CS54423-W02-2

January 23, 2025

Table of Contents

1 Preliminaries

1.1 Reminder

1.2 Notes

1.3 Modules for this notebook

2 Important Graphs (continued)
2.1 Cycle Graphs

3 New Graphs from old

3.1 Complement Graph

3.2 Line Graphs

3.2.1 Examples

3.2.2 Line graph of C,

3.3 Petersen Graph

4 Matrices of Graphs

5 Adjacency Matrix

5.1 Example

5.2 Example

5.3 Properties of Adjacency matrices
5.4 Sparse matrices

5.5 Another example

5.5.1 More about Adjacency Matrices
6 Exercises

(CS4423-Networks : Week 02 - Lecture 2 [DRAFT| # From Graphs to Matrices Niall Madden,
School of Mathematical and Statistical Sciences
University of Galway

(These notes are adapted from Angela Carnevale’s nodes)

[1]:

[2]:

This Jupyter notebook, and a HTML version, can be found at https://www.niallmadden.ie/2425-
CS4423 / #Week02

This version of this notebook was written by Niall Madden, adapted from notebooks by Angela
Carnevale.

0.1 Preliminaries
0.1.1 Reminder

Labs start next week, and an (reintroduction) to Python. This will run: * Tuesday at 4 in AC215
(slight chance this might get moved to Tuesday at 3), and * Wednesday at 10am in CA116a.

These rooms are not labs: BYoD! (Bring Your Own Device)

0.1.2 Notes

(Revised) Notes from yesterday’s class are at https://www.niallmadden.ie/2425-CS4423 /# Week02.
As well as the material we covered, there is a set of exercises at the end of the notebook, including
some based on past exam papers.

0.1.3 Modules for this notebook

import networkx as nx

import numpy as np

opts = { "with_labels": True, "node_color": 'pink' } # show labels; pink mnoodes
from itertools import combinations

0.2 Important Graphs (continued)

Yesteryday, we discussed * Complete Graphs, which can be built using, for example
nx.complete_graph ("NETWORKS") * Bipartite and complete bipartite graphs, the latter of which
can be built using nx.complete_bipartite_graph(m,n). One can also use list comprehension
to make the edge set: E = [(x, y) for x in X1 for y in X2 if x < y] * Path graphs, built
with nx.path_graph(10). Can also use list comprehension to make the edge set (next week’s lab)

0.2.1 Cycle Graphs

Our last example: the cycle graph on n > 3 nodes, denoted C,,, (slightly informally) is formed by
adding an edge between to to nodes of degree 1 in a path graph if we delete any one edge is a es is
connected, which as a path graph, but with an edge between the two “end” nodes. You can make
one with cycle_graph(n), but here we’ll do it manually.

C5 = nx.Graph(['O1l', '12', '23', '34', '40'])
nx.draw(C5, **opts)

2\3

1

AN

0

[3]: nx.draw(nx.cycle_graph(6))

[4]: C7 = nx.path_graph(7) # not a cycle graph... yet
C7.add_edge(0,6)
nx.draw(C7)

[5]:

[5]:

0.3 New Graphs from old
0.3.1 Complement Graph

The complement of a graph G is a graph H with the same nodes as GG, and two nodes in H are
adjacent if and only if they are not adjacent in G.

For example, the complement of a complete graph is an empty graph.

In networkx, the complement function returns to complement of a graph.

G = nx.Graph([(1, 2), (1, 3), (2, 3), (3, 4), (3, 5D
G_complement = nx.complement (G)
list(G_complement.edges()) # This shows the edges of the complemented graph

(1, 4), 1, 5, (2, 4), (2, 5), (4, 5)]

Tip: nx.draw uses a (semi-random) algorithm, called spring_layout for deciding the position of
nodes when we draw a graph. Usually, a graph and its complement will be drawn with nodes in
different places, making them hard to compare. But we can record the positions determined by the
algorithm, and reuse them, as in the next example...

[6]: pos = nx.spring_layout(G)
nx.draw(G, **opts, pos=pos)

[7]: nx.draw_networkx(G_complement, **opts, pos=pos)

MJ

\4

0.3.2 Line Graphs

A graph, G, is made from “things” that have connections to each other. The “things” are nodes,
and their connections are represented by an edge.

But we can think of edges as “things” too, with connections to any other edge that has a vertex in
common. This leads to the idea of a line graph.

The line graph of G, is denoted L(G): every node in L(G) corresponds to an edge in G, and for
every two edges in G that have a node in common, L(G) has an edge between their corresponding
nodes.

Examples
[8]: G = nx.Graph(["AB", "AC", "AD", "BD"])
nx.draw(G, **opts)

[9]: LG = nx.line_graph(G)
nx.draw(LG, #**opts, node_size=800) # large nodes to label easier to read

{IAI' I\

(A%, 'D’)

{IAI' I\
(B, 'D")

Line graph of C,
[10]: G = nx.cycle_graph(4)
nx.draw(G, **opts)

PN
~_

[11]: LG = nx.line_graph(G)
nx.draw(G, **opts)

0.3.3 Petersen Graph

Everyone who has a favourite graph has as their favourite graph the Petersen Graph. It is a graph
on 10 nodes with 15 edges.

One way to construct it, is as the complement of the line graph of the complete graph K;.

[12]: K5 = nx.complete_graph(5)
nx.draw(K5, **opts)

11

https://en.wikipedia.org/wiki/Petersen_graph

[13]:

Next we make the line graph, L(Kj;):

LK5 = nx.line_graph(K5)
nx.draw(LK5, **opts, node_size=800)

12

ZAN

/"”* N 3, 4)
K

(1, 4)

—{2, 3)

(1, 2r— —0, 2

(0, 1}\:“ ————0, 3)
1, 3)

And (almost) finally, we take the complement of L(Ky).

[14]: Petersen = nx.complement (LK5)
nx.draw(Petersen, **opts, node_size=800)

13

[15]:

1, 3)

(3, 4 (1, 2)

While the graph is correct, we have to be quite careful with the positioning of the nodes to get a
proper view of the graph:

pos = nx.circular_layout (Petersen)

pos[(0,1)1=[0,5]; pos[(0,2)1=[3,1]; pos[(0,3)1=[2,-2]; pos[(0,4)]1=[-3,-4]
pos[(1,2)]1=[3,-4]1; pos[(1,3)]1=[-2,-2]; pos[(1,4)]=[-3,1]
pos[(2,3)]1=[-5,2]; pos[(2,4)]1=[0,3]

pos[(3,4)]1=[5,2]

nx.draw(Petersen, pos=pos,node_size=800, width=3, **opts)

14

0,1

(2, 4)
(2,3 /3, 4)
1, 4) (0, 2)
(1, 3) (0, 3)
(0, 4} {1, 2)

0.4 Matrices of Graphs

There are various ways the represent a network/graph, including: * The node set and edge set, or *
a drawing of the graph. But, computationally, the most useful way is as a matrix. Three important
matrix representations are 1. The Adjacency Matrix (most important) 2. Incidence Matrix
(has its uses) 3. The Graph Laplacian (the coolest)

0.5 Adjacency Matrix

Definition The adjacency matrix of a graph, G of order n, is a square n X n matrix, A = (aij),
with rows and columns corresponding to the nodes of the graph. That is, we number the nodes
1,2,...,n. Then A is given by

{1 if node ¢ and j are joined by an edge,
aL] -

0 otherwise.

15

0.5.1 Example
Let G = G(X, E) be the graph with X = {a,b,c,d,e} and edges a—b, b—c, b—d, c—d and d —e.

Then
01 00O
101 10
A=101 0 1 0
01101
000 1O
0.5.2 Example
The adjacency matrix of K, is
01 11
1 011
A= 11 01
1 1 10

0.5.3 Properties of Adjacency matrices

1. Zfil Zjvzl a;; = > ,cx deg(u), where deg(u) is the degree of .

2. All graphs we've seen so far are undirected. For all such graphs, A is symmetric: A = A”;
equivalently a,;; = aj;

3. a; =0 for all 4.

4. In real-world examples, A would usually be sparse, which means that 21111 Zj\[:l a;; < n?.
(I.e., the vast majority of the entries are zero).

0.5.4 Sparse matrices

Sparse matrices have huge importance in computational linear algebra. The main idea is that it is
much more efficient to just store the location of the non-zero entries. That is what networkx does:

[16]: C4 = nx.cycle_graph(4)
A_C4 = nx.adjacency_matrix(C4)
print (A_C4)

<Compressed Sparse Row sparse array of dtype 'int64'
with 8 stored elements and shape (4, 4)>

Coords Values
(0, 1) 1
(0, 3) 1
(1, 0 1
1, 2) 1
(2, 1 1
(2, 3) 1
(3, 0) 1
(3, 2) 1

This matrix is internally represented as a scipy sparse matrix. It needs to be converted (e.g. by
the toarray method) in order to be displayed as a matrix as usual.

16

[17]: type(A_C4)

[17]: scipy.sparse._csr.csr_array
[18]: type(A_C4.toarray())

[18]: numpy.ndarray

[19]: print(A_C4.toarray())

[[010 1]
[1010]
(010 1]
[1 01 0]]

0.5.5 Another example

Here is another example, we introduce to look at the idea of creating a graph from a matrix:

[20]: |G = nx.Graph(["ab", "bc", "bd", "cd", "de"l)
nx.draw(G, **opts)

\

(o]

17

[21]: A = nx.adjacency_matrix(G)
print (A.toarray())

[[0100 0]
[10110]
[01010]
(0110 1]
(0001 0]]

Now let’s make a graph from that matrix:

[22]: H = nx.from_numpy_array(A.toarray())
nx.draw(H, **opts)

-

So the graph is more or less the same, but the labels have changed!

More about Adjacency Matrices Next week we’ll learn more about these matrices. In partic-
ular, even though they are created just as a table of numbers representing a graph, matrix algebra
is really important! Examples: * Matrix-vector products can tell us about neighbours of a vertex
* Matrix-matrix produces can let us compose the actions to two networks * Matrix powers tell us
about paths of given lengths * Even the eigenvalues of A give us information about the network

18

0.6 Exercises

1. For what values of n is C,, bipartite?

2. In this class we looked at a few graph generators in networkx. Explore the following:
barbell_graph, ladder_graph, lollipop_graph, star_graph and wheel_graph.

3. We say two graphs are equal if they have the same node and edge sets. We say they are
isomorphic if there is a relabling of their nodes that makes them equal. Verify that Cj is
isomorphic to its complement.

4. Convince yourself that C,, is always isomorphic to L(C,,), the line graph of C,,.

. Is the Petersen graph bipartite?

6. Write down the adjacency matrix of Kj 5

t

Finished here Thursday

19

	Preliminaries
	Reminder
	Notes
	Modules for this notebook

	Important Graphs (continued)
	Cycle Graphs

	New Graphs from old
	Complement Graph
	Line Graphs
	Petersen Graph

	Matrices of Graphs
	Adjacency Matrix
	Example
	Example
	Properties of Adjacency matrices
	Sparse matrices
	Another example

	Exercises

