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2 WHAT ISMACHINE LEARNING?

1 Introduction

1.1 Lecturer Contact Details

• Dr. Frank Glavin.

• frank.glavin@universityofgalway.ie

1.2 Grading

• Continuous Assessment: 30% (2 assignments, worth 15% each).

• Written Exam: 70% (Last 2 year’s exam papers most relevant).

There will be no code on the exam, but perhaps pseudo-code or worked mathematical examples.

1.3 Module Overview

Machine Learning (ML) allows computer programs to improve their performance with experience (i.e., data). This
module is targeted at learners with no prior ML experience, but with university experience of mathematics & statistics
and strong programming skills. The focus of this module is on practical applications of commonly usedML algorithms,
including deep learning applied to computer vision. Students will learn to usemodernML frameworks (e.g., scikit-learn,
Tensorflow / Keras) to train & evaluate models for common categories of ML task including classification, clustering, &
regression.

1.3.1 Learning Objectives

On successful completion, a student should be able to:

1. Explain the details of commonly usedMachine Learning algorithms.

2. Apply modern frameworks to develop models for common categories of Machine Learning task, including
classification, clustering, & regression.

3. Understand howDeep Learning can be applied to computer vision tasks.

4. Pre-process datasets for Machine Learning tasks using techniques such as normalisation & feature selection.

5. Select appropriate algorithms & evaluation metrics for a given dataset & task.

6. Choose appropriate hyperparameters for a range of Machine Learning algorithms.

7. Evaluate & interpret the results produced byMachine Learning models.

8. Diagnose & address commonly encountered problems withMachine Learning models.

9. Discuss ethical issues & emerging trends in Machine Learning.

2 What is Machine Learning?

There are many possible definitions for “machine learning”:

• Samuel, 1959: “Field of study that gives computers the ability to learn without being explicitly programmed”.

• Witten & Frank, 1999: “Learning is changing behaviour in a way that makes performance better in the future”.

• Mitchelll, 1997: “Improvement with experience at some task”. A well-definedML problem will improve over
task T with regards to performancemeasure P , based on experienceE.

• Artificial Intelligence 6=Machine Learning 6=Deep Learning.

1
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2 WHAT ISMACHINE LEARNING?

• Artificial Intelligence 6⊇Machine Learning 6⊇Deep Learning.

Machine Learning techniques include:

• Supervised learning.

• Unsupervised learning.

• Semi-Supervised learning.

• Reinforcement learning.

Major types of ML task include:

1. Classification.

2. Regression.

3. Clustering.

4. Co-Training.

5. Relationship discovery.

6. Reinforcement learning.

Techniques for these tasks include:

1. Supervised learning:

• Classification: decision trees, SVMs.
• Regression: linear regression, neural nets, k-NN (good for classification too).

2. Unsupervised learning:

• Clustering: k-Means, EM-clustering.
• Relationship discovery: association rules, bayesian nets.

3. Semi-Supervised learning:

• Learning from part-labelled data: co-training, transductive learning (combines ideas from clustering &
classification).

4. Reward-Based:

• Reinforcement learning: Q-learning, SARSA.

In all cases, the machine searches for a hypothesis that best describes the data presented to it. Choices to be made
include:

• How is the hypothesis expressed? e.g., mathematical equation, logic rules, diagrammatic form, table, parameters
of a model (e.g. weights of an ANN), etc.

• How is search carried out? e.g., systematic (breadth-first or depth-first) or heuristic (most promising first).

• How do we measure the quality of a hypothesis?

• What is an appropriate format for the data?

• Howmuch data is required?

To apply ML, we need to know:

2



3 INTRODUCTIONTO PYTHON

• How to formulate a problem.

• How to prepare the data.

• How to select an appropriate algorithm.

• How to interpret the results.

To evaluate results & compare methods, we need to know:

• The separation between training, testing, & validation.

• Performance measures such as simple metrics, statistical tests, & graphical methods.

• How to improve performance.

• Ensemble methods.

• Theoretical bounds on performance.

2.1 Data Mining

Data Mining is the process of extracting interesting knowledge from large, unstructured datasets. This knowledge is
typically non-obvious, comprehensible, meaningful, & useful.

The storage “law” states that storage capacity doubles every year, faster than Moore’s “law”, which may results in
write-only “data tombs”. Therefore, developments in MLmay be essential to be able to process & exploit this lost data.

2.2 Big Data

Big Data consists of datasets of scale & complexity such that they can be difficult to process using current standard
methods. The data scale dimensions are affected by one or more of the “3 Vs”:

• Volume: terabytes & up.

• Velocity: from batch to streaming data.

• Variety: numeric, video, sensor, unstructured text, etc.

It is also fashionable to add more “Vs” that are not key:

• Veracity: quality & uncertainty associated with items.

• Variability: change / inconsistency over time.

• Value: for the organisation.

Key techniques for handling big data include: sampling, inductive learning, clustering, associations, & distributed
programming methods.

3 Introduction to Python

Python is a general-purpose high-level programming language, first created by Guido van Rossum in 1991. Python
programs are interpreted by an interpreter, e.g. CPython – the reference implementation supported by the Python
Software Foundation. CPython is both a compiler and an interpreter as it first compiles Python code into bytecode
before interpreting it.

Python interpreters are available for a wide variety of operating systems & platforms. Python supports multiple
programming paradigms, including procedural programming, object-oriented programming, & functional program-
ming. Python is dynamically typed, unlike languages such as C, C++, & Java which are statically typed, meaning that

3



3 INTRODUCTIONTO PYTHON

many common error checks are deferred until runtime in Python, whereas in a statically typed language like Java these
checks are performed during compilation.

Python uses garbage collection, meaning that memory management is handled automatically and there is no need for
the programmer to manually allocate & de-allocate chunks of memory.

Python is used for all kinds of computational tasks, including:

• Scientific computing.

• Data analytics.

• Artificial Intelligence &Machine Learning.

• Computer vision.

• Web development / web apps.

• Mobile applications.

• Desktop GUI applications.

While having relatively simple syntax and being easy to learn for beginners, Python also has very advanced functionality.
It is one of the most widely used programming languages, being both open source & freely available. Python programs
will run almost anywhere that there is an installation of the Python interpreter. In contrast, many languages such as C
or C++ have separate binaries that must be compiled for each specific platform & operating system.

Python has a wide array of libraries available, most of which are free & open source. Python programs are usually much
shorter than the equivalent Java or C++ code, meaning less code to write and faster development times for experienced
Python developers. Its brevity also means that the code is easier to maintain, debug, & refactor as much less source code
is required to be read for these tasks. Python code can also be run without the need for ahead-of-time compilation (as
in C or C++), allowing for faster iterations over code versions & faster testing. Python can also be easily extended &
integrated with software written in many other programming languages.

Drawbacks of using Python include:

• Efficiency: Program execution speed in Python is typically a lot slower than more low-level languages such as C
or C++. The relative execution speed of Python compared to C or C++ depends a lot on coding practices and
the specific application being considered.

• Memory Management in Python is less efficient than well-written C or C++ code although these efficiency
concerns are not usually a major issues, as compute power & memory are now relatively cheap on desktop,
laptop, & server systems. Python is used in the backend of large web services such as Spotify & Instagram,
and performs adequately. However, these performance concerns may mean that Python is unsuitable for some
performance-critical applications, e.g. resource-intensive scientific computing, embedded devices, automotive,
etc. Faster alternative Python implementations such as PyPy are also available, with PyPy providing an average
of a four-fold speedup by implementing advanced compilation techniques. It’s also possible to call code that is
implemented in C within Python to speed up performance-critical sections of your program.

• Dynamic typing canmake codemore difficult to write & debug compared to statically-typed languages, wherein
the compiler checks that all variable types match before the code is executed.

• Python2 vs Python3: There are two major version of Python in widespread use that are not compatible with
each other due to several changes that were made when Python3 was introduced. This means that some libraries
that were originally written in Python2 have not been ported over to Python3. Python2 is now mostly used only
in legacy business applications, while most new development is in Python3. Python2 is no longer supported or
receives updates as of 2020.

4



3 INTRODUCTIONTO PYTHON

3.1 Running Python Programs

Python programs can be executed in a variety of different ways:

• through the Python interactive shell on your local machine.

• through remote Python interactive shells that are accessible through web browsers.

• by using the console of your operating system to launch a standalone Python script (.py file).

• by using an IDE to launch a .py file.

• as GUI applications using libraries such as Tkinter PyQt.

• as web applications that provide services to other computers, e.g. by using the Flask framework to create a web
server with content that can be accessed using web browsers.

• through Jupyter / JupyterLab notebooks, either hosted locally on yourmachine or cloud-based Jupyter notebook
execution environments such as Google Colab, Microsoft Azure Notebooks, Binder, etc.

3.2 Hello World

The following programs writes “Hello World!” to the screen.

1 print("Hello World!")

Listing 1: helloworld.py

3.3 PEP 8 Style Guide

PEPs (Python Enhancement Proposals)describe&document theway inwhich thePython language evolves over time,
e.g. addition of new features. Backwards compatibility policy etc. PEPSs can be proposed, then accepted or rejected.
The full list is available at https://www.python.org/dev/peps/. PEP 8 gives coding conventions for the Python code
comprising the standard library in the main Python distribution. See: https://www.python.org/dev/peps/pep-0008/.
It contains conventions for the user-defined names (e.g., variables, functions, packages), as well as code layout, line
length, use of blank lines, style of comments, etc.

Many professional Python developers & companies adhere to (at least some of) the PEP8 conventions. It is important to
learn to follow these conventions from the start, especially if you want to work with other programmers, as experienced
Python developers will often flag violations of the PEP 8 conventions during code reviews. Of course, many companies
& open-source software projects have defined their own internal coding style guidelines which take precedence over
PEP 8 in the case of conflicts. Following PEP 8 conventions is relatively easy if you are using a good IDE, e.g. PyCharm
automatically finds & alerts you to violations of the PEP 8 conventions.

3.3.1 Variable Naming Conventions

According to PEP 8, variable names “should be lowercase, with words separated by underscores as necessary to improve
readability”, i.e. snake_case. “Never use the characters l, O, or I as single-character variable names. In some fonts, these
characters are indistinguishable from the numerals one & zero. When tempted to use l, use L instead”. According
to PEP 8, different naming conventions are used for different identifiers, e.g.: “Class names should normally use the
CapWords convention”. This helps programmers to quickly & easily distinguish which category an identifier name
represents.

3.3.2 Whitespace in Python

A key difference between Python and other languages such as C is that whitespace has meaning in Python. The PEP 8
style guidelines say to “Use 4 spaces per indentation level”, not 2 spaces, and not a tab character. This applies to all
indented code blocks.

5
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3 INTRODUCTIONTO PYTHON

3.4 Dynamic Typing

In Python, variable names can point to objects of any type. Built-in data types in python include str, int, float, etc.
Each type can hold a different type of data. Because variables in Python are simply pointers to objects, the variable
names themselves do not have any attached type information. Types are linked not to the variable names but to the
objects themselves.

1 x = 4

2 print(type(x)) # prints "<class 'int'>" to the console

3 x = "Hello World!"

4 print(type(x)) # prints "<class 'str'>" to the console

5 x = 3.14159

6 print(type(x)) # prints "<class 'float'>" to the console

Listing 2: Dynamic Typing Example

Note that type() is a built-in function that returns the type of any object that is passed to it as an argument. It returns
a type object.

Because the type of object referred to by a variable is not known until runtime, we say that Python is a dynami-
cally typed language. In statically typed languages, we must declare the type of a variable before it is used: the type
of every variable is known before runtime.

Another important difference between Python and statically typed languages is that we do not need to declare variables
before we use them. Assigning a value to a previously undeclared variable name is fine in Python.

3.5 Modules, Packages, & Virtual Environments

3.5.1 Modules

Amodule is an object that serves as an organisational unit of Python code. Modules have a namespace containing
arbitrary Python objects and are loaded into Python by the process of importing. Amodule is essentially a file containing
Python definitions & statements.

Modules can be run either as standalone scripts or they can be imported into other modules so that their built-
in variables, functions, classes, etc. can be used. Typically, modules group together statements, functions, classes, etc.
with related functionality. When developing larger programs, it is convenient to split the source code up into separate
modules. As well as creating our own modules to break up our source code into smaller units, we can also import
built-in modules that come with Python, as well as modules developed by third parties.

Python provides a comprehensive set of built-inmodules for commonly used functionality, e.g. mathematical functions,
date & tie, error handling, random number generation, handling command-line arguments, parallel processing, net-
working, sending email messages, etc. Examples of modules that are built-in to Python include math, string, argparse,
calendar, etc. The mathmodule is one of the most commonly used modules in Python, although the functions in the
mathmodule do not support complex numbers; if you require complex number support, you can use the cmathmodule.
A full list of built-in modules is available at https://docs.python.org/3/py-modindex.html.

3.5.2 Packages

Packages are a way of structuring Python’s module namespace by using “dotted module names”: for example, the
module name A.B designates a submodule named B in a package A. Just like the use of modules saves the authors of
different modules from having to worry about each other’s global variable names, the use of dotted module names saves
the authors of multi-module packages like NumPy or Pillow from having to worry about each other’s module names.
Individual modules can be imported from a package: import sound.effects.echo.

PEP 8 states that “Modules should have short, all-lowercase names. Underscores can be used in the module name if it
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4 CLASSIFICATION

improves readability. Python packages should also have short, all-lowercase names, although the use of underscores is
discouraged.”

3.5.3 Managing Packages with pip

pip can be used to install, upgrade, & remove packages and is supplied by default with your Python installation. By
default, pipwill install packages from the Python Package Index (PyPI) https://pypi.org. You can browse the Python
Package Index by visiting it in your web browser. To install packages from PyPI:

1 python -m pip install projectname

To upgrade a package to the latest version:

1 python -m pip install --upgrade projectname

3.5.4 Virtual Environments

Python applications will often use packages &modules that don’t come as part of the standard library. Applications will
sometimes need a specific version of a library, because the application may require that a particular bug has been fixed or
the application may have been written using an obsolete version of the library’s interface. This means that it may not
be possible for one Python installation to meet the requirements of every application. If applicationA needs version
1.0 of a particular module but applicationB needs version 2.0, then the requirements are in conflict and installing
either version 1.0 or 2.0 will leave one application unable to run. The solution for this problem is to create a virtual
environment, a self-contained directory tree that contains a Python installation for a particular version of Python plus
a number of additional packages. Different applications can then use different virtual environments.

By default, most IDEs will create a new virtual environment for each new project created. It is also possible to set up a
project to run on a specific pre-configured virtual environment. The built-in module venv can also be used to create &
manage virtual environments through the console.

To use the venvmodule, first decide where you want the virtual environment to be created, then open a command line
at that location use the command python -m venv environmentname to create a virtual environment with the specified
name. You should then see the directory containing the virtual environment appear on the file system, which can then
be activated using the command source environmentname/bin/activate.

To install a package to a virtual environment, first activate the virtual environment that you plan to install it to and then
enter the command python -m pip install packagename.

If you have installed packages to a virtual environment, you will need to make that virtual environment available
to Jupyter Lab so that your .ipynb files can be executed on the correct environment. You can use the package ipykrenel
to do this.

4 Classification

4.1 Supervised Learning Principles

Recall from before that there are several main types of machine learning techniques, including supervised learning,
unsupervised learning, semi-supervised learning, & reinforcement learning. Supervised learning tasks include both
classification& regression.

The task definition of supervised learning is to, given examples, return a function h (hypothesis) that approximates
some “true” function f that (hypothetically) generated the labels for the examples. We need to have a set of examples
called the training data, each having a label& a set of attributes that have known values.

We consider the labels (classes) to be the outputs of some function f : the observed attributes are its inputs. We
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4 CLASSIFICATION

denote the attribute value inputs x and labels are their corresponding outputs f(x). An example is a pair (x, f(x)).
The function f is unknown, and we want to discover an approximation of it h. We can then use h to predict labels of
new data (generalisation). This is also known as pure inductive learning.

Figure 1: Training Data Example for a Classification Task

Figure 2: Overview of the Supervised Learning Process

4.2 Introduction to Classification

The simplest type of classification task is where instances are assigned to one of two categories: this is referred to as
a binary classification task or two-class classification task. Many popular machine learning problems fall into this
category:

• Is cancer present in a scan? (Yes / No).

• Should this loan be approved? (Yes / No).

• Sentiment analysis in text reviews of products (Positive / Negative).

• Face detection in images (Present / Not Present).

The more general form of classification task is themutli-class classificationwhere the number of classes is≥ 3.

8
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4.2.1 Example Binary Classification Task

Objective: build a binary classifier to predict whether a new previously unknown athlete who did not feature in the
dataset should be drafted.

There are 20 examples in the dataset, see
college_athletes.csv on Canvas.

The college athlete’s dataset contains two attributes:

• Speed (continuous variable).

• Agility (continuous variable).

The target data: whether or not each athlete was drafted to
a professional team (yes / no).

Figure 3: Example Dataset for a Binary Classification Task

Figure 4: Feature Space Plot for the College Athlete’s Dataset

We want to decide on a reasonable decision boundary to categorise new unseen examples, such as the one denoted
by the purple question mark below. We need algorithms that will generate a hypothesis / model consistent with the
training data. Is the decision boundary shown below in thin black lines a good one? It is consistent with all of the
training data, but it was drawn manually; in general, it won’t be possible to manually draw such decision boundaries
when dealing with higher dimensional data (e.g., more than 3 features).
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Figure 5: Feature Space Plot for the College Athlete’s Dataset

4.2.2 Example Classification Algorithms

There are many machine learning algorithms available to learn a classification hypothesis / model. Some examples (with
corresponding scikit-learn classes) are:

• k-nearest neighbours: scikit-learn KNeighboursClassifier.

• Decision trees: scikit-learn DecisionTreeClassifier.

• Gaussian Processes: scikit-learn GaussianProcessClassifier.

• Neural networks: scikit-learn MLPClassifier.

• Logistic regression: scikit-learn LogisticRegression. Note that despite its name, logistic regression is a linear
model for classification rather than regression.

4.2.3 Logistic Regression on the College Athletes Dataset

Below is an example of a very simple hypothesis generated using an MLmodel – a linear classifier created using the
scikit-learn LogisticRegressionwith the default settings.
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Figure 6: Logistic Regression on the College Athletes Dataset

Is this a good decision boundary? 19
21 training examples correct = 90.4% accuracy. Note how the decision boundary is

a straight line (in 2D). Note also that using logistic regression makes a strong underlying assumption that the data is
linearly separable.

4.2.4 Decision Tree on the College Athletes Dataset

Below is an example of a more complex hypothesis, generated using the scikit-learn DecisionTreeClassifierwith the
default settings.

Figure 7: Decision Tree on the College Athletes Dataset

Note the two linear decision boundaries: this is a very different form of hypothesis compared to logistic regression. Is
this a good decision boundary? 21

21 training examples correct = 100% accuracy.
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4.2.5 Gaussian Process on the College Athletes Dataset

Below is an example of a much more complex hypothesis generated using the scikit-learn GaussianProcessClassifier

with the default settings.

Figure 8: Gaussian Process on the College Athletes Dataset

Note the smoothness of the decision boundary compared to the other methods. Is this a good decision boundary? 21
21

training examples correct = 100% accuracy.

Which of the three models explored should we choose? It’s complicated; we need to consider factors such as accuracy of
the training data & independent test data, complexity of the hypothesis, per-class accuracy etc.

4.2.6 Use of Independent Test Data

Use of separate training & test datasets is very important when developing anMLmodel. If you use all of your data
for training, your model could potentially have good performance on the training data but poor performance on new
independent test data.

5 k-Nearest Neighbours Algorithm

k-nearest neigbours (or k-NN) is one of the simplest machine learning algorithms. It generates a hypothesis using a
very simple principle: predictions for the label or value assigned to a query instance should be made based on the most
similar instances in the training dataset. Hence, this is also known as similarity-based learning.

k-NN can be used for both classificatoin & regression tasks, although for now we will focus only on its application to
classification tasks using the scikit-learn implementation KNeighborsClassifier.
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Figure 9: K-Nearest Neighbour Example

The operation of the k-NN algorithm is relatively easy to appreciate. The key insight is that each example is a point in
the feature space. If samples are close to each other in the feature space, they should be close in their target values. This
is related to code-based reasoning. When you want to classify a new query case, you compare it to the stored set and
retrieve the kmost similar instances. The query case is the given a label based on the most similar instances.

The prediction for a query case is based on several (k) nearest neighbours. We compute the similarity of the query case
to all stored cases, and pick the nearest k neighbours; the simplest way to do this is to sort the instances by distance and
pick the lowest k instances. A more efficient way of doing this would be to identify the k nearest instances in a single
pass through the list of distances. The k nearest neighbours then vote on the classification of the test case: prediction is
themajority class voted for.

5.1 The Nearest Neighbour Algorithm

The 1-nearest neighbour algorithm is the simplest similarity-based / instance-based method. There is no real training
phase, we just store the training cases. Given a query case with a value to be predicted, we compute the distance of the
query case from all stored instances and select the nearest neighbour case. We then assign the test case the same label
(class or regression value) as its nearest neighbour. The main problem with this approach is susceptibility to noise; to
reduce susceptibility to noise, use more than one neighbour, i.e., the k-nearest neighbours algorithm.

1NN with Euclidean distance as the distance metric is equivalent to partitioning the feature space into a Voronoi
Tessellation: finding the predicted target class is equivalent to finding which Voronoi region it occupies.
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Figure 10: Feature Space Plot (left) & Corresponding Voronoi Tesselation (right)

Figure 11: 1NNDecision Boundary from Voronoi Tessellation

Figure 12: Effect of AddingMore Training Data to Voronoi Tessellation
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5.2 k-NN Hyperparameters

The k-NN algorithm also introduces a new concept to us that is very important for ML algorithms in general: hyperpa-
rameters. In ML algorithms, a hyperparameter is a parameter set by the user that is used to control the behaviour
of the learning process. Many ML algorithms also have other parameters that are set by the algorithm during its
learning process (e.g., the weights assigned to connections between neurons in an artificial neural network). Examples
of hyperparameters include:

• Learning rate (typically denoted using the Greek letter α).

• Topology of a neural network (the number & layout of neurons).

• The choice of optimiser when updating the weights of a neural network.

ManyML algorithms are very sensitive to the choice of hyperparameters: poor choice of values yields poor performance.
Therefore, hyperparameter tuning (i.e., determining the values that yield the best performance) is an important topic in
ML. However, some simple ML algorithms do not have any hyperparameters.

k-NN has several key hyperparameters that we must choose before applying it to a dataset:

• The number of neighbours k to take into account when making a prediction: n_neighbours in the scikit-learn
implementation of KNeighboursClassifier.

• The method used to measure how similar instances are to one another: metric in scikit-learn.

5.3 Measuring Similarity

5.3.1 Measuring Similarity Using Distance

Consider the college athletes dataset from earlier. How should we measure the similarity between instances in this case?
Distance is one option: plot the points in 2D space and draw a straight line between them. We can think of each feature
of interest as a dimension in hyperspace.

Ametric or distance function may be used to define the distance between any pair of elements in a set. metric(a, b) is a
function that returns the distance between two instances a& b in a set. a& b are vectors containing the values of the
attributes we are interested in for the data points we wish to measure between.

5.3.2 Euclidean Distance

Euclidean distance is one of the best-known distance metrics. It computes the length of a straight line between two
points.

Euclidean(a, b) =

√√√√ m∑
i=1

(a[i]− b[i])2

Herem is the number of features / attributes to be used to calculate the distance (i.e., the dimensions of the vectors a&
b). Euclidean distance calculates the square root of the sum of squared differences for each feature.

5.3.3 Manhattan Distance

Manhattan distance (also known as “taxicab distance”) is the distance between two points measured along axes at
right angles.

Manhattan(a, b) =
m∑
i=1

abs(a[i]− b[i])

As before,m is the number of features / attributes to be used to calculate the distance (i.e., the dimension of the vectors
a& b) and abs() is a function which returns the absolute value of a number. Manhattan distance calculates the sum of
the absolute differences for each feature.
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Example: Calculating Distance

Calculate the distance between d12 = [5.00, 2.50]& d5 = [2.75, 7.50].

Euclidean(d12, d5) =
√
(5.00− 2.75)2 + (2.50− 7.50)2 = 5.483

Manhattan(d12, d5) = abs(5.00− 2.75) + abs(2.50− 7.50) = 7.25

Figure 13: Euclidean vs Manhattan Distance

5.3.4 Minkowski Distance

TheMinkowski distancemetric generalises both the Manhattan distance and the Euclidean distance metrics.

Minkowski(a, b) =

(
m∑
i=1

abs(a[i]− b[i])p

) 1
p

As before,m is the number of features / attributes to be used to calculate the distance (i.e., the dimension of the vectors
a& b). Minkowski distance calculates the absolute value of the differences for each feature.

5.3.5 Similarity for Discrete Attributes

Thus far we have considered similaritymeasures that only apply to continuous attributes1. Many datasets have attributes
that have a finite number of discrete values (e.g., Yes/No or True/False, survey responses, ratings). One approach to
handling discrete attributes isHamming distance: the Hamming distance is calculated as 0 for each attribute where
both cases have the same value and 1 for each attribute where they are different. E.g., Hamming distance between the
strings “Stephen” and “Stefann” is 3.

5.3.6 Comparison of Distance Metrics

Euclidean&Manhattan distance are themost commonly used distancemetrics although it is possible to define infinitely
many distance metrics using the Minkowski distance. Manhattan distance is cheaper to compute than Euclidean
distance as it is not necessary to compute the squares of differences and a square root, so Manhattan distance may be a
better choice for very large datasets if computational resources are limited. It’s worthwhile to try out several different
distance metrics to see which is the most suitable for the dataset at hand. Many other methods to measure similarity
also exist, including cosine similarity, Russel-Rao, Sokal-Michener.

1Note that discrete/continuous attributes are not to be confused with classification/regression
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5.4 Choosing a Value for k

The appropriate value for k is application dependent, and experimentation is needed to find the optimal value. Typically,
it is> 3 and often in the range 5 – 21. IncreasingK has a smoothing effect:

• If k is too low, it tends to overfit if the data is noisy.

• If k is too high, it tends to underfit.

In imbalanced datasets, the majority target class tends to dominate for large k values. It’s important to note that k
does not affect computational cost much: most of the computation is in calculating the distances from the query to all
stored instances.

Figure 14: Effect of Increasing k (1)

Figure 15: Effect of Increasing k (2)
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Figure 16: Smoothing Effect of k

5.4.1 Distance-Weighted k-NN

In distance-weighted k-NN, we give each neighbour a weight equal to the inverse of its distance from the target. We
then take the weighted vote or weighted average to classify the target case. It’s reasonable to use k = [all training cases].

Figure 17: Effect of Distance Weighting

6 Decision Trees

Decision trees are a fundamental structure used in information-based machine learning. The idea is to use a decision
tree as a predictive model to decide what category/label/class an item belongs to based on the values of its features.
Decision trees consist of nodes (where two branches intersect) which are decision points which partition the data.
Observations about an item (values of features) are represented using branches. The terminal nodes are called leaves
and specify the target label for an item. The inductive learning of a decision tree is as follows:

1. For all attributes that have not yet been used in the tree, calculate their impurity (entropy orGini index) and
information/Gini gain values for the training samples.
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2. Select the attribute that has the highest information gain.

3. Make a tree node containing that attribute.

4. This node partitions the data: apply the algorithm recursively to each partition.

Themain class used in scikit-learn to implement decision tree learning for classification tasks is DecisionTreeClassifier.
The default measure of impurity is the Gini index, but entropy is also an option.

6.1 Computing Entropy

We already saw how some descriptive features can more effectively discriminate between (or predict) classes which
are present in the dataset. Decision trees partition the data at each node, so it makes sense to use features which have
higher discriminatory power “higher up” in a decision tree. Therefore, we need to develop a formal measure of the
discriminatory power of a given attribute.

Claude Shannon (often referred to as “the father of information theory”) proposed a measure of the impurity of
the elements in the set called entropy. Entropy may be used to measure the uncertainty of a random variable. The
term “entropy” generally refers to disorder or uncertainty, so the use of this term in the context of information theory is
analogous to other well-known uses of the term such as in statistical themodynamics. The acquisition of information
(information gain) corresponds to a reduction in entropy.

The entropy of a dataset S with n different classes may be calculated as:

Ent(S) =
n∑

i=1

−pi log2 pi

where pi is the proportion of the class i in the dataset. This is an example of a probability mass function. Entropy is
typically measured in bits (note the log2 in the equation above): the lowest possible entropy output from this function
is 0 (log2 1 = 0), while the highest possible entropy is log2 n (which is equal to 1 when there are only two classes).

We use the binary logarithm because a useful measure of uncertainty should assign high uncertainty to outcomes
with a low probability and assign low uncertainty values to outcomes with a high probability. log2 returns large negative
values when P is close to 0 and small negative values when P is close to 1. We use− log2 for convenience, as it returns
positive entropy values with 0 as the lowest entropy.
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Worked Entropy Example

Figure 18: Example Data

Workings;

Ent(S) =Ent([9+, 5−])

=
−9

14
log2

(
9

14

)
− 5

14
log2

(
5

14

)
=0.9403

Note that if you are calculating entropy using a spreadsheet application such as Excel, make sure that you are
using log2, e.g. LOG(9/14,2).

6.2 Computing Information Gain

The information gain of an attribute is the reduction of entropy from partitioning the data according to that attribute:

Gain(S,A) = Ent(S)−
∑

v∈Values(A)

|Sv|
|S|

Ent(Sv)

Here S is the entire set of data being considered and Sv refers to each partition of the data according to each possible
value v for the attribute. |S|& |Sv| refer to the cardinality or size of the overall dataset, and the cardinality or size of a
partition respectively. When selecting an attribute for a node in a decision tree, we use whichever attributeA that gives
the greatest information gain.
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Worked Information Gain Example

Given |S| = 14,
∣∣Swindy=true∣∣ = 6, &

∣∣Swindy=false∣∣ = 8, calculate the information gain of the attribute
“windy”.

Gain(S,windy) =Ent(S)−
∣∣Swindy=true∣∣

|S|
Ent(Swindy = true)−

∣∣Swindy=false∣∣
|S|

Ent(Swindy = false)

=Ent(S)−
(

6

14

)
Ent([3+, 3−])−

(
8

14

)
Ent([6+, 2−])

=0.940−
(

6

14

)
1.00−

(
8

14

)
0.811

=0.048

The best partitioning is the one that results in the highest information gain. Once the best split for the root node is
found, the procedure is repeated with each subset of examples. S will then refer to the subset in the partition being
considered instead of the entire dataset.

6.3 Computing the Gini Index

An alternative to using entropy as the measure of the impurity of a set is to use theGini Index:

Gini(S) = 1−
n∑

i=1

p2i

This is the default measure of impurity in scikit-learn. The gain for a feature can then be calculated based off the
reduction in the Gini Index (rather than as a reduction in entropy):

GiniGain(S,A) = Gini(S) =
∑

v∈Values(A)

|Sv|
|S|

Gini(Sv)
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6.4 The ID3 Algorithm

Algorithm 1 ID3 Algorithm
1: procedure ID3(Examples, Attributes, Target)
2: Input:
3: Examples: set of classified examples
4: Attributes: set of attributes in the examples
5: Target: classification to be predicted
6: if Examples is empty then
7: returnDefault class
8: else if all Examples have the same class then
9: return this class
10: else if all Attributes are tested then
11: returnmajority class
12: else
13: Let Best = attribute that best separates Examples relative to Target
14: Let Tree = new decision tree with Best as root node
15: for all value vi of Best do
16: Let Examplesi = subset of Examples where Best = vi
17: Let Subtree = ID3(Examplesi, Attributes - Best, Target)
18: Add branch from Tree to Subtree with label vi
19: end for
20: returnTree
21: end if
22: end procedure

This code will not be asked for on the exam.

6.5 Decision Tree Summary

Decision trees are popular because:

• It’s a relatively easy algorithm to implement.

• It’s fast: greedy search without backtracking.

• It has comprehensible output, which is important in decision-making (medical, financial, etc.).

• It’s practical.

• It’s expressive: a decision tree can technically represent any boolean function, although some functions require
exponentially large trees such as a parity function.

6.5.1 Dealing with Noisy or Missing Data

If the data is inconsistent or noisy we can either use the majority class as in line 11 of the above ID3 algorithm, or
interpret the values as probabilities, or return the average target feature value.

For missing data, we could assign the most common value among the training examples that reach that node, or
we could assume that the attribute has all possible values, weighting each value according to its frequency among the
training examples that reach that node.
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6.5.2 Instability of Decision Trees

The hypothesis found by decision trees is sensitive to the training set used as a consequence of the greedy search used.
Some ideas to reduce the instability of decision trees include altering the attribute selection procedure, so that the tree
learning algorithm is less sensitive to some percentage of the training dataset being replaced.

6.5.3 Pruning

Overfitting occurs in a predictive model when the hypothesis learned makes predictions which are based on spurious
patterns in the training data set. The consequence of this is poor generalisation to new examples. Overfitting may
happen for a number of reasons, including sampling variance or noise present in the dataset. Tree pruningmay be
used to combat overfitting in decision trees. However, tree pruning can also lead to induced trees which are inconsistent
with the training set.

Generally, there are two different approaches to pruning:

• Pre-pruning

• Post-pruning

7 Model Evaluation

The most important part of the design of an evaluation experiment for a predictive model is not the same as the data
used to train the model. The purpose of evaluation is threefold:

• To determine which model is the most suitable for a task.

• To estimate how the model will perform.

• To demonstrate to users that the model will meet their needs.

Figure 19: Using a Hold-Out Test Set

By convention, in binary classification tasks we refer to one class as positive and the other class as negative. There are
four possible outcomes for a binary classification task:

• TP: True Positive.

• TN: True Negative.

• FP: False Positive.

• FN: False Negative.

These are often represented using a confusion matrix.
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Figure 20: Using a Hold-Out Test Set

Themisclassification rate can be calculated as:

misclassification rate =
# of incorrect predictions

total predictions

=
(FP+ FN)

(TP+ TN+ FP+ FN)

The classification accuracy can be calculated as:

classification accuracy =
(TP+ TN)

(TP+ TN+ FP+ FN)

7.1 Metrics for Binary Classification Tasks

Confusion matrix-based measures for binary categorical targets include:

• TPR: True Positive Rate.
TPR =

TP
(TP+ FN)

• TNR: True Negative Rate.

TNR =
TN

(TN+ FP)

• FPR: False Positive Rate.
FPR =

FP
(TN+ FP)

• FNR: False Negative Rate.

FNR =
FN

(TP+ FN)

All these measures can have values in the range of 0 to 1. Higher values of TPR&TNR, and lower values of FNR&
FPR, indicate better model perfomance.

7.1.1 Precision & Recall

Precision captures how often, when a model makes a positive prediction, that prediction turns out to be correct.

precision =
TP

(TP+ FP)

Recall is equivalent to the true positive rate, and tells us how confident we can be that all the instances with the positive
target level have been found by the model. Both precision & recall have values in the range 0 to 1.

precision =
TP

(TP+ FN)
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7.2 Multinomial Classification Tasks

All the measures we have discussed hitherto apply to binary classification problems only. Many classification problems
are multinomial, i.e., have more that two target levels / classes. We can easily extend the confusion matrix concept to
multiple target levels by adding a row & a column for each level.

Figure 21: Extended ConfusionMatrix

We can also calculate precision & recall for each target level independently. TP(I) refers to the number of instances
correctly assigned a prediction of class I. FP(I) refers to the number of instances incorrectly assigned a prediction of
class I. FN(I) refers to the number of instances that should’ve been assigned a prediction of class I but were given some
other prediction.

precision(I) =
TP(I)

TP(I) + FP(I)

recall(I) =
TP(I)

TP(I) + FN(I)

Confusion matrices can be easily created in scikit-learn using the built-in classes.

7.3 Cross-Validation & Grid Search

So far, we have just manually divided data into training & test sets. We want to avoid problems with a “lucky split”
where most difficult examples end up in the training set and most easy examples end up in the test set. Methods like
k-fold cross-validation allow us to use all examples for both training & testing.

7.3.1 k-Fold Cross-Validation

k-fold cross validation (CV) allows all of the data to be used for both training & testing. The procedure is as follows:

1. Split the data into k different folds.

2. Use k − 1 folds for training, and the remaining fold for testing.

3. Repeat the entire process k times, using a different fold for testing each time. Report the per-fold accuracy & the
average accuracy for both training & testing.

Cross-validation can be easily implemented in scikit-learn by calling the sklearn.model_selection.cross_val_score()
helper method on the estimator & the dataset. This will return the testing accuracy only. If it is desired to report the
training accuracy or other metrics, scikit-learn provides the method sklearn.mode_selection.cross_validatewhich
provides additional options. Training scores will be returned in the parameter return_train_score of this method is
set to True. The score parameter can be used to specify the metrics that will be computed to score the models trained
during cross-validation.
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7.3.2 Hyperparameter Optimisation

scikit-learn provides a class sklearn.model_selection.GridSearchCV that allows an exhaustive search through ranges
of specified hyperparameter values. Scores are calculated for each possible hyperparameter combination on the grid,
allowing the combination with the best score to be identified. It is widely used when performing hyperparameter tuning
for MLmodels.

7.4 Prediction Scores & ROC Curves

Many different classification algorithms produce prediction scores, e.g. Näive Bayes, logistic regression, etc. The score
indicates the system’s certainty that the given observation belongs to the positive class. To make the decision about
whether the observation should be classified as positive or negative as a consumer of this score, one will interpret the
score by picking a classification threshold (cut-off) and comparing the score against it. Any observations with scores
higher than the threshold are then predicted as the positive class and scores lower than the threshold are predicted as the
negative class. Often, a prediction score greater than or equal to 0.5 is interpreted as the positive class by default, and a
prediction with a score less than 0.5 is interpreted as the negative class. The prediction score threshold can be changed,
leading to different performance metric values and a different confusion matrix.

As the threshold increases, TPR decreases, and TNR increases. As the threshold decreases, TPR increases, and TNR
decreases. Capturing this trade-off is the basis of theReceiver Operating Characteristic (ROC) curve.

Figure 22: ROCCurve
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Figure 23: Effect of Increasing the Classification Threshold

7.4.1 ROC Curves

An ideal classifier would be in the top left corner, i.e. TPR = 1.0 and FPR = 0.0. The area under the ROC curve is
often used to determine the “strength” of a classifier: greater area indicates a better classifier, and an ideal classifier has
an area of 1.0.

Figure 24: Sample ROCCurves for 5 Different Models Trained on the Same Dataset

scikit-learn provides various classes to generate ROC curves: https://scikit-learn.org/stable/auto_examples/
model_selection/plot_roc.html. The link also gives some details on how ROC curves can be computed for mutli-
class classification problems.
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8 DATA PROCESSING&NORMALISATION

8 Data Processing & Normalisation

8.1 Data Normalisation

One major problem in data normalisation is scaling. For example, if Attribute 1 has a range of 0-10 and Attribute 2
has a range from 0-1000, then Attribute 2 will dominate calculations. The solution for this problem is to rescale all
dimensions independently:

• Z-normalisation: calculated by subtracting the population mean from an individual raw score and then dividing
it by the population standard deviation.

z =
x− µ

σ

where z is the z-score,x is the raw score,µ is the populationmean,&σ is the standard deviation of the population.

This can be achieved in scikit-learn using the StandardScaler utility class.

• Min-Max data scaling: also called 0-1 normalisation or range normalisation.

X ′ =
X −Xmin

Xmax −Xmin

This can be achieved in scikit-learn using the MinMaxScaler utility class.

It is generally good practice to normalise continuous variables before developing anMLmodel. Some algorithms (e.g.,
k-NN) are much more susceptible to the effects of the relative scale of attributes than others (e.g., decision trees are
more robust to the effects of scale).

8.2 Binning

Binning involves converting a continuous feature into a categorical feature. To perform binning, we define a series of
ranges called bins for the continuous feature that corresponds to the levels of the new categorical feature we are creating.
Two of the more popular ways of defining bins include equal-width binning & equal-frequency binning.

Deciding on the number of bins can be complex: in general, if we set the number of bins to a very low number
we may lose a lot of information, but if we set the number of bins to a very high number then we might have very few
instances in each bin or even end up with empty bins.

Figure 25: The effect of different numbers of bins

8.2.1 Equal-Width Binning

The equal-width binning approach splits the range of the feature values into b bins, each of size range
b .
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Figure 26: Equal-width binning

8.2.2 Equal-Frequency Binning

Equal-frequency binning first sorts the continuous feature values into ascending order, and then places an equal
number of instances into each bin, starting with bin 1. The number of instances placed in each bin is simply the total
number of instances divided by the number of bins b.

Figure 27: Equal-frequency binning

8.3 Sampling

Sometimes, the dataset that we have is so large that we do not use all the data available to us and instead take a smaller
percentage from the larger dataset. For example, we may wish to only use part of the data because training will take
a long time with very many examples for some algorithms. In the case of k-NN, a very large training set may lead to
long prediction times. However, we need to be careful when sampling to ensure that the resulting datasets are still
representative of the original data and that no unintended bias is introduced during this process. Common forms of
sampling include: top sampling, random sampling, stratified sampling, under-sampling, & over-sampling.

8.3.1 Top Sampling

Top sampling simply selects the top s%of instances from a dataset to create a sample. It runs a serious risk of introducing
bias as the sample will be affected by any ordering of the original dataset; therefore, top sampling should be avoided.

8.3.2 Random Sampling

Random sampling is a good default sampling strategy as it randomly selects a proportion (s%) of the instances from a
large dataset to create a smaller set. It is a good choice in most cases as the random nature of the selection of instances
should avoid introducing bias.

8.3.3 Stratified Sampling

Stratified sampling is a samplingmethod that ensures that the relative frequencies of the levels of a specific stratification
feature are maintained in the sampled dataset. To perform stratified sampling, the instances in a dataset are divided into
groups (or strata), where each group contains only instances that have a particular level for the stratification feature. s%
of the instances in each stratum are randomly selected and these selections are combined to give an overall sample of s%
of the original dataset.
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In contrast to stratified sampling, sometimes we would like a sample to contain different relative frequencies of the
levels of a particular discrete feature to the distribution in the original dataset. To do this, we can use under-sampling or
over-sampling.

8.3.4 Under-Sampling

Under-sampling begins by dividing a dataset into groups, where each group contains only instances that have a
particular level for the feature to be under-sampled. The number of instances in the smallest group is the under-
sampling target size. Each group containing more instances than the smallest one is then randomly sampled by the
appropriate percentage to create a subset that is the under-sampling target size. These under-sampled groups are then
combined to create the overall under-sampled dataset.

8.3.5 Over-Sampling

Over-sampling addresses the same issue as under-sampling but in the opposite way: after dividing the dataset into
groups, the number of instances in the largest group becomes the over-sampling target size. From each smaller group,
we then create a sample containing that number of instances using random sampling without replacement. These larger
samples are combined to form the overall over-sampled dataset.

8.4 Feature Selection

8.4.1 The Curse of Dimensionality

Some attributes are much more significant than others are considered equally in distance metric, possibly leading to bad
predictions. k-NN uses all attributes when making a prediction, whereas other algorithms (e.g., decision trees) use only
the most useful features and so are not as badly affected by the curse of dimensionality. Any algorithm that considers all
attributes in a high-dimensional space equally has this problem, not just k-NN + Euclidean distance. Two solutions to
the curse of dimensionality are:

• Assign weighting to each dimension (not the same as distance-weighted k-NN). Optimise weighting to minimise
error.

• Give some dimensions 0 weight: feature subset selection.

Consider cases with d dimensions, in a hypercube of unit volume. Assume that neighbourhoods are hypercubes with
length b; volume is bd. To contain k points, the average neighbourhood must occupy k

N of the entire volume.

⇒bd =
k

N

⇒b =

(
k

N

) 1
d

In high dimensions, e.g. k = 10,N = 1, 000, 000, d = 100, then b = 0.89, i.e., a neighbourhood must occupy 90%
of each dimension of space. In low dimensions, with k = 10,N = 1, 000, 000, d = 2, then b = 0.003 which is
acceptable. High dimensional spaces are generally very sparse, and each neighbour is very far away.

8.4.2 Feature Selection

Fortunately, some algorithms partially mitigate the effects of the curse of dimensionality (e.g., decision tree learning).
However, this is not true for all algorithms, and heuristics for search can sometimes be misleading. k-NN and many
other algorithms use all attributes when making a prediction. Acquiring more data is not always a realistic option; the
best way to avoid the curse of dimensionality is to use only the most useful features during learning: feature selection.

We may wish to distinguish between different types of descriptive features:

• Predictive: provides information that is useful when estimating the correct target value.
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• Interacting: provides useful information only when considered in conjunction with other features.

• Redundant: features that have a strong correlation with another feature.

• Irrelevant: doesn’t provide any useful information for estimating the target value.

Ideally, a good feature selection approach should identify the smallest subset of features that maintain prediction
performance.

8.4.3 Feature Selection Approaches

• Rank & Prune: rank features according to their predictive power and keep only the topX%. A filter is a
measure of the predictive power used during ranking, e.g., information gain. A drawback of rank & prune is that
features are evaluated in isolation, so we will miss useful interacting features.

• Search for useful feature subsets: we can pick out useful interacting features by evaluating feature subsets.
We could generate, evaluate, & rank all possible feature subsets then pick the best (essentially a brute force
approach, computationally expensive). A better approach is a greedy local search, which builds the feature
subset iteratively by starting out with an empty selection, then trying to add additional features incrementally.
This requires evaluation experiments along the way. We stop trying to add more features to the selection once
termination conditions are met.

8.5 Covariance & Correlation

As well as visually inspecting scatter plots, we can calculate formal measures of the relationship between two continuous
features using covariance& correlation.

8.5.1 Measuring Covariance

For two features a& b in a dataset of n instances, the sample covariance between a& b is:

cov(a, b) =
1

n− 1

n∑
i=1

(
(ai − a)×

(
bi − b

))
where ai & bi are the ith instances of features a& b in a dataset, and a& b are the sample means of features a& b.

Covariance values fall into the range [−∞,∞], where negative values indicate a negative relationship, positive values
indicate a positive relationship, & values near to zero indicate that there is little to no relationship between the features.

Covariance is measured in the same units as the features that it measures, so comparing something like weight of
a basketball player to the height of a basketball player doesn’t really make sense as the features are not in the same units.
To solve this problem, we use the correlation coefficient, also known as the Pearson product-moment correlation
coefficient or Pearson’s r.

8.5.2 Measuring Correlation

Correlation is a normalised form of covariance with range [−1, 1]. The correlation between two features a& b can be
calculated as

corr(a, b) =
cov(a, b)

sd(a)× sd(b)

where cov(a, b) is the covariance between features a & b, and sd(a) & sd(b) are the standard deviations of a & b
respectively.

Correlation values fall into the range [−1, 1] where values close to −1 indicate a very strong negative correlation
(or covariance), values close to 1 indicate a very strong positive correlation, & values around 0 indicate no correlation.
Features that have no correlation are said to be independent.
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The covariance matrix, usually denoted as
∑
, between a set of continuous features {a, b, . . . , z}, is given as

∑
{a,b,...,z}

=


var(a) cov(a, b) · · · cov(a, z)
cov(a, b) var(b) · · · cov(b, z)

...
...

...
...

cov(z, a) cov(z, b) · · · var(z)


Similarly, the correlation matrix is just a normalised version of the covariance matrix and shows the correlation
between each pair of features:

correlation matrix
{a,b,...,z}

=


corr(a, a) corr(a, b) · · · corr(a, z)
corr(b, a) corr(b, b) · · · corr(b, z)

...
... · · ·

...
corr(z, a) corr(z, b) · · · corr(z, z)


Correlation is a good measure of the relationship between two continuous features, but is not perfect. Firstly, the
correlation measure given earlier responds only to linear relationships between features. In a linear relationship between
two features, as one feature increases or decreases, the other feature increases or decreases by a corresponding amount.
Frequently, features will have a very strong non-linear relationship that correlation does not respond to. Some limitations
of measuring correlation are illustrated very clearly in the famous example of Anscombe’s Quartet, published by the
famous statistician Francis Anscombe in 1973.

9 Regression

Heretofore, we have looked primarily at classification supervised learning tasks, where the goal is to predict one class
from a finite number of possible discrete classes. In regression tasks, we also have labelled training & testing data, but
the labels take the form of floating-point values (real numbers): the goal is to predict a floating-point number, not a
class. Examples of algorithms for regression tasks include:

• Linear regression.

• Decision trees.

• k-nearest neighbours.

• Neural networks.

9.1 Supervised Learning Considerations

9.1.1 Inconsistent Hypotheses

Various hypotheses can be consistent with observations but inconsistent for each other: which one should we choose?

Figure 28: Hypotheses consistent with the observations but inconsistent with each other

One solution to this problem isOckham’s Razor: prefer the simplest hypothesis consistentwith the data. However, defi-
nitions of simplicity (and consistency)may be subject to debate and it depends strongly on howhypotheses are expressed.
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Another consideration to be made is whether or not the hypothesis language is too limited: we might be unable
to find a hypothesis that exactly matches the true function. If the true function is more complex than what the hypoth-
esis can express, it will undefit the data. If the hypothesis language cannot exactly match the true function, there will
be a trade-offf between the complexity of the hypothesis and how well it fits the data. If the hypothesis language is very
expressive, its search space will be very large and the computational complexity of finding a good hypothesis will be
high. We will also need a large amount of data to avoid overfitting.

We can’t forget that we never know the true underlying function. For example, to avoid the problem with poorly
fitting data, we could change the algorithm so that, as well as a searching for the coefficients of polynomials, it tries
combinations of trigonometric functions: the learning problem will become enormously more complex but it will
probably not solve our problems as we could easily think up some different kind of mathematical function to generate a
new dataset that the algorithm still cannot represent perfectly. For this reason, we often use relatively simple hypothesis
languages in the absence of special knowledge about the domain: more complex languages don’t come with any real
guarantees, and more simple languages correspond to easier searching.

9.1.2 Noise, Overfitting, & Underfitting

Noise consists of imprecise or incorrect attribute values or labels. We can’t always quantify it, but we should know
from the situation if it is present. For example, labels may require subjective judgements or values may come from
imprecise judgements.

If the data might have noise, it is harder to decide which hypothesis is best. If you increase the complexity of the
hypothesis, you increase ability to fit the data but might also increase the risk of overfitting.

Figure 29: Bias & variance

9.2 Linear Regression Models

Wewill be referring to the following office rentals example regression dataset throughout this section:

Figure 30: A dataset that includes office rental prices & a number of descriptive features for 10 Dublin city-centre offices
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Figure 31: Scatter plot of size vs rental price

9.2.1 Parameterised Prediction Models

A parameterised prediction model is initialised with a set of random parameters and an error function is used to
judge how well this initial model performs when making predictions for instances in a training dataset. Based on the
value of the error function, the parameters are iteratively adjusted to create a more &more accurate model. This is the
approach taken by many commonMLmodels, e.g. simple linear regression & neural networks.

9.2.2 Developing a Simple Linear Regression Model

From the scatter plot in Figure 31, it appears that there is a linear relationship between the size and the rental price. The
equation of a line can be written as y = mx+ c. The below scatter plot shows the same scatter plot as in Figure 31,
but with a simple linear model added to capture the relationship between office sizes & rental prices. This model is
rental price = 6.47 + 0.62× size. We can use this model to determine the expected rental price of 730 square foot
office: rental price = 6.47 + 0.62× 730 = 459.

Multivariate linear regression using vector notation can be represented as:

M(d) =w[0]× d[0] + w[1]× d[1] + · · ·+ w[m]× d[m]

=
m∑
j=0

w[j]× d[j]

=w · d

where:

• w is a vector of model weights,

• m is the number of independent variables,

• Mw(d) is the predicted value,
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• w · d is the vector dot product.

Figure 32: Scatter plot of the size & rental price features For all models in the above scatter plot,w[0] is set to 6.47.
From top to bottom, the models use 0.4, 0.5, 0.62, 0.7. & 0.8 respectively forw[1].

For linear regression in one independent variable, we have only two components in the weight vector: w[0] (intercept)
&w[1] (slope), and we make predictions based on the value of one independent variable (size in this case).

9.2.3 Measuring Error

Error is measured between the predicted value and the target value. Note that errors may be positive or negative, i.e.,
above or below the regression line.
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Figure 33: A scatter plot of the size & rental price features from the office rentals dataset showing a candidate
prediction model (withw[0] = 6.47&w[1] = 0.62) and the resulting errors.

sum of squared errors =
1

2

n∑
i=1

(ti −M (di))
2

In order to formally measure the fit of a linear regression model with a set of training data, we require an error function
that captures the error between the predictions made by a model & the actual values in a training dataset. Here ti . . . tn
is the set of n target values andM(d1) . . .M(dn) is the set of predictions. By minimising the sum of squared errors or
L2, we can develop a best fit linear regression model. Note that some errors are positive and some errors are negative; if
we simply add these errors together, the positive and negative errors would cancel each other out. Therefore, we use the
sum of the squared errors rather than the sum of errors because this means that all values will be positive.

The x-y plane is known as theweight space and the surface is known as the error surface. The model that best fits the
training data is the model corresponding to the lowest point on the error surface. One approach to find this point is the
gradient descent algorithm but we will not cover it in this module. The same concepts apply to multivariate linear
regression, although error surfaces cannot easily be visualised.

36



9 REGRESSION

Figure 34: Error surfaces

9.2.4 Developing a Multivariate Model & Handling Categorical Features

The basic structure of the multivariable linear regression model allows for only continuous descriptive features, so we
need a way to handle categorical descriptive features. THe mose common approach to handling categorical features
uses a transformation which converts a single categorical descriptive feature into a number of continuous descriptive
feature values that can encode the levels of the categorical feature. An example mutlivariate linear regression model
might look like:

rental price = w[0]+w[1]× size
+w[2]× floor
+w[3]× broadband rate
+w[4]× energy rating a
+w[5]× energy rating b
+w[5]× energy rating c

9.3 Evaluating Regression Models

In this section, we will introduce some of the most common performance measures used for regression tasks. Domain-
specific measures of error include: mean squared error (MSE), root mean squared error (RMSE), &mean absolute error
(MAE). Domain-independent measures of error includeR2. The basic evaluation process is the same as for categorical
targets / classification tasks: maintain separate training & test sets (i.e., using cross validation), train the regressionmodel
on the training set, and compute the performance measures of interest on both training & test sets.

9.3.1 Mean Squarer Error (MSE)

MSE =

∑n
i=1 (ti −M(di))

2

n

whereM(d1) . . .M(dn) is a set of n values predicted by the model and t1 . . . tn is a set of labels.

The MSE performance captures the average difference between the expected target values in the test set and the
values predicted by the model. MSE allows us to rank the performance of multiple models on a regression problem.
MSE values fall in the range [0,∞]where smaller values indicate a better model performance. However, MSE values
are not especially meaningful: there is no sense of howmuch error occurs on individual predictions due to the squared
term.
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9.3.2 Root Mean Squared Error (RMSE)

RMSE =

√∑n
i=1 (ti −M(di))

2

n

whereM(d1) . . .M(dn) is a set of n values predicted by the model and t1 . . . tn is a set of labels.

RMSE values are in the same units as the target value and thus allow us to say something more meaningful about what
the error for predictions made by the model will be. RMSE values can be thought of as the “average” error on each
prediction made by a regression model. Due to the inclusion of the squared term, the root mean squared error tends to
overestimate error slightly as it over-emphasises individual large errors.

9.3.3 Mean Absolute Error

MAE =

∑n
i=1 abs (ti −M(di))

n

An alternative measure that addressed the problem of large errors dominating the RMSEmetric is themean absolute
error (MAE)which does not include a squared term. abs() in the above equation refers to the absolute value, and all
other terms have the same meaning as before. As with RMSE, MAE values are in the same units as the target variable so
we can say that MAE values give an indication of the “average” error on each prediction.

9.3.4 R2

RMSE&MAE give errors that are in the same units as the target variable, which is attractive as they give an intuitive
measure of how a model is performing; however, RMSE &MAE values are not sufficient to judge whether a model is
making accurate predictions without having a deep knowledge of the domain (e.g., “is an error of 1.38mg acceptable?”).
To make such judgements without deep domain knowledge, a normalise domain-independentmeasure of error is
helpful.

TheR2 coefficient is a domain-independent measure that compares the performance of a model on a test set with
the performance of an imaginary model that always predicts the average values from the test set. R2 values may be
interpreted as the amount of variation in the target feature that is explained by the descriptive features in the model.

sum of squared errors =
1

2

n∑
i=1

(ti −M (di))
2

total sum of squares =
1

2

n∑
i=1

(
ti − t

)2
R2 =

sum of squared errors
total sum of squares

where t is the average value of the target variable.

R2 values are usually in the range [0, 1], with larger values indicating better performance. However,R2 values can be
< 0 in certain rare cases (although 1 is always the maximumR2 value). NegativeR2 values indicate a very poor model
performance, i.e. that the model performs worse than the horizontal straight-line hypothesis that always predicts the
average value of the target feature. For example, a negativeR2 on the test set with a positiveR2 value on the training set
likely indicates that the model is overfit to the training data.

9.4 Applying k-NN to Regression Tasks

Previously, we have seen that the k-nearest neighbours algorithm bases its prediction on several (k) nearest neighbours
by computing the distance from the query case to all stored cases, and picking the k nearest neighbours. When k-NN is
used for classification tasks, the neighbours vote on the classification of the test case. In regression tasks, the average
value of the neighbours is taken as the label for the query case.
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9.4.1 UniformWeighting

Assuming that each neighbour is given an equal weighting:

prediction(q) =
1

k

k∑
i=1

ti

where q is a vector containing the attribute values for the query instance, k is the number of neighbours, ti is the target
value of neighbour i.

9.4.2 Distance Weighting

Assuming that each neighbour is given a weight based on the inverse square of its distance from the query instance:

prediction(q) =

∑k
i=1

(
1

dist(q,di)2×ti

)
∑k

i=1

(
1

dist(q,di)2

)
where q is a vector containing the attribute values for the query instance and dist(q, di) returns the distance between
the query and the neighbour i.

9.5 Applying Decision Trees to Regression

Regression trees are constructed similarly to those for classification; the main change is that the function used to
measure the quality of a split is changed so that it is a measure relevant to regression, e.g. variance, MSE, MAE, etc.
This adapation is easily made to the ID3/C4.5 algorithm.

The aim in regression trees is to group similar target values together at a leaf node. Typically, a regression tree re-
turns the mean target value at a leaf node.
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