
CT420 REAL-TIME SYSTEMS

POSIX - SIGNALS

Dr. Michael Schukat

Recap: Task Invocation using Timer

T1

T2

T3

Process Tx:

int main() {

// Initialise process

// Setup timer x to notify Tx

// about begin of every cycle, e.g.

// T1: 25ms; T2 = 50ms; T3 = 100ms

while (1) {

 do_something();

 block_until_timer_signal();

}

}

Blocked

T1 T2 T3T3

T3 pre-empted

T4

T4

0 25 50 75 …

T4

Timers, Processes and Signals
3

Timer 1 Process 1
Signal

Timer 2 Process 2
Signal

Timer n Process n
Signal

… …

POSIX Signals

 Signals are an integral part of Unix/POSIX

 They are the software equivalent of an interrupt

 Signals are used for

◼ Exception handling (e.g., division by zero)
◼ Termed synchronously-generated as occur in response to

something the process itself does

◼Asynchronous event occurrence notification

◼ Asynchronous as happens external to process execution

◼ E.g., Timer expiration, I/O completion,

◼ CTRL-C (process terminate)

◼ (Rudimentary) mechanism for inter-process communication
(one option)

POSIX Signal Terminology

 ACTION or DISPOSITION for signal

 1. Ignore

 2. Catch → write a handler function or

 3. Default action → usually terminate process

 Signal is GENERATED for a process (or sent to a
process) when the event that causes the signal occurs

 Signal is DELIVERED to a process when action for a
signal is taken

 In interim between GENERATION and DELIVERY, signal is said
to be PENDING

POSIX Signal Terminology

 Process can BLOCK delivery of a signal ➔ signal

remains PENDING until unblocked

 Signals may be blocked

 To ensure that critical sections of code are not interrupted

 Signal can then be unblocked when out of critical section

 Signal mask defines set of signals currently BLOCKED

from DELIVERY to that process.

 E.g., with 1 bit / signal, signal is blocked if bit is 'ON’

 Some OS-generated critical signals cannot be blocked

(e.g. process termination)

Signal Masks
7

 Data structure that contains 1 bit per signal, e.g.

unsigned 32-bit int (val in macro) and 4 signals
#define SIGNAL1 1

#define SIGNAL2 2

#define SIGNAL3 4

#define SIGNAL4 8

#define SET(val, signal) val |= signal

#define TEST(val, signal) ((val & signal) != 0)

…

Masking Signals

/* define a new mask set */

sigset_t mask_set;

/* first clear the set (i.e. make it contain no signal numbers) */

sigemptyset(&mask_set);

/* Add the TSTP and INT signals to our mask set */

sigaddset(&mask_set, SIGTSTP);

sigaddset(&mask_set, SIGINT);

/* Remove the TSTP signal from the set. */

sigdelset(&mask_set, SIGTSTP);

/* Check if the INT signal is defined in our set */

if (sigismember(&mask_set, SIGINT)

 printf("signal INT is in our set\n");

else

 printf("signal INT is not in our set\n");

/* finally, let's make the set contain ALL signals available on our system */

sigfillset(&mask_set);

Signal Terminal-Server Example (Server

Code, single Process)

 Idea: server process shuts down a number of terminal processes (children), it has
previously created:

#define SIG_GO_AWAY SIGUSR1

void shutdown_server(void)

{

 printf(“Shutting down server\n“);

 // Now kill all children with signal to process group

 kill(0,SIG_GO_AWAY); // Notify terminal processes

}

 Send signal SIG_GO_AWAY using kill() from server to all terminals

 1st arg 0 ➔ all processes in process group signalled

 SIG_GO_AWAY is alias for SIGUSR1, one of 2 signals available to
programmers with POSIX.1

Server Process

Terminal Process

#1

Terminal Process

#n
…

FYI: Process Group
10

 In a POSIX-conformant OS, a process group denotes a collection of one or
more processes

 It is used to control the distribution of a signal; when a signal is directed to a
process group, the signal is delivered to each process that is a member of
the group

 The system call setsid() is used to create a new single (new) process group,
with the current process as the process group leader

 Process groups are identified by a positive integer, the process group ID,
which is the process identifier of the process that is (or was) the process
group leader

 Process groups need not necessarily have leaders, although they always
begin with one

 While POSIX prohibits the change of the process group ID of a session
leader, the system call setpgid() sets the process group ID of a process,
thereby typically joining the process to an existing process group

Signal Terminal-Server Example: Terminal Code

(potentially multiple Processes)

#define SIG_GO_AWAY SIGUSR1

//signal handler

void terminate_normally(int signo) {

exit(0);

}

main() {

 struct sigaction sa;

 sa.sa_handler=terminate_normally; // Signal handler

 sigemptyset(&sa.sa_mask);// Set of signals to be blocked
 // during execution of handler

 sa.sa_flags=0; // Later

 if(sigaction(SIG_GO_AWAY, &sa, NULL)) {

 perror(“sigaction”);

 exit(1);

 }

 while(1){

 // Carry out normal terminal duties, e.g. wait on user input

 …

 }

}

Option: Return old

sigaction structure

Linking a signal to its

handler

struct sigaction

 struct used to set all the details of what your process should do when
a particular signal arrives

 Used with sigaction signal function (identical names !?)

struct sigaction{

 void (*sa_handler)();

 sigset_t sa_mask;

 int sa_flags;

 void(*sa_sigaction)(int, siginfo_t *, void *);

};

 1st member can be SIG_DFL (default action), SIG_IGN (ignore) or take
a pointer to a function sa_handler (used for POSIX.1 signals)

POSIX.4 (later!)

Signal Terminal-Server Example

 Child (terminal) sets up a signal handler using
sigaction signal function

 3 arguments specify

◼ signal to wait for

◼ struct sigaction

◼ old sigaction

 When signal delivered from server, terminal is terminated
gracefully using function exit()

Signals and Process Behaviour
14

Process

Exit on n Ignore n Handler for n

Signal n

struct sigaction

 sa_mask used to define set of signals to be blocked from
delivery while handler is executing

 Overall mask in operation =

◼ mask in effect for process (e.g., inherited) + signal being delivered + signals
specified in sa_mask

◼ Signal being delivered included to avoid 2nd occurrence whilst handling 1st

 Note : Some signals eg. SIGKILL, SIGSTOP cannot be blocked

 3rd member is sa_flags .. See POSIX.4

 4th member is sa_sigaction

 Similar to sa_handler but used for queued POSIX.4 signals

Signals and Process Behaviour
16

Process

Exit on n Ignore n Handler for n

Signal n

Blocked

Signals

Signal Mask

 Each POSIX process has an associated signal mask

 Signals which will be blocked (held pending) if they are

generated until unblocked

◼ Will be delivered once unblocked

◼ Note: sa_mask sets mask while handler is executed

 What about setting mask in program code?

◼ sigprocmask(1st arg, &newest,&oldest)

◼ 1st arg can be SIG_BLOCK, SIG_UNBLOCK, SIG_SETMASK

◼ Newest is set of signals (type sigset_t) that you are adding for

blocking/unblocking from mask or for setting mask

◼ Use sigemptyset(),sigfillset()etc. to modify signal sets

Signals and Process Behaviour
18

Process

Exit on n Ignore n Handler for n

Signal n

Blocked

Signals

Blocked Signals

Case Study
19

 A flying Mars robot (let’s call it Ingenuity)
https://www.youtube.com/watch?v=NHMIgQ5RAl8

 has a build-in gyroscope connected to the CPU via some interface

 A device for measuring the robot’s orientation and angular velocity

 The robot’s orientation is controlled by a process

 The process reads the gyroscope every 50ms using a signal
handler invoked by a timer signal (signal A)

 However, during the landing phase the gyro is also read every
time that one of the robot’s legs touches the ground

 To make sure that the robot is parallel to the flat ground and doesn’t
topple (or damage it blades…)

 Here the asynchronous signal B (“robot touches ground”) calls a
second signal handler that reads the gyroscope

 The gyro can only be accessed by one handler at a time

https://www.youtube.com/watch?v=NHMIgQ5RAl8

Case Study
20

 Signal handler A checks the entire orientation of the
drone (every 50 ms), while signal handler B checks
only for horizontal alignment (parallel to the ground,
i.e. X and Z axes), a rotation around the Y axis doesn’t
matter

 Why must each handler mutually block the other
handler?

SignalHandlerA()

{
 // Get drone orientation in
 // space relative to X, Y, and
 // z axis:
 // I.e., send command:
 // “Get X-Y-Z orientation”
 // …
 // Read X, Y and Z
}

SignalHandlerB()

{

 // Get drone orientation in
 // space relative to X and Y
 // axis only:
 // I.e., send command:
 // “Get X-Z orientation”
 // …
 // Read X and Z
}

M

Case Study
21

 Correct Sequence:

Send commandHandler A Receive data

Send commandHandler B Receive data

21

 Incorrect Sequence:

SendHandler A ?

Send commandHandler B ?

Command

Recap: Signal Terminal-Server Example: Terminal

Code (potentially multiple Processes)

#define SIG_GO_AWAY SIGUSR1

//signal handler

void terminate_normally(int signo) {

exit(0);

}

main(int argc, char **argv) {

 struct sigaction sa;

 sa.sa_handler=terminate_normally; // Signal handler

 sigemptyset(&sa.sa_mask);// Set of signals to be blocked
 // during execution of handler

 sa.sa_flags=0; // Later

 if(sigaction(SIG_GO_AWAY, &sa, NULL)) {

 perror(“sigaction”);

 exit(1);

 }

 while(1){

// Carry out normal terminal duties, e.g. wait on user input

…

 }

}

Option: Return last

signal handler

sigsuspend()

 Terminal code

 Infinite while(1) loop

◼ Wasting CPU cycles

 Useful to be able to put terminal to sleep and wait for something to happen

◼ e.g. signal from server to indicate it has completed some work

 Need to make sure that signal cannot arrive before process is put to sleep, i.e.

 while(sig_received == false)

pause(); //waiting for a signal

◼ Could get scenario where sig_received is TRUE just after above check but before
process is put to sleep

◼ Waiting for signal that has just previously arrived

◼ ➔ sleep forever!

◼ Need to block signal until process is put to sleep

 sigsuspend(&signal_mask) facilitates this

sigsuspend()

 Installs signal_mask as process mask AND puts

process to sleep in atomic operation

◼ Keep signal blocked until process put to sleep

◼ sigsuspend() unblocks and sleeps atomically

 Halts execution until unblocked signal (e.g. not set in

signal_mask) arrives

 Process woken up and signal handler called

 When signal handler returns, sigsuspend()

returns and original signal mask is set for process

Example: sigsuspend()

More complex server / terminal

#define SIG_GO_AWAY SIGUSR1 // as before

// 2nd signal

#define SIG_QUERY_COMPLETE SIGUSR2

//2nd signal handler

void query_has_completed(int signo){

…

}

void terminate_normally(int signo){

exit(0);

}

main(int argc, char **argv){

 struct sigaction sa, sa2;

 sigset_t wait_for_these;

sa2.sa_handler=query_has_completed;

sigemptyset(&sa2.sa_mask);

sa2_sa_flags=0;

if(sigaction(SIG_QUERY_COMPLETE, &sa2, NULL)) {

perror(“sigaction”);

exit(1);

}

sigemptyset(&wait_for_these);

sigaddset(&wait_for_these, SIG_QUERY_COMPLETE);

sigprocmask(SIG_BLOCK, &wait_for_these, NULL);

// SIG_QUERY_COMPLETE now blocked ..reset signal set

sigemptyset(&wait_for_these);

//other signal handling code for SIG_GO_AWAY

while(1){

…

sigsuspend(&wait_for_these);//unblock signal and sleep

 }

}

Example: sigsuspend()

 Here: Used to protect critical code section from SIGINT:
sigset_t newmask,oldmask,waitmask;

//set up signal handler for SIGINT via sigaction etc.

sigemptyset(&waitmask);

sigaddset(&waitmask,SIGUSR1);

sigemptyset(&newmask);

sigaddset(&newmask,SIGINT);

sigprocmask(SIG_BLOCK, &newmask, &oldmask);

// Enter critical section.. SIGINT blocked

// …

// Leave critical section

sigsuspend(&waitmask); //process sleeps, SIGINT
unblocked,SIGUSR1 blocked

//When SIGINT arrives, signal handler called and
sigsuspend() returns, restores mask to that prior i.e.
SIGINT now blocked, SIGUSR1 now unblocked

//Now reset old mask .. Both unblocked

sigprocmask(SIG_SETMASK,&oldmask, NULL);

//continue

Example: sigsuspend()

28

POSIX.4 Signals

 Addresses some of limitations of POSIX.1

 More signals

◼ SIGRTMIN to SIGRTMAX (minimum 8)

◼ Specified in RTSIG_MAX

◼ Decreasing priority in order of delivery if more than 1 pending

 Real-time signals are delivered in a guaranteed order

 Can queue signals ➔ can see if more than one has occurred

during a signal blocked period

◼ POSIX.1 does not queue signals

◼ Implemented via sa_flags member of sigaction struct

◼ Set SA_SIGINFO bit in sa_flags

struct sigaction revisited

 This structure is used to set all the details of what your process should do
when a particular signal arrives

 Used with sigaction signal function

struct sigaction{

 void (*sa_handler)();

 sigset_t sa_mask;

 int sa_flags;

 void(*sa_sigaction)(int, siginfo_t *, void *);

};

 1st member can be SIG_DFL (default action), SIG_IGN (ignore) or take
a pointer to a function sa_handler (used for POSIX.1 signals)

30

POSIX.4 Signals

 Separate signal handler method for queued signals

 Recall 4th member of sigaction struct

◼ *sa_sigaction: pointer to sig handler function

 Signal handler has 3 arguments
void handler(int signum,siginfo_t *data, void *extra)

◼ Recall POSIX.1 signal handler has 1 argument

 Set SA_SIGINFO bit in sa_flags in sigaction() to select

new handler over POSIX.1 handler

 data is structure with various member fields

◼ signal number, signal value, cause of signal (e.g., timer)

 Queued signals can deliver more data

siginfo_t

 typedef struct {
…
int si_signo; // Signal id as before
int si_code; // Who sent signal?
 //See slide “Constants for si_code”
union sigval si_value; // See also next slides
…
} siginfo_t;
union sigval {
…
int sival_int;
void *sival_ptr;
…
) sigval;

Unions in C

#include <stdio.h>

#include <stdlib.h>

main() {

union {

float y;

char x;

} e;

e.y = 23.5;

printf("value is %f\n", e.y);

e.x = 5;

printf("value is %d\n", e.x);

printf("value is %f\n", e.y);

exit(EXIT_SUCCESS);

}

Program output:

value is 23.5

value is 5

value is 327394.343

Unions in C: How to specify Data Type

stored

#include <stdio.h>

#include <stdlib.h>

/* code for types in union */

#define FLOAT_TYPE 1

#define CHAR_TYPE 2

#define INT_TYPE 3

struct var_type {

 int type_in_union;

 union {

 float un_float;

 char un_char;

 int un_int;

 } vt_un;

 } var_type;

Constants for siginfo_t->si_code

 SI_QUEUE

 Signal was sent by sigqueue() (next slide)

 SI_TIMER

Signal was generated by expiration of a timer set by

timer_settimer() (as seen before)

 SI_ASYNCIO

Signal was generated by completion of an asynchronous

I/O request (not important for us)

sigqueue()

 int sigqueue(pid_t pid, int sig, const union sigval

value);

 The sigqueue() function sends a signal to a process

or a group of processes that pid specifies along

with the value specified by value.

 The signal to be sent is specified by sig

Example: Server Code

Example: Client Code (I)

Example: Client Code (II)

struct sigevent

 Server-Terminal example
 POSIX.1 signals delivered via kill()

 POSIX.4 signals can be generated by:
 sigqueue() … similar to kill() in above example

◼ Facilitates extra data required .. signal value

 Timer expiration

 Completion of asynch I/O

 Message queues (not covered here)

 Last 2 scenarios
 A process can generate signals including data payload via
sigqueue()

 Asynchronous events (e.g. timer) use sigevent

struct sigevent

 struct sigevent {

int sigev_notify; // must be SiGEV_SIGNALS

int sigev_signo; // SIGRTMIN to SIGRTMAX

union sigval sigev_value; // Value for RT signal

…

};

 union sigval {

int sival_int; /* Integer value */

void *sival_ptr; /* Pointer value */

}

Example

 Interval Timer example
timer_t created_timer;

sigevent se;

// Init se

…

i = timer_create(CLOCK_REALTIME, &se , &created_timer);

struct itimerspec new,old;

new.it_value.tv_sec=1;

new.it_value.tv_nsec=0;

new.it_interval.tv_sec=0;

new.it_interval.tv_nsec=100000;

i=timer_settime(created_timer, 0,&new, &old)

..

i=timer_delete(created_timer);

41

Remember the

first handout

42

signals & timers: Summary

 Need to create & configure timer settings

 timer_create(), timer_settime()

 struct sigevent

◼ Details of signal to be sent upon timer expiration

 Need to set up signal handler

 sigaction() to describe what signal to wait for and what

to do when it arrives

 Avoid resource wasting via polling

 sigsuspend() to put process to sleep and wait for signal

 Implement signal blocking correctly

	Slide 1: CT420 Real-Time Systems POSIX - Signals
	Slide 2: Recap: Task Invocation using Timer
	Slide 3: Timers, Processes and Signals
	Slide 4: POSIX Signals
	Slide 5: POSIX Signal Terminology
	Slide 6: POSIX Signal Terminology
	Slide 7: Signal Masks
	Slide 8: Masking Signals
	Slide 9: Signal Terminal-Server Example (Server Code, single Process)
	Slide 10: FYI: Process Group
	Slide 11: Signal Terminal-Server Example: Terminal Code (potentially multiple Processes)
	Slide 12: struct sigaction
	Slide 13: Signal Terminal-Server Example
	Slide 14: Signals and Process Behaviour
	Slide 15: struct sigaction
	Slide 16: Signals and Process Behaviour
	Slide 17: Signal Mask
	Slide 18: Signals and Process Behaviour
	Slide 19: Case Study
	Slide 20: Case Study
	Slide 21: Case Study
	Slide 22: Recap: Signal Terminal-Server Example: Terminal Code (potentially multiple Processes)
	Slide 23: sigsuspend()
	Slide 24: sigsuspend()
	Slide 25: Example: sigsuspend()
	Slide 26
	Slide 27: Example: sigsuspend()
	Slide 28: POSIX.4 Signals
	Slide 29: struct sigaction revisited
	Slide 30: POSIX.4 Signals
	Slide 31: siginfo_t
	Slide 32: Unions in C
	Slide 33: Unions in C: How to specify Data Type stored
	Slide 34: Constants for siginfo_t->si_code
	Slide 35: sigqueue()
	Slide 36: Example: Server Code
	Slide 37: Example: Client Code (I)
	Slide 38: Example: Client Code (II)
	Slide 39: struct sigevent
	Slide 40: struct sigevent
	Slide 41: Example
	Slide 42: signals & timers: Summary

