
Name: AndrewHayes
Student ID: 21321503
E-mail: a.hayes18@universityofgalway.ie

ct420 2025–03–19

Assignment 2: POSIX Programming & Benchmarking

1 Host Environment
For my host environment, I chose to run Ubuntu Server 24.04.2 LTS using a VirtualBox hypervisor. I chose this operating
system as I have sufficient Linux experience to feel confident using an operating system with no graphical interface (as opposed
to Ubuntu Desktop), and the absence of a GUI means a smaller ISO file, memory footprint, & CPU footprint. I chose Ubuntu
specifically because it’s a Linux system with which I have previous experience, and is well-document with plenty of packages
available to install if needs be. Ubuntu also makes it easy to install the PREEMPT_RT patches, which transform the standard Linux
kernel into a fully preemptible, real-time kernel, which I felt was more suitable for this assignment, as the standard Linux kernel
is not suitable for a hard real-time system due to its lack of preemption.

Figure 1: Virtual machine hardware configuration

I set the virtual machine to have a single CPU and set the amount of RAM to 2048MB which is the recommended minimum
for Ubuntu Server1. I left the hard disk size at the default of 25GB as I saw no reason to change it. The real-time kernel with
the PREEMPT_RT patches installed is available with Ubuntu Pro, which is free for personal use. After setting up an Ubuntu Pro
account, I enabled the real-time kernel using the pro command.

Figure 2: Enabling the real-time kernel with the pro command

Finally, I transferred over the following C file (taken from the lecture slides) via scp to the virtual machine to get the clock
resolution, which is 1 nanosecond:

1 #include<unistd.h>

2 #include<time.h>

3 #include <stdio.h>

4

5 int main(){

6 struct timespec clock_res;

7 int stat;

8 stat=clock_getres(CLOCK_REALTIME, &clock_res);

9 printf("Clock resolution is %d seconds, %ld nanoseconds\n",clock_res.tv_sec,clock_res.tv_nsec);

10 return 0;

11 }

1

mailto://a.hayes18@universityofgalway.ie

Figure 3: Getting the clock resolution of the virtual machine

2 CPU & Data-Intensive Applications
To developmyCPU&data-intensive programs, I chose to use Python for ease of development (and because any Python program
will stress your CPU&memory no matter how simple). I chose htop as my resource-monitoring tool as I have often used it
in the past, it has easy to read & understand output, and shows you exactly what proportion of the CPU&memory is in use at
that time. It also allows you to list processes by CPU consumption or memory consumption which is a useful option to have for
this assignment.

1 import multiprocessing

2 import time

3 import argparse

4 import os

5

6 def stress_cpu(workload: float):

7 """

8 Function to create CPU load. Uses a busy-wait method to simulate CPU usage.

9

10 :param workload: The fraction of time (0.0 to 1.0) the CPU should be busy.

11 """

12 cycle_time = 0.1 # Total cycle time (100ms per iteration)

13 busy_time = cycle_time * workload # Time to stay busy

14 idle_time = cycle_time - busy_time # Time to stay idle

15

16 while True:

17 start_time = time.time()

18 while (time.time() - start_time) < busy_time:

19 pass # Busy wait

20 time.sleep(idle_time) # Sleep to control CPU usage

21

22 def start_stress_test(load: str):

23 """

24 Starts CPU stress test based on load level.

25

26 :param load: 'medium' (~50% load) or 'high' (~100% load)

27 """

28 num_cores = os.cpu_count() or 4 # Use all available CPU cores

29 workload = 0.5 if load == "medium" else 1.0 # Set workload percentage

30

31 print(f"Starting {load.upper()} CPU stress test on {num_cores} cores...")

32

33 processes = []

34 for _ in range(num_cores):

35 p = multiprocessing.Process(target=stress_cpu, args=(workload,))

36 p.start()

37 processes.append(p)

38

39 try:

40 for p in processes:

41 p.join()

42 except KeyboardInterrupt:

43 print("Stopping stress test...")

44 for p in processes:

2

45 p.terminate()

46 p.join()

47

48 if __name__ == "__main__":

49 parser = argparse.ArgumentParser(description="CPU Stress Test Script")

50 parser.add_argument("--load", choices=["medium", "high"], required=True, help="Choose CPU load level

(medium or high)")↪→

51 args = parser.parse_args()

52

53 start_stress_test(args.load)

Listing 1: stress_cpu.py

Figure 4: htop output when running python3 stress_cpu.py --load medium

3

Figure 5: htop output when running python3 stress_cpu.py --load high

1 import argparse

2 import time

3 import psutil

4

5 def stress_memory(target_usage: float):

6 """

7 Stress the system memory to a given percentage.

8

9 :param target_usage: Target memory usage (0.0 to 1.0, where 1.0 is 100%)

10 """

11 total_memory = psutil.virtual_memory().total # Get total RAM in bytes

12 target_memory = int(total_memory * target_usage) # Calculate target memory size

13

14 print(f"Total Memory: {total_memory / (1024**3):.2f} GB")

15 print(f"Target Memory Usage: {target_memory / (1024**3):.2f} GB ({target_usage * 100:.0f}%)")

16

17 try:

18 memory_hog = [] # List to store allocated memory chunks

19 chunk_size = 100 * 1024 * 1024 # Allocate in 100MB chunks

20

21 while sum(len(chunk) for chunk in memory_hog) < target_memory:

22 memory_hog.append(bytearray(chunk_size)) # Allocate memory

23 time.sleep(0.1) # Small delay to allow system response

24

25 print("Memory fully allocated. Holding...")

26 while True: # Keep the memory occupied

27 time.sleep(1)

28

29 except MemoryError:

30 print("Memory limit reached. Exiting...")

31 except KeyboardInterrupt:

32 print("Memory stress test stopped.")

33

4

34 if __name__ == "__main__":

35 parser = argparse.ArgumentParser(description="Memory Stress Test Script")

36 parser.add_argument("--usage", type=float, default=1.0, help="Target memory usage (default: 1.0 for

100%)")↪→

37 args = parser.parse_args()

38

39 stress_memory(args.usage)

Listing 2: stress_memory.py

Figure 6: htop output when running python3 stress_memory.py --usage 0.85

References
[1] Canonical Group Ltd. Basic Ubuntu Server Installation. Accessed: 2025-03-18. 2025. url: https://documentation.

ubuntu.com/server/tutorial/basic-installation/.

5

https://documentation.ubuntu.com/server/tutorial/basic-installation/
https://documentation.ubuntu.com/server/tutorial/basic-installation/

	Host Environment
	CPU & Data-Intensive Applications

