CS4423: Problem Set 2

These exercises should help you prepare for the class test, which will be somewhat similar in structure:

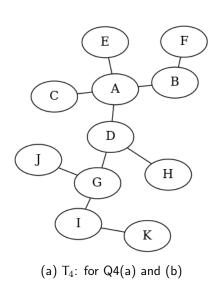
- Q1 will have 10 "true/false" based on material covered up to, and including Week 7.
- Three other questions, again on any material up to and including Week 7.
- Q1. For each of the following, state whether it is **true** or **false**. Explanations are not required. In all cases G represents a graph: G = (X, E) with node set X, and edge set E.
 - (i) The **order** of G is |E|.
 - (ii) The **degree** of a node is the number of times it occurs in X
 - (iii) A bipartite graph is two-colourable.
 - (iv) The path graph on n nodes, P_n , is a tree.
 - (v) Let G_1 be the graph on the set of nodes $\{0, 1, 2, 3, 4\}$ with edges 0 1, 0 2, 0 3, 1 4, 2 3. G_1 is isomorphic to its complement.
 - (vi) G_1 , the graph in the previous question, has the same order as its line graph.
 - (vii) The adjacency matrix of a digraph cannot be symmetric.
 - (viii) There exists a 5×5 adjacency matrix with Perron Root $\lambda = 2$, and corresponding eigenvalue $\nu = (1, -1, 1, -1, 1)$.
 - (ix) a = (4, 3, 2, 1, 4) is a valid Prüfer code for a tree with nodes $\{0, 1, 2, 3, 4, 5, 6\}$.
 - (x) The cycle graph on n nodes, C_n , has diameter $\lceil n/2 \rceil$, where $\lceil \cdot \rceil$ is the *ceiling* function.
- Q2. Consider the following matrix:

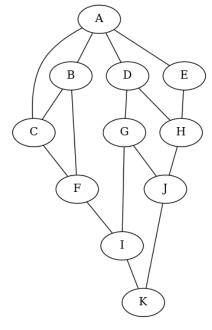
$$A_{2} = \begin{pmatrix} 0 & 1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \end{pmatrix}$$
(1)

- (a) Give a sketch of the graph, G_2 , on the nodes $X = \{0, 1, 2, 3, 4\}$ with the that has A_2 as its adjacency matrix.
- (b) Is this graph bipartite? If so, indicate a two-colouring in your sketch.
- (c) Give the *relative degree centrality* of the nodes in G_2 .
- (d) A_2 has as an eigenvector v = (2, 1, a, b, c). Compute a, b and c, as well as the eigenvalue that corresponds to this eigenvector.
- (e) Compute A₂² (Note: this can be done either by matrix multiplication, or just looking at the graph. Either approach is fine). Verify that A₂ + A₂² > 0. What is the implication of that for the diameter of G₂?
- Q3. (a) Sketch the tree, G_3 , on the nodes $\{0, 1, 2, 3, 4, 5, 6\}$ with edges 0-1, 1-2, 1-3, 1-4, 3-5, 3-6.
 - (b) Compute the Pruefer code for G_3 .
 - (c) Determine the tree on the nodes $\{0, 1, 2, 3, 4, 5\}$ which has Pruefer code (1, 2, 1, 3).

1

- Q4. Consider the graph T_4 and G_4 shown in Figure 1a.
 - (a) List the nodes of T_4 in the order they would be traversed by the **depth-first search** (DFS) algorithm, starting at node A.
 - (b) List the nodes of T_4 in the order they would be traversed by the **breadth-first search** (BFS) algorithm, starting at node A.
 - (c) For the graph G_4 , apply the BFS algorithm to determine the distances from node A to all other nodes in the graph.





(b) G_4 : for Q4(c)

Figure 1: Graphs for Q4