
Table of Contents

• ▪ 0.1 Modules for this notebook

• 1 Eigenvector Centrality

▪ 1.1 Normalisation

▪ 1.2 Computing Eigenvalues

• 2 Eigenvalues of adjacency matrices

▪ 2.1 Example 1:

▪ 2.2 Example 1:

▪ 2.3 Example 3

• 3 The Power Method

CS4423-Networks: Week 6 (19+20 Feb 2025)

Part 3: Eigenvector Centrality - Computation

Niall Madden, School of Mathematical and Statistical Sciences

University of Galway

This Jupyter notebook, and PDF and HTML versions, can be found at https://

www.niallmadden.ie/2425-CS4423/#Week06

This notebook was written by Niall Madden, adapted from notebooks by Angela Carnevale.

Modules for this notebook

import networkx as nx
import numpy as np
opts = { "with_labels": True, "node_color": "xkcd:sky blue"} # show labels; nodes are sky blue

np.set_printoptions(precision=3) # just display arrays to 3 decimal places
np.set_printoptions(suppress=True) # avoid scientific notation (better for matrices)

Eigenvector Centrality

So now we know (see CS4423-W06-Part-2.pdf)

• The adjacency matrix, of a connected graph, , is an irreducible non-negative matrix.

• So the F-B Therom applies to it

• So has an eigenvalue that is real and positive, and greater than the modulus of any other.

• It has a corresponding positive eigenvector, .

• is the Eigenvector Centrality node .

Normalisation

G = C5

G = P5

In [1]:

A G

A

→v

vi i

CS4423-W06-Part-3 file:///home/niall/niallmadden.ie/2425-CS4423/W06/C...

1 of 6 20/02/2025, 13:54

https://www.niallmadden.ie/2425-CS4423/#Week06
https://www.niallmadden.ie/2425-CS4423/#Week06
https://www.niallmadden.ie/2425-CS4423/#Week06
https://www.niallmadden.ie/2425-CS4423/#Week06

One minor issue is that any multiple of is also an eigenvector for the same eigenvalue. This is not a

major problem: we are mainly interested in if, for example which would mean that Node has

greater centrality than Node .

Nonetheless, by convection we choose so that

• (already discussed)

• (equivalently,

We say such an eigenvector is normalised.

Computing Eigenvalues

Presently, we'll learn about a method called the Power Method

For now, though, we'll use the np.linalg.eig() which computes the eigenvalues and

eigenvectors of a matrix:

l, V = np.linalg.eig(A) computes

• l : an array of length containing the eigenvalues of . (Note: we can't call this array lambda ,

since that is a keyword in Python.

• V : a matrix; column of is the eigenvector corresponding to the eigenvalues .

Example: Find the eigenvalues and corresponding eigenvectors of

A = np.array([[2,2],[3,1]])
l, V = np.linalg.eig(A)
print(f"The eigenvalues of A are {l[0]} and {l[1]}.")
print(f"The corresponding eigenvectors are {V[:,0]} and {V[:,1]}")

The eigenvalues of A are 4.0 and -1.0.
The corresponding eigenvectors are [0.707 0.707] and [-0.555 0.832]

Let's check if this worked:

print(A@V[:,0])
print(l[0]*V[:,0])

[2.828 2.828]
[2.828 2.828]

Let's check if the columns of V are normalised:

print(f" ||v|| = {np.linalg.norm(V[:,1])}")

 ||v|| = 1.0

Eigenvalues of adjacency matrices

Let's look at some examples, for which we may have an intuition for the centrality. we want to check

that

→v

vi > vj i

j

→v

→v > 0

→v
T
→v = 1 ∥→v∥2 = √v2

1 + v2
2 + … v2

n = 1

n A

n × n i V λi

A = (2 2
3 1

)

In [2]:

In [3]:

In [4]:

CS4423-W06-Part-3 file:///home/niall/niallmadden.ie/2425-CS4423/W06/C...

2 of 6 20/02/2025, 13:54

• there is a dominant positive eigenvalue

• there is a corresponding positive eigenvector

• the centrality values seem "sensible"

(Note: Extra details given on the white board!)

Example 1:

G = nx.cycle_graph(5)
nx.draw(G, **opts)

A = nx.adjacency_matrix(G).toarray()
l, V = np.linalg.eig(A)
for i in range(G.order()):

print(f"eigenvalue {l[i]:6.3f} has eigenvectors are {V[:,i]}")

eigenvalue -1.618 has eigenvectors are [0.632 -0.512 0.195 0.195 -0.512]
eigenvalue 0.618 has eigenvectors are [-0.632 -0.195 0.512 0.512 -0.195]
eigenvalue 2.000 has eigenvectors are [-0.447 -0.447 -0.447 -0.447 -0.447]
eigenvalue -1.618 has eigenvectors are [-0.032 0.397 -0.611 0.591 -0.345]
eigenvalue 0.618 has eigenvectors are [0.074 0.62 0.309 -0.429 -0.575]

Example 1:

G = nx.path_graph(5)
nx.draw(G, **opts)

G = C5

In [5]:

In [6]:

G = P5

In [7]:

CS4423-W06-Part-3 file:///home/niall/niallmadden.ie/2425-CS4423/W06/C...

3 of 6 20/02/2025, 13:54

A = nx.adjacency_matrix(G).toarray()
l, V = np.linalg.eig(A)
for i in range(G.order()):

print(f"eigenvalue {l[i]:6.3f} has eigenvectors are {V[:,i]}")

eigenvalue 1.732 has eigenvectors are [0.289 0.5 0.577 0.5 0.289]
eigenvalue -1.732 has eigenvectors are [-0.289 0.5 -0.577 0.5 -0.289]
eigenvalue -1.000 has eigenvectors are [-0.5 0.5 -0. -0.5 0.5]
eigenvalue -0.000 has eigenvectors are [0.577 -0. -0.577 0. 0.577]
eigenvalue 1.000 has eigenvectors are [-0.5 -0.5 -0. 0.5 0.5]

Example 3

Let's look at the eigenvalues of an adjacency matrix of a graph. It is constructed so that node is more

"central" than any of the others, node is the least "central".

G = nx.Graph(["01", "02", "03", "04", "05", "12", "13", "14"])
nx.draw(G, **opts)

In [8]:

0
5

In [9]:

CS4423-W06-Part-3 file:///home/niall/niallmadden.ie/2425-CS4423/W06/C...

4 of 6 20/02/2025, 13:54

A = nx.adjacency_matrix(G).toarray()
print(A)

[[0 1 1 1 1 1]
 [1 0 1 1 1 0]
 [1 1 0 0 0 0]
 [1 1 0 0 0 0]
 [1 1 0 0 0 0]
 [1 0 0 0 0 0]]

l, V = np.linalg.eig(A)
print(f"The eigenpairs of A are:")
for i in range(5):

print(f"Eigenvalue {l[i]:8.3f} with eigenvector {V[:,i]}")

The eigenpairs of A are:
Eigenvalue 3.102 with eigenvector [0.568 0.523 0.352 0.352 0.352 0.183]
Eigenvalue 0.344 with eigenvector [0.296 -0.343 -0.138 -0.138 -0.138 0.859]
Eigenvalue -2.123 with eigenvector [-0.557 -0.324 0.415 0.415 0.415 0.262]
Eigenvalue -1.323 with eigenvector [0.529 -0.71 0.137 0.137 0.137 -0.4]
Eigenvalue -0.000 with eigenvector [-0. -0. -0.509 0.807 -0.298 -0.]

The Power Method

There are subfields in the Numerical Linerar Algebra dedicated to computing estimates for eigenvalues

and eigenvectors. When we only need one eigenvalue, and it is the largest, use the Power method:

1. start with any , say;

2. keep replacing until becomes stable ...

In [10]:

In [11]:

u = (1, 1, … , 1)

u ← Au u/∥u∥

CS4423-W06-Part-3 file:///home/niall/niallmadden.ie/2425-CS4423/W06/C...

5 of 6 20/02/2025, 13:54

https://en.wikipedia.org/wiki/Power_iteration
https://en.wikipedia.org/wiki/Power_iteration

Questions Does this work? Meaning:

• Does the sequence actually converge?

• Does it return the correct values?

n = G.order()
u = np.ones((n,1)); u=u/np.linalg.norm(u)
for i in range(10):

u = A @ u
u = u/np.linalg.norm(u)

print(u)

[[0.564]
 [0.521]
 [0.354]
 [0.354]
 [0.354]
 [0.185]]

print(V)

[[0.568 0.296 -0.557 0.529 -0. 0.]
 [0.523 -0.343 -0.324 -0.71 -0. 0.]
 [0.352 -0.138 0.415 0.137 -0.509 0.816]
 [0.352 -0.138 0.415 0.137 0.807 -0.408]
 [0.352 -0.138 0.415 0.137 -0.298 -0.408]
 [0.183 0.859 0.262 -0.4 -0. 0.]]

Finished here Thursday

In [12]:

In [13]:

In [14]:

CS4423-W06-Part-3 file:///home/niall/niallmadden.ie/2425-CS4423/W06/C...

6 of 6 20/02/2025, 13:54

