• Value of R0 is always 0

• Data types:
• 8-bit bytes, 16-bit half words and 32-bit words (integer data)

• Operations work on 32-bit integers

• 8 bit and 16-bit operands are loaded into the 32-bit registers with sign bit
duplicated

• Addressing modes:
• Immediate (16-bit field)

• Displacement mode (contents of register added to 16-bit address field)

3
School of Computer Science

GPR Example Processor (2)

• Examples of I Instructions
• LW R2, 50 (R3) – Regs[R2] <- Mem{50 + Regs[R3]}
• LW R2, 50 (R0) – Regs[R2] <- Mem{50 + 0}
• SW R3, 500 (R4) – Mem{500+Regs[R4]}<-Regs[R3]
• BNEZ R4, name – if (Regs[R4]){PC<-name}
• JR R3 – PC<- Regs[R3] (jump register)
• JALR R2 – Regs[R31] <-PC+4; PC<-Regs[R2] (jump and link register)

4
School of Computer Science

GPR Example Processor (3)

• Example of R – type instructions

• ADD R1, R2, R3 – Regs[R1]<- Regs[R2]+Regs[R3]

• SLT R1, R2, R3 – if (Regs[R2]<Regs[R3]{Regs[R1]<-1}else{Regs[R1]<-0} (set if
less than)

5
School of Computer Science

GPR example processor (4)

• J name – PC<-name

• JAL name – Regs[31]<-PC+4; PC<-name (jump and link)

6
School of Computer Science

Example processor implementation

Instruction Fetch Cycle (IF):
IR Mem[PC]
NPC PC+4

Instruction Decode/Register Fetch Cycle (ID)
A  Regs[IR6…10]
B  Regs[IR11…15]
Imm ((IR16)16##IR16…31

Instruction Execution/Effective Address Cycle (EX)
Memory Reference Instruction

ALUOutput A + Imm
Register – Register ALU Instruction

ALUOutput A func B

Instruction Execution/Effective Address Cycle (EX)
Register – Immediate ALU Instruction

ALUOutput A op Imm
Branch Instruction

ALUOutputNPC + Imm
Cond (A op 0)

Memory Access/Branch Completion Cycle (MEM)
Memory Reference - Load

LMD  Mem[ALUOutput]
Memory Reference - Store

Mem [ALUOutput] B
Branch Instruction

If (cond) {PCALUOutput} else {PCNPC}

Write-Back Cycle (WB)
Register – Register ALU Instruction

Regs[IR16…20] ALUOutput
Register –Immediate ALU Instruction

Regs[IR11…15]  ALUOutput
Load Instruction

Regs[IR11..15]  LMD7

Instruction Fetch

• Instruction Fetch Cycle (IF):

• IR Mem[PC]

• NPC PC+4

• Operation:

• Send out the PC and fetch the instruction from memory

• Increment the PC by 4 to address the next instruction and save it in NPC
(Next Program Counter) register

8
School of Computer Science

Instruction Decode

• Instruction Decode/Register Fetch Cycle (ID)
• A  Regs[IR6…10]

• B  Regs[IR11…15]

• Imm ((IR16)16##IR16…31

• Operation
• Decode the instruction and access the register files to access the

registers; the output of the general-purpose registers are read into
two temporary register (A and B) for use in later clock cycles.

• The lower 16 bits of IR are also sign extended and stored into
temporary register Imm, for later use

9
School of Computer Science

Instruction Execution

Instruction Execution/Effective Address Cycle (EX)
• Memory Reference Instruction

• ALUOutput A + Imm
• The ALU adds the operands to form the effective address and places the result into the

register ALUOutput
• Register – Register ALU Instruction

• ALUOutput A func B
• The ALU performs the function specified by the instruction and places the result into the

ALUOutput register
• Register – Immediate ALU Instruction

• ALUOutput A op Imm
• The ALU performs the operation indicated by the opcode on the value from register A and

the value from Imm. Result is placed in ALUOutput register
• Branch Instruction

• ALUOutputNPC + Imm
• Cond  (A op 0)
• The ALU adds the contents of NPC with the sign extended value of Imm to compute the

address of the branch target. Register A is checked to see if the branch is taken. The
comparison operation op is determined by the branch opcode (i.e. op is “==“ for
instruction BEQZ)

School of Computer Science
10

Instruction Memory Access

• Memory Access/Branch Completion Cycle (MEM)
• Memory Reference Instruction

• Load

• LMD  Mem[ALUOutput]

• Store

• Mem [ALUOutput] B

• Access memory if needed.

• If instruction is a load, then data returns from memory and is placed in LMD register (Load
Memory Data)

• If instruction is a store, then the data from B register is written back into the memory, at location
stored in the previous cycle in ALUOutput

• Branch Instruction
• If (cond) {PCALUOutput} else {PCNPC}

• If the instruction branches, then the PC is replaced with branch destination address.
Otherwise it is replaced with incremented PC in the register NPC

11
School of Computer Science

Instruction Write-Back

• Write-Back Cycle (WB)

• Register – Register ALU Instruction

• Regs[IR16…20]ALUOutput

• Register –Immediate ALU Instruction

• Regs[IR11…15]  ALUOutput

• Load Instruction

• Regs[IR11..15]  LMD

• Write the results back into the register file, whether the data comes from
the main memory or as a result of an operation (from ALU); the register
destination can be in two positions which is up to the instruction type

12
School of Computer Science

Pipeline

• Pipelining is an implementation technique whereby multiple
instructions are overlapped in execution

• The goal of the pipeline is to reduce the execution time for a set of instructions

• Today, pipelining is the key implementation technique for modern processors

• Each stage in the pipeline completes a part of the instruction

• Throughput is determined by how often an instruction exits the
pipeline (gets completed)

13
School of Computer Science

Basic Pipeline (1)

• We can pipeline the presented datapath with no changes by starting a new
instruction on each clock cycle

• While each instruction will take 5 clock cycles to complete, at each clock
cycle, the hardware will initiate the execution of a new instruction

Instruction
Number

Clock number

1 2 3 4 5 6 7 8 9 10

Instruction i IF ID EX MEM WB

Instruction i+1 IF ID EX MEM WB

Instruction i+2 IF ID EX MEM WB

Instruction i+3 IF ID EX MEM WB

Instruction i+4 IF ID EX MEM WB

Instruction i+5 IF ID EX MEM WB

14

Basic Pipeline (2)

• Example processor datapath, drawn in pipeline fashion

School of Computer Science
15

Basic Pipeline (3)

• The use of pipeline forces us to think about:
• Datapath should use separate instructions and data memories

• The memory system must deliver five times the bandwidth

• The register file is used in two stages: for reading in ID stage and for writing in
WB stage

• This means that we need to be able to perform two reads and a write every clock cycle

• What if a read and a write target the same register?

• PC – to start a new instruction every clock, PC has to be incremented and stored
every clock cycle and this should be done during IF in preparation for next
instruction

• The problem occurs when we consider the effect of taken branches, that change the PC
as well, but not until the MEM stage

• We will deal with this problem by reorganizing the way PC gets written

16
School of Computer Science

Basic Pipeline (4)

• Pipelining the datapath requires that values passed from one pipe
stage to the next pipe stage must be placed in registers. Those
registers, placed between each pipe stage, are called Pipeline
Registers.

• The pipeline registers serve to convey data and control information
from one stage to the next.

• PC (Program Counter) can also be thought as a pipeline register that
sits before the IF phase of an instruction, leading to one pipeline
register for each stage.

• Most of the data flows from left to right, which is from earlier in time to
later in time. The paths that flow from right to left (which carry the PC
and the values for WB stage) introduce complications into our pipeline.

17
School of Computer Science

Basic Pipeline (5)

• Pipeline version for our example processor datapath

• The datapath is pipelined by adding a set of registers, one
between each pair of pipe stages

Instruction Fetch
IF/ID.IR  mem[PC]
IF/ID.NPC, PC  If (EX/MEM.cond) {EX/MEM.ALUOutput}else{PC+4}

Instruction Decode Cycle/Register Fetch
ID/EX.A  Regs[IR6…10]; ID/EX.B  Regs[IR11…15]
ID/EX.NPC  IF/EX.NPC;
ID/EX.IR  IF/EX.IR
ID/EX.Imm (IF/ID.IR16)16##IF/ID.IR16…31

Instruction Execution/Effective Address Cycle (EX)
ALU Instruction

Register – Register ALU Instruction
EX/MEM.IR  ID/EX.IR
EX/MEM.ALUOutput  ID/EX.A func ID/EX.B
EX/Mem.Cond  0

Register – Immediate ALU Instruction
EX/MEM.IR  ID/EX.IR
EX/Mem.ALUOutput  ID/EX.A op ID/EX.Imm
EX/Mem.Cond  0

Instruction Execution/Effective Address Cycle (EX)
Memory Reference Instruction

EX/MEM.IR  ID/EX.IR
EX/MEM.ALUOutput ID/EX.A + ID/EX.Imm
EX/MEM.Cond 0
EX/MEM.B  ID/EX.B

Instruction Execution/Effective Address Cycle (EX)
Branch Instruction

EX/MEM.ALUOutputID/EX.NPC + ID/EX.Imm
EX/MEM.Cond (ID/EX.A op 0)

Memory Access (MEM)
Memory Reference Instruction

MEM/WB.IR  EX/MEM.IR
For Load

MEM/WB.LMD  Mem[EX/MEM.ALUOutput]
For Store

Mem [EX/MEM.ALUOutput] EX/MEM.B

Memory Access (MEM)
ALU Instruction

MEM/WB.IR  EX/MEM.IR
MEM/WB.ALUOutput EX/MEMALUOutput

Write-Back Cycle (WB)
ALU Instructions

For Register – Register ALU Instruction
Regs[MEM/WB.IR16…20] MEM/WB.ALUOutput

For Register –Immediate ALU Instruction
Regs[MEM/WB.IR11…15]  MEM/WB.ALUOutput

Memory Access (Load) Instruction
Regs[MEM/WB.IR11..15]  MEM/WB.LMD

18

Pipelined Instruction Fetch

• Instruction Fetch

• IF/ID.IR  mem[PC]

• IF/ID.NPC, PC  If (EX/MEM.cond) {EX/MEM.ALUOutput}else{PC+4}

• Operation:

• Send out the PC and fetch the instruction from memory

• Increment the PC by 4 to address the next instruction or save the address
generated by a taken branch of a previous instruction in execution stage

19
School of Computer Science

Pipelined Instruction Decode

• Instruction Decode Cycle/Register Fetch
• ID/EX.A  Regs[IR6…10]; ID/EX.B  Regs[IR11…15]
• ID/EX.NPC  IF/EX.NPC;
• ID/EX.IR  IF/EX.IR
• ID/EX.Imm (IF/ID.IR16)16##IF/ID.IR16…31

• Operation
• Decode the instruction and access the register files to access the

registers; the output of the general purpose registers are read into two
temporary register (A and B, part of the pipeline registers ID/EX stage)
for use in later clock cycles

• The lower 16 bits of IR, stored in pipeline registers from IF/ID stage are
also sign extended and stored into temporary register Imm (part of ID/EX
pipeline registers), for later use

• Values for NPC and IR are passed to the next stage of pipeline registers
(from IF/ID to ID/EX)

20
School of Computer Science

Pipelined Instruction Execution (1)

• Instruction Execution/Effective Address Cycle (EX)
• Memory Reference Instruction

• EX/MEM.IR  ID/EX.IR

• EX/MEM.ALUOutput  ID/EX.A + ID/EX.Imm

• EX/MEM.Cond  0

• EX/MEM.B  ID/EX.B

• The value of the IR from previous stage of pipeline registers (from ID/EX) is
passed onto the next stage of pipeline registers (to EX/MEM)

• ALU adds the operands (stored in the previous stage pipeline registers – ID/EX
to form the effective address and places the result into the register
EX/MEM.ALUOutput, part of the next stage pipeline registers.

• The Cond register (of EX/MEM pipeline registers) is set to 0 (no branch)
• The value of B register from previous stage (ID/EX) is saved into the next stage

pipeline registers (EX/MEM) for usage in next cycle (contains the value to be
saved by a store operation).

21
School of Computer Science

Pipelined Instruction Execution (2)

• Instruction Execution/Effective Address Cycle (EX)
• ALU Instruction

• Register – Register ALU Instruction

• EX/MEM.IR  ID/EX.IR

• EX/MEM.ALUOutput ID/EX.A func ID/EX.B

• EX/Mem.Cond 0

• The ALU performs the function specified by the instruction and places the result into the
ALUOutput register (of the next stage pipeline registers)

• Register – Immediate ALU Instruction

• EX/MEM.IR  ID/EX.IR

• EX/Mem.ALUOutput ID/EX.A op ID/EX.Imm

• EX/Mem.Cond 0

• The ALU performs the operation indicated by the opcode on the value from register A and the
value from Imm (both retreived from ID/EX pipeline registers). Result is placed in ALUOutput
register of the EX/MEM pipeline registers

22
School of Computer Science

Pipelined Instruction Execution (3)

• Instruction Execution/Effective Address Cycle (EX)

• Branch Instruction

• EX/MEM.ALUOutputID/EX.NPC + ID/EX.Imm

• EX/MEM.Cond (ID/EX.A op 0)

• The ALU adds the contents of NPC with the sign extended value of Imm to compute
the address of the branch target. Register A is checked (from the pipeline registers of
ID/EX stage) to see if the branch is taken. The comparison operation op is
determined by the branch opcode (i.e. op is “==“ for instruction BEQZ)

23
School of Computer Science

Pipelined Instruction Memory Access (1)

• Memory Access (MEM)
• Memory Reference Instruction

• MEM/WB.IR  EX/MEM.IR

• For Load

• MEM/WB.LMD  Mem[EX/MEM.ALUOutput]

• For Store

• Mem [EX/MEM.ALUOutput] EX/MEM.B

• Access memory:

• If instruction is a load, then data returns from memory and is placed in LMD register (Load
Memory Data) of MEM/WB pipeline registers

• If instruction is a store, then the data from B register of EX/MEM pipeline registers is written
back into the memory, at location stored in previous cycle in ALUOutput (of EX/MEM
pipeline registers)

24
School of Computer Science

Pipelined Instruction Memory Access (2)

• Memory Access (MEM)

• ALU Instruction

• MEM/WB.IR  EX/MEM.IR

• MEM/WB.ALUOutput EX/MEM.ALUOutput

• Save the contents of the ALU output to the next stage pipeline registers, for usage in
WB stage.

• Propagate the contents of IR to the next stage, for usage in the next clock cycle

25
School of Computer Science

Pipelined Instruction Write-Back

• Write-Back Cycle (WB)
• ALU Instructions

• For Register – Register ALU Instruction

• Regs[MEM/WB.IR16…20] MEM/WB.ALUOutput

• For Register –Immediate ALU Instruction

• Regs[MEM/WB.IR11…15]  MEM/WB.ALUOutput

• Memory Access (Load) Instruction

• Regs[MEM/WB.IR11..15]  MEM/WB.LMD

• Write the results back into the register file, whether the data comes from
the main memory or as a result of an operation (from ALU); the register
destination can be in two positions up to the instruction type

26
School of Computer Science

Control Path for Pipeline Processor

• Pipeline version for our example processor datapath

• The datapath is pipelined by adding a set of registers, one
between each pair of pipe stages

To control this simple pipelined datapath, we just need to determine how to set the
control for the four multiplexers in the datapath. The two multiplexers in the ALU stage
are set depending on the instruction type, which is dictated by the IR filed of the ID/EX
register. The top ALU input multiplexer is set by whether the instruction is a branch or
not and the bottom multiplexer is set by whether the instruction is a register-register
ALU operation or any other type of operation.

The multiplexer in the IF stage chooses whether to use the current PC or the value of
EX/MEM.ALUOutput (the branch target) as the instruction addresses. This multiplexer is
controlled by the field EX/MEM.Cond.

The forth multiplexer is controlled by whether the
instruction in WB stage is a load or an ALU operation.

27

Performance Issues in Pipeline (1)

• Pipelining increases the processor throughput

• Number of instructions completed per unit of time

• Pipelining does NOT increase the execution speed of individual
instruction

• In fact, it actually decreases the execution speed per individual instruction, due
to the overhead introduced in the data path and control of pipeline

• The increase in the throughput means that a program runs faster and
has lower total execution time, even if no single instruction runs faster

28
School of Computer Science

Performance Issues in Pipeline (2)

• There are limits on the physical limit on the pipeline, caused by:

• Execution time of each instruction doesn’t decrease

• Imbalance between pipeline stages

• Reduces performance, since the clock can not run any faster than the time needed
for the slowest pipeline stage

• Pipeline overhead

• Arises from the combination of pipeline register delay and clock skew

29
School of Computer Science

Performance Computation (1)

• Consider our example un-pipelined processor
• The ALU operations and branches uses four cycles. The relative frequency of

ALU operations is 40% and 20% for branches

• The memory operations use five cycles. The relative frequency is 40 %

• Clock cycle is 10ns

• Consider a 1ns overhead to the clock introduced by the pipeline

• How much speedup in the instruction execution rate will we gain from
pipeline?

30
School of Computer Science

Performance Computation (2)

• The average instruction execution time for the un-pipelined machine
is:
• Clock Cycle * Average CPI (Clock cycles Per Instruction)

• = 10 ns * [(40% + 20%) * 4 + 40% * 5] = 10 ns * 4.4 = 44 ns

• In pipeline implementation, the clock must run at the speed of the
lowest pipeline segment plus the clock overhead, which would be 11ns

31

times
ns

ns

dmePipelinetructionTiAverageIns

nedmeUnpipelitructionTiAverageIns
Speedup 4

11

44


School of Computer Science

References

• “Computer Architecture – A Quantitative Approach”, John L Hennessy
& David A Patterson, ISBN 1-55860-329-8

• “Computer Architecture”, Nicholas Charter, ISBN – 0-07-136207

32
School of Computer Science

- CT101 -
Computing Systems

Dr. Frank Glavin

Room 404, IT Building

Frank.Glavin@NUIGalway.ie

School of Computer Science,

National University of Ireland, Galway

Pipeline Hazard

• Introduction to pipeline hazard

• Structural Hazard

• Data Hazard

• Control Hazard

2
School of Computer Science

Pipeline Hazards (1)

• Pipeline Hazards are situations that prevent the next instruction in the
instruction stream from executing in its designated clock cycle

• Hazards reduce the performance from the ideal speedup gained by
pipelining

• Three types of hazards:
• Structural hazards

• Arise from resource conflicts when the hardware can’t support all possible combinations
of overlapping instructions

• Data hazards
• Arise when an instruction depends on the results of a previous instruction in a way that is

exposed by overlapping of instruction in pipeline

• Control hazards
• Arise from the pipelining of branches and other instructions that change the PC (Program

Counter)

3
School of Computer Science

Pipeline Hazards (2)

• Hazards in pipeline can make the pipeline stall

• Eliminating a hazard often requires that some instructions in the
pipeline can proceed while others are delayed

• When an instruction is stalled, instructions issued later than the stalled
instruction are stopped, while the ones issued earlier must continue

• No new instructions are fetched during the stall

4
School of Computer Science

Structural Hazards (1)

• If certain combination of instructions can’t be accommodated because
of resource conflicts, the machine is said to have a structural hazard

• It can be generated by:
• Some functional unit is not fully pipelined

• Some resources have not been duplicated enough to allow all the combinations
in the pipeline to execute

• For example: a machine may have only one register file write port, but under
certain conditions, the pipeline might want to perform two writes in one clock
cycle – this will generate structural hazard

• When a sequence of instructions encounter this hazard, the pipeline will stall one of the
instructions until the required unit is available

• Such stalls will increase the Clock cycle Per Instruction from its ideal 1 for pipelined
machines

5
School of Computer Science

Structural Hazards (2)

• Consider a Von Neumann architecture (same memory
for instructions and data)

School of Computer Science
6

Structural Hazards (3)

• Stall cycle added (commonly called pipeline bubble)
7

Structural Hazards (4)

• Another way to represent the stall – no instruction is initiated in
clock cycle 4

8

Instruction
Number

Clock number

1 2 3 4 5 6 7 8 9 10

load IF ID EX MEM WB

Instruction i+1 IF ID EX MEM WB

Instruction i+2 IF ID EX MEM WB

Instruction i+3 stall IF ID EX MEM WB

Instruction i+4 IF ID EX MEM WB

Instruction i+5 IF ID EX MEM

School of Computer Science

Structural Hazards (5)

• A machine with structural hazard will have lower CPI

• Why would a designer allow structural hazard?

• To reduce cost

• Pipelining all the functional units or duplicating them may be too costly

• To reduce latency

• Introducing too many pipeline stages may cause latency issues

9
School of Computer Science

Data Hazards (1)

• Data hazards occur when the pipeline changes the order of read/write
accesses to operands so that the order differs from the order seen by
sequentially executing instructions on an un-pipelined machine

• Consider the execution of following instructions, on our pipelined
example processor:
• ADD R1, R2, R3

• SUB R4, R1, R5

• AND R6, R1, R7

• OR R8, R1, R9

• XOR R10, R1, R11

10
School of Computer Science

Data Hazards (2)

• The use of results from ADD instruction causes hazard since the
register is not written until after those instructions read it.

School of Computer Science
11

Data Hazards (3)

• Eliminate the stalls for the hazard involving SUB and AND instructions
using a technique called forwarding

School of Computer Science
12

Data Hazards (4)

• Store requires an operand during MEM and forwarding is shown here.
• The result of the load is forwarded from the output in MEM/WB to the memory

input to be stored

• In addition the ALUOutput is forwarded to ALU input for address calculation for
both Load and Store

School of Computer Science
13

Data Hazards Classification

• Depending on the order of read and write access in the instructions,
data hazards could be classified as three types.

• Consider two instructions i and j, with i occurring before j.
• Possible data hazards:

• RAW (Read After Write)
• j tries to read a source before i writes to it , so j incorrectly gets the old value;
• most common type of hazard, that is what we tried to explain so far.

• WAW (Write After Write)
• j tries to write an operand before it is written by i. The write ends up being performed in

wrong order, having i overwrite the operand written by j, the destination containing the
operand written by i rather than the one written by j

• Present in pipelines that write in more than one pipe stage

• WAR (Write After Read)
• j tries to write a destination before it is read by i, so the instruction i incorrectly gets the

new value
• This doesn’t happen in our example, since all reads are early and writes late

14
School of Computer Science

Data Hazards Requiring Stalls (1)

• Unfortunately not all data hazards can be handled by
forwarding. Consider the following sequence:

• LW R1, 0(R2)

• SUB R4, R1, R5

• AND R6, R1, R7

• OR R8, R1, R9

• The problem with this sequence is that the Load operation will
not have data until the end of MEM stage.

15
School of Computer Science

Data Hazards Requiring Stalls (2)

• The load instruction can forward the results to AND and OR
instruction, but not to the SUB instruction since that would
mean forwarding results in “negative” time

School of Computer Science
16

Data Hazards Requiring Stalls (3)

• The load interlock causes a stall to be inserted at clock cycle 4,
delaying the SUB instruction and those that follow by one cycle.
• This delay allows the value to be successfully forwarded onto the next

clock cycle

School of Computer Science
17

Data Hazards Requiring Stalls (4)

• Before stall insertion

LW R1, 0(R2) IF ID EX MEM WB

SUB R4, R1, R5 IF ID EX MEM WB

AND R6, R1, R7 IF ID EX MEM WB

OR R8, R1, R9 IF ID EX MEM WB

LW R1, 0(R2) IF ID EX MEM WB

SUB R4, R1, R5 IF ID stall EX MEM WB

AND R6, R1, R7 IF stall ID EX MEM WB

OR R8, R1, R9 stall IF ID EX MEM WB

 After stall insertion

School of Computer Science
18

Compiler Scheduling for Data Hazards (1)

• Consider typical code, such as A = B+C

19

LW R1, B IF ID EX MEM WB

LW R2, C IF ID EX MEM WB

ADD R3, R1, R2 IF ID stall EX MEM WB

SW A, R3 IF stall ID EX MEM WB

• The ADD instruction must be stalled to allow the load of C to complete

• The SW needs not be delayed because the forwarding hardware passes the
result from MEM/WB directly to the data memory input for storing

School of Computer Science

Compiler Scheduling for Data Hazards (2)

• Rather than just allow the pipeline to stall, the compiler could try to
schedule the pipeline to avoid the stalls, by rearranging the code

• The compiler could try to avoid the generating the code with a load followed
by an immediate use of the load destination register

• This technique is called pipeline scheduling or instruction scheduling and
it is a very often used technique in modern compilers

20
School of Computer Science

Instruction scheduling example

• Generate code for our example processor that avoids pipeline
stalls from the following sequence:
• A = B +C
• D = E - F

• Solution
• LW Rb, B
• LW Rc, C
• LW Re, E ; swap instructions to avoid stall
• ADD Ra, Rb, Rc
• LW Rf, f
• SW a, Ra ; store/load exchanged to avoid stall
• SUB Rd, Re, Rf
• SW d, Rd

21
School of Computer Science

Control Hazards (1)

• Can cause a greater performance loss than that of data hazards

• When a branch is executed it may or it may not change the PC
(to other value than its value + 4)
• If a branch is changing the PC to its target address, then it is a taken

branch

• If a branch doesn’t change the PC to its target address, then it is a not
taken branch

• If instruction i is a taken branch, then the value of PC will not
change until the end MEM stage of the instruction execution in
the pipeline
• A simple method to deal with branches is to stall the pipe as soon as we

detect a branch until we know the result of the branch

22
School of Computer Science

Control Hazards (2)

• A branch causes three cycle stall in our example
processor pipeline

• One cycle is a repeated IF – necessary if the branch would
be taken. If the branch is not taken, this IF is redundant

• Two idle cycles

23

Branch Instruction IF ID EX MEM WB

Branch Successor IF stall stall IF ID EX MEM WB

Branch Successor
+1 IF ID EX MEM WB

Branch Successor
+2 IF ID EX MEM

School of Computer Science

Control Hazards (3)

• The three clock cycles lost for every branch is a significant loss
• With a 30% branch frequency, the machine with branch stalls achieves only

about half of the speedup from pipelining

• Reducing the branch penalty becomes critical

• The number of clock cycles in a branch stall can be reduced by two
steps:
• Find out if the branch is taken or not in early stage in the pipeline

• Compute the taken PC (address of the branch target) earlier

24
School of Computer Science

References

• “Computer Architecture – A Quantitative Approach”, John L Hennessy
& David A Patterson, ISBN 1-55860-329-8

• “Computer Architecture”, Nicholas Charter, ISBN – 0-07-136207

25
School of Computer Science

- CT101 -
Computing Systems

Dr. Frank Glavin

Room 404, IT Building

Frank.Glavin@NUIGalway.ie

School of Computer Science,

National University of Ireland, Galway

Memory Subsystem

• Memory Hierarchy

• Types of memory

• Memory organization

• Memory Hierarchy Design

• Cache

2
School of Computer Science

Memory Hierarchy

• Registers

• In CPU

• Internal or Main memory

• May include one or more levels
of cache

• “RAM”

• External memory

• Backing store

3

[wikipedia.org]

School of Computer Science

Internal Memory Types

Memory Type Category Erasure Write Mechanism Volatility

Random-access
memory (RAM)

Read-write memory Electrically, byte-level Electrically Volatile

Read-only
memory (ROM)

Read-only memory Not possible

Masks

Nonvolatile

Programmable
ROM (PROM)

Electrically

Erasable PROM
(EPROM)

Read-mostly memory

UV light, chip-level

Electrically Erasable
PROM (EEPROM)

Electrically, byte-level

Flash memory Electrically, block-level

4

External Memory Types

• HDD
• Magnetic Disk(s)

• SSD (Solid State Drive(s))

• Optical
• CD-ROM

• CD-Recordable (CD-R)

• CD-R/W

• DVD

• Magnetic Tape

5
School of Computer Science

Random Access Memory (RAM)

• Read/Write

• Volatile

• Temporary storage

• Static or dynamic

6
School of Computer Science

Types of RAM

• Dynamic RAM (DRAM) – are like leaky capacitors; initially data is
stored in the DRAM chip, charging its memory cells to maximum
values. The charge slowly leaks out and eventually would go too low
to represent valid data; before this happens, a refresh circuitry reads
the contents of the DRAM and rewrites the data to its original
locations, thus restoring the memory cells to their maximum charges

• Static RAM (SRAM) – is more like a register; once the data has been
written, it will stay valid, it doesn’t have to be refreshed. Static RAM is
faster than DRAM, also more expensive. Cache memory in PCs is
constructed from SRAM memory.

7
School of Computer Science

Dynamic RAM

• Bits stored as charge in capacitors

• Charges leak

• Need refreshing even when powered

• Simpler construction

• Smaller per bit than SRAM

• Less expensive

• Need refresh circuits

• Slower

• Used for main memory in computing systems

• Essentially analogue

• Level of charge determines value

8
School of Computer Science

DRAM Structure & Operation

• Address line is active when bit read or written

• Transistor switch closed (current flows)

• Write

• Voltage to bit line

• High for 1 low for 0

• Then signal address line

• Transfers charge to capacitor

• Read

• Address line selected

• Transistor turns on

• Charge from capacitor fed via bit line to sense amplifier

• Compares with reference value to determine 0 or 1

• Capacitor charge must be restored

9
School of Computer Science

DRAM Refreshing

• Refresh circuit included on chip

• Disable memory array chip

• Count through rows and select each in turn

• Read contents & write it back (restore)

• Takes time

• Slows down apparent performance

10
School of Computer Science

Static RAM

• Bits stored as on/off switches

• No charges to leak

• No refreshing needed when powered

• More complex construction

• Larger per bit

• More expensive

• Faster

• Cache

11
School of Computer Science

Static RAM Structure & Operation

• Transistor arrangement gives
stable logic state

• State 1
• C1 high, C2 low

• T1 T4 off, T2 T3 on

• State 0
• C2 high, C1 low

• T2 T3 off, T1 T4 on

• Address line transistors T5 T6 is
switch

• Write – apply value to B &
compliment to B

• Read – value is on line B

12
School of Computer Science

SRAM v DRAM
• Both volatile

• Power needed to preserve data

• Dynamic cell
• Simpler to build, smaller

• More dense

• Less expensive

• Needs refresh

• Larger memory units

• Static
• Faster

• Cache

13
School of Computer Science

Read Only Memory (ROM)

• Provides permanent storage (non-volatile)

• Used for: microprogramming, library subroutines (code) and constant data,
systems programs (BIOS for PC or entire application + OS for certain
embedded systems)

• Types
• Written during manufacture (very expensive for small runs)

• Programmable (once) PROM (needs special equipment to program)

• Read “mostly”

• Erasable Programmable (EPROM) - Erased by UV

• Electrically Erasable (EEPROM) - Takes much longer to write than read

• Flash memory - Erase whole memory electrically

14
School of Computer Science

Internal Linear Organization

• 8X2 ROM chip

• As the number of locations
increases, the size of the
address decoder needed,
becomes very large

• Multiple dimensions of decoding
can be used to overcome this
problem

15
School of Computer Science

Internal Two-dimensional Organization

• High order address bits (A2A1) select one of the rows

• The low order address bit selects one of the two locations in the row

16
School of Computer Science

Memory Subsystems Organization (1)

• Two or more memory chips can be combined to create memory with
more bits per location (two 8X2 chips can create a 8X4 memory)

17
School of Computer Science

Memory Subsystems Organization (2)

• Two or more memory chips can be combined to create more
locations (two 8X2 chips can create 16X2 memory)

School of Computer Science
18

Memory Hierarchy Design (1)

• This picture shows the CPU performance against memory
access time improvements over the years
• Clearly there is a processor-memory performance gap that computer

architects must take care of

19

https://www.extremetech.com/computing/261792-what-is-speculative-executionImage:

School of Computer Science

Memory Hierarchy Design (2)

• It is a tradeoff between size, speed and cost and exploits the
principle of locality.

• Register
• Fastest memory element; but small storage; very expensive

• Cache
• Fast and small compared to main memory; acts as a buffer between

the CPU and main memory: it contains the most recent used memory
locations (address and contents are recorded here)

• Main memory is the RAM of the system
• Disk storage - HDD

20
School of Computer Science

Memory Hierarchy Design (3)

• Comparison between different types of memory

21

Register Cache Memory
larger, slower, cheaper

HDD

https://www.enterprisestorageforum.com/storage-hardware/types-of-computer-memory.html

Cache (1)

• Is the first level of memory hierarchy encountered once the
address leaves the CPU

• Since the principle of locality applies, and taking advantage of locality to
improve performance is so popular, the term cache is now applied
whenever buffering is employed to reuse commonly occurring items

• We will study caches by trying to answer the four questions for
the first level of the memory hierarchy

22
School of Computer Science

Cache (2)

• Every address reference goes first to the cache;
• If the desired address is not here, then we have a cache miss; The contents are

fetched from main memory into the indicated CPU register and the content is also saved into
the cache memory

• If the desired data is in the cache, then we have a cache hit; The desired data is
brought from the cache, at very high speed (low access time)

• Most software exhibits temporal locality of access, meaning that it is likely
that same address will be used again soon, and if so, the address will be
found in the cache

• Transfers between main memory and cache occur at granularity of cache
lines or cache blocks, around 32 or 64 bytes (rather than bytes or
processor words). Burst transfers of this kind receive hardware support and
exploit spatial locality of access to the cache (future access are often to
address near to the previous one)

23
School of Computer Science

Cache Organization

24
School of Computer Science

Cache/Main Memory Structure

25

Memory Hierarchy Design

• Where can a block be placed in the upper level?

• BLOCK PLACEMENT

• How is a block found if it is in the upper level?

• BLOCK IDENTIFICATION

• Which block should be replaced on a miss?

• BLOCK REPLACEMENT

• What happens on a write?

• WRITE STRATEGY

26
School of Computer Science

Where can a block be placed in Cache? (1)

• Our cache has 8 block frames and the main memory has 32 blocks

27
School of Computer Science

Where can a block be placed in Cache? (2)

• Direct mapped Cache
• Each block has only one place where it can appear in the cache

• (Block Address) MOD (Number of blocks in cache)

• Fully associative Cache
• A block can be placed anywhere in the cache

• Set associative Cache
• A block can be placed in a restricted set of places into the cache

• A set is a group of blocks into the cache

• (Block Address) MOD (Number of sets in the cache)

• If there are n blocks in the cache, the placement is said to be n-way set associative

28
School of Computer Science

How is a Block Found in the Cache?

• Caches have an address tag on each block frame that gives the block address. The
tag is checked against the address coming from CPU
• All tags are searched in parallel since speed is critical

• Valid bit is appended to every tag to say whether this entry contains valid addresses or
not

• Address fields:
• Block address

• Tag – compared against for a hit

• Index – selects the set

• Block offset – selects the desired data from the block

• Set associative cache
• Large index means large sets with few blocks per set

• With smaller index, the associativity increases

• Full associative cache – index field does not exist

29
School of Computer Science

Which Block should be Replaced on a Cache Miss?

• When a miss occurs, the cache controller must select a block to be
replaced with the desired data

• Benefit of direct mapping is that the hardware decision is much simplified

• Two primary strategies for full and set associative caches

• Random – candidate blocks are randomly selected

• Some systems generate pseudo random block numbers, to get reproducible behavior
useful for debugging

• LRU (Least Recently Used) – to reduce the chance that information that has
been recently used will be needed again, the block replaced is the least-recently
used one.

• Accesses to blocks are recorded to be able to implement LRU

30
School of Computer Science

What Happens on a Write?

• Two basic options when writing to the cache:

• Write through – the information is written to both, the block in the cache and the
block in the lower-level memory

• Write back – the information is written only to the cache

• The modified block of cache is written back into the lower-level memory only when it
is replaced

• To reduce the frequency of writing back blocks on replacement, an
implementation feature called dirty bit is commonly used.

• This bit indicates whether a block is dirty (has been modified since loaded) or
clean (not modified). If clean, no write back is involved

31
School of Computer Science

References

• “Computer Architecture – A Quantitative Approach”, John L Hennessy
& David A Patterson, ISBN 1-55860-329-8

• “Computer Systems Organization & Architecture”, John D. Carpinelli,
ISBN: 0-201-61253-4

• “Computer Organization and Architecture”, William Stallings, 8th

Edition

32
School of Computer Science

- CT101 -
Computing Systems

Dr. Frank Glavin

Room 404, IT Building

Frank.Glavin@NUIGalway.ie

School of Computer Science,

National University of Ireland, Galway

I/O Subsystem

• Overview

• Peripheral Devices and I/O Modules

• Programmed I/O

• Interrupt Driven I/O

• Direct Memory Access

2
School of Computer Science

Overview

• I/O devices are very different (i.e. keyboard and HDD performs
totally different functions, yet they are both part of the I/O
subsystem).

• The interfaces between the CPU and I/O devices are very similar.

• Each I/O device needs to be connected to:

• Address bus – to pass address to peripheral

• Data bus – to pass data to and from peripheral

• Control bus – to pass control signals to peripherals

3
School of Computer Science

Problems

• Wide variety of peripherals
• Delivering different amounts of data

• At different speeds

• In different formats

• All slower than CPU and RAM

• Need I/O modules
• Interface with the processor and memory via system buses or central switch

• Interface to one or more peripheral devices using specific data links/interfaces

4
School of Computer Science

I/O Module

• Interface to CPU and
Memory

• Interface to one or more
peripherals

School of Computer Science
5

Peripheral Devices Types & Block Diagram

• Human readable

• Screen, printer, keyboard

• Machine readable

• Monitoring and control

• Communication

• Modem

• Network Interface Card (NIC)

6
School of Computer Science

More about I/O Modules

7

• I/O Module Functions

• Control & Timing

• CPU Communication

• Device Communication

• Data Buffering

• Error Detection

• I/O CPU Steps

• CPU checks I/O module device status

• I/O module returns status

• If ready, CPU requests data transfer

• I/O module gets data from device

• I/O module transfers data to CPU

• Variations for output, DMA, etc.

School of Computer Science

I/O Module Diagram & Design Decisions

8
School of Computer Science

• Hide or reveal device
properties to CPU

• Support multiple or single
device

• Control device functions or
leave for CPU

• Also O/S decisions

• e.g. Unix treats everything it
can as a file

I/O Mapping

• Memory mapped I/O

• Devices and memory share an address space

• I/O looks just like memory read/write

• No special commands for I/O

• Large selection of memory access commands available

9

• Isolated I/O

• Separate address spaces

• Need I/O or memory select lines

• Special commands for I/O

• Special CPU control signals

• Devices and Memory can have
overlapping addresses

Addressing I/O Devices

• I/O data transfer is very like memory access (CPU viewpoint)

• Each device given unique identifier

• CPU commands contain identifier (address)

• The I/O Module should contain address decoding logic

10
School of Computer Science

Input Devices

• When the values of the address/control buses are correct (the I/O device is
addressed) the buffers are enabled, and the data passes on to the data
bus; the CPU reads this data

• When the conditions are not right, the logic bloc (enable logic) will not
enable the buffers; no data on the data bus

• The example shows an I/O device mapped at address 1111 0000 on a
computer with 8-bit address bus and RD and IO/M’ control signals

11

Output Devices

• Since the output devices read data from the data bus, they don’t need the
buffers; data will be made available to all the devices

• Only the correctly decoded one (addressed) will read in the data

• Example shows an output device mapped at 11110000 address in an 8-bit
address bus computer, with WR and IO/M’ signals

School of Computer Science
12

Bidirectional Devices (1)

• Bidirectional devices require actually two interfaces, one for input and the
other for output.

• Same gates could be used to generate the enable signal (for both the tri
state buffers and the registers); the difference between read and write are
made through the control signals (RD, WR)

• The example shows a combined interface for 1111 0000 address.

School of Computer Science
13

Bidirectional Devices (2)

• In real systems, we need to access more than just one output and one
input data register

• Usually peripherals are issued with commands by the processor and
they take some action and in response present data

• Up to how the processor knows if the peripheral device is ready after a
command, we can have:

• Programmed I/O (or also known as Polled I/O)

• Interrupt driven I/O

14
School of Computer Science

Input / Output Techniques

School of Computer Science
15

Programmed I/O

16

• Overview

• CPU has direct control over I/O

• Sensing status

• Read/write commands

• Transferring data

• CPU waits for I/O module to
complete operation

• Wastes CPU time

• Operations

• CPU requests I/O operation

• I/O module performs operation

• I/O module sets status bits

• CPU checks status bits
periodically

• I/O module does not inform CPU
directly

• I/O module does not interrupt
CPU

• CPU may wait or come back later

School of Computer Science

Interrupt Driven I/O

17

• Overview

• Overcomes CPU waiting

• No repeated CPU checking
of device

• I/O module interrupts when
ready

• Operations

• CPU issues read command

• I/O module gets data from
peripheral whilst CPU does
other work

• I/O module interrupts CPU

• CPU requests data

• I/O module transfers data

School of Computer Science

Simple Interrupt Processing

18
School of Computer Science

CPU Viewpoint

• Issue read command

• Do other work

• Check for interrupt at end of each instruction cycle

• If interrupted:

• Save context (registers)

• Process interrupt

• Fetch data & store

• Restore context (registers)

19
School of Computer Science

Design Issues

• How do you identify the module issuing the interrupt?

• How do you deal with multiple interrupts?

• i.e. an interrupt handler being interrupted

20
School of Computer Science

Identifying Interrupting Module

• Different line for each module

• Limits number of devices

• Software poll

• CPU asks each module in turn

• Slow

• Daisy Chain or Hardware poll

• Interrupt Acknowledge sent down a chain

• Module responsible places vector on bus

• CPU uses vector to identify handler routine

• Bus Arbitration (e.g. PCI & SCSI)

• Module must claim the bus before it can raise interrupt, thus only one module
can rise the interrupt at a time

• When processor detects interrupt, processor issues an interrupt acknowledge

• Device places its vector on the data bus

21
School of Computer Science

Multiple Interrupts

• Each interrupt line has a priority

• Higher priority lines can interrupt lower priority lines

22
School of Computer Science

Direct Memory Access

• Interrupt driven and programmed I/O require active CPU
intervention

• Transfer rate is limited by the speed of processor testing and
servicing a device

• CPU is tied up in managing an I/O transfer. A number of
instructions must be executed for each I/O transfer.

• DMA is the answer when large amounts of data need to
be transferred.

23
School of Computer Science

DMA Function and Module

• DMA controller able to mimic the CPU and take
over for I/O transfers

• CPU tells DMA controller:

– Operation to execute

– Device address involved in the I/O operation
(sent on data lines)

– Starting address of memory block for data
(sent on data lines) and stored in the DMA
address register

– Amount of data to be transferred (sent on
data lines) and stored into the data count

• CPU carries on with other work

• DMA controller deals with transfer

• DMA controller sends interrupt when finished

24
School of Computer Science

DMA Transfer Cycle Stealing

• DMA controller takes over bus for a cycle

• Transfer of one word of data

• Not an interrupt
• CPU does not switch context

• CPU suspended just before it accesses bus
• i.e. before an operand or data fetch or a data write

• Slows down CPU but not as much as CPU doing transfer

25
School of Computer Science

DMA Operation Example

• Separate I/O Bus

26
School of Computer Science

References

• “Computer Systems Organization & Architecture”, John D.
Carpinelli, ISBN: 0-201-61253-4

• “Computer Organization and Architecture”, William Stallings,
8th Edition

27
School of Computer Science

