Name: Andrew Hayes
Student ID: 21321503 CT421 2025-02-19
E-mail: a.hayesl8@universityofgalway.ie

Project 1: Evolutionary Search

1 Implementation & Design

I chose to write my implementation of the evolutionary search algorithm in Python for ease & speed of writing, and because
Python has a number of libraries for mathematics & machine learning that I could utilise to create an efficient solution. I
wrote two separate scripts: one named salesman. py for the core implementation of the genetic algorithm which produces a
tab-separated value (TSV) file of containing the results from each generation of the search and one named plots. py to ingest
these TSV files and plot the fitness over generations. I decided to separate these functionalities into different scripts so that I
could easily run the genetic algorithm without bothering to plot results during debugging & testing, and so that results would
only be plotted when necessary.

1.1

Arguments

The script accepts a large number of command-line arguments & flags to control how the search is conducted. Most of these are
optional overrides for default values in the program. The flags & arguments accepted are:

-h, - -help: a flag to make the script output the possible flags & command-line arguments that it accepts, and what they
do.

-1, --input-file INPUT_FILE: the path to the input file in TSP format. The only mandatory argument that must be
supplied to the script for it to run.

-s, --size SIZE: the population size of solutions to be initialised and used in each generation. This should be an integer
value in the range [1, c0].

-g, --num-generations NUM_GENERATIONS: the number of generations the genetic algorithm should evolve over. This
should be an integer value in the range [1, o0].

-a, --give-up-after GIVE_UP_AFTER: the number of generations to give up searching after if the best solution has
remained unchanged for that number of generations. This allows the search to be prevented from going on too long after
the possibility for improvement has been exhausted. This should be an integer value in the range [1, o0].

-p, --selection-proportion SELECTION_PROPORTION: the proportion of the population to be selected on each iteration
and allowed to survive to the next generation. This should be a floating-point number in the range [0, 1].

C, --crossover-rate CROSSOVER RATE: the probability of a given pair of solution to sexually reproduce (crossover) and
create offspring after surviving selection. Note that this is not the zumber of solutions that will undergo crossover, as the
number of solutions to undergo crossover is determined by the selection proportion and population size to maintain a
constant population size; instead, candidate pairs for crossover are randomly selected and then that pair’s probability of
successfully producing offspring is determined by this value, and this continues until the required number of offspring
are produced. This should be a floating-point number in the range [0, 1].

-m, - -mutation-rate MUTATION_RATE: like - -crossover-rate, this value determines the probability of a solution pro-
duced via crossover in that generation of undergoing mutation. Each child solution is iterated over, and has a chance of
being mutated in accordance with this value. This should be a floating-point number in the range [0, 1].

-0, --output-file OUTPUT_FILE: the path to the TSV file to which results should be outputted for a single run.
--quiet: a flag to suppress output being printed.

--grid-search: instead of just running the genetic algorithm once with some given parameters, iterate over a combination
of population sizes, crossover rates, & mutation rates to find the combination that yields the most fit solution. The values
iterated over in the grid search are hard-coded into the Python script and can be changed only be editing the script, as
manually typing out a list of parameters for each program run proved too cumbersome to be practical.

mailto://a.hayes18@universityofgalway.ie

1.2 Initialisation

1.2.1 ‘TSP File Ingestion

When the script is ran, the first function called is graph_from_file(file) which produces a Python dictionary object (essentially
a hash map), containing the name of the TSP map in the file, the type, the comment, the dimension, the edge weight type, and a
list of city dictionaries containing the name and (z, y) co-ordinates of the city. I couldn’t easily find a formal specification of
this file format online, so my parsing of these files assumes that certain values occur on certain lines and works for the three
recommended files of berlin52.tsp, kroA100. tsp, & pr1002.tsp, but potentially could fail on more unusual TSP files. (This
is where I immediately regretted my choice of Python as a programming language when writing this function as this sort of
thing is so much easier in Per] with its powerful regex engine).

To avoid having to re-calculate the distances between cities every time I evaluated the fitness of a potential solution, I then run a
function called adjacency_matrix_from_graph(graph) which returns an adjacency matrix (implemented as a two-dimensional
list) where A; ; contains the distance between cities ¢ and j. Here I made two further assumptions about the nature of the TSP

files ingested:
* The function assumes that city names are an integer value in the range [1, 0o] and thus the city k is indexed at & — 1.

* The function also assumes that the TSP file’s EDGE_WEIGHT_TYPE is EUC_2D and just calculates the two-dimensional
Euclidean distance between the co-ordinates of the two cities.

1.2.2 Population Initialisation

To initialise the population, a function named initialise_population(size, graph) is ran which returns a list of random
permutations of the ordered list of city names in the graph object. Each random permutation will contain each city exactly
once, and therefore the return to the start city is implied rather than outright represented in the list. Then, a function called
list_of_fitnesses(population, adjacency matrix) is ran which calculates the fitness of every tour in the population list
and returns a list of fitnesses where the fitness at index ¢ is the fitness of the solution at index % in the population. This list is used
to avoid re-calculating fitnesses unless absolutely necessary. The fitness is just the sum of the distances between each successive
city in the tour, plus the distance between the final city and the start city to get the salesman back home.

Then, a function named get_current_best(population, fitnesses, generation) is ran which finds the solution in the
supplied population with the lowest corresponding fitness. This function returns a dictionary containing the fittest tour in
question, its fitness, and the generation in which it was found (set to 0 in the initialisation stage). Finally, the start time is saved
as a UNIX timestamp and the output TSV data is initialised; each line of TSV data is a string that is appended to a list of strings
instead of one large string, as in Python string are immutable and each time a string is appended to, a new one is created, so it is
more efficient to build up an array of strings.

1.3 Evolution

The evolution stage is a simple loop that iterates for the number of specified generations.

1.3.1 Selection

The first step performed in the evolution loop is selection. I initially implemented this using Monte Carlo or Roulette Wheel
selection, where each tour in the population is assigned a weight of 1 — mgf“ﬁ where the total fitness is the sum of all fitnesses
in the population. Tours with higher weights were proportionally more likely to be selected to survive until the next generation.
I thought that this mode of selection would be good, as it means that even very weak solutions have a (small) chance of surviving
and very good solutions have a (small) chance of dying: this theoretically helps prevent you getting stuck in local maxima by
discarding weak solutions that contain a crucial component to the getting the optimal solution, and maintains diversity in the
population. However, when I ran the algorithm on berlin52. tsp dataset with some arbitrary test parameters that I was using

in the course of development, I got the following result:

Fitness Trends Across Generations

—— Avg Fitness
31000 { —#- Generation Best
—&— Current Best

30000

29000

28000

Fitness

27000

26000

25000

24000

°
N
s
5
&
a
8

80 100 120 140 160
Generation

Figure 1: Fitness over 200 generations for berlin52. tsp using Monte Carlo selection

As can be seen in the above figure, the algorithm didn’t seem to be learning anything and, if anything, fitness seemed to be
getting worse over generations. Probably, the cause of this was that the weighting for Monte Carlo selection was not biased
enough in favour of good solutions and against weak solutions, and it just resulted a fairly egalitarian deselection process which
destroyed each generation’s progress. Any good solutions found from this process were more as a result of sheer luck than asa
result of anything that can be described as learning or evolution. I tried the same thing with a tournament selection process
instead, and got the following results:

Fitness Trends Across Generations

30000 —o— Avg Fitness
—®— Generation Best
—&— Current Best

28000

26000

24000

22000

Fitness

20000

18000

16000

14000

[50 100 150 200 250 300
Generation

Figure 2: Fitness over 200 generations for berlin52. tsp using tournament selection with a tournament size of 3

The difference in efficacy was so stark that I immediately abandoned using Monte Carlo selection in favour of tournament
selection, although the failure of Monte Carlo selection here was more likely a result of poor implementation than as a result
of genuine inappropriateness for the problem. Tournament selection maintained the diversity I was looking for, giving an
opportunity for survival to weaker solutions while maintaining a healthy population of increasingly fit solutions.

1.3.2 Crossover

Crossover is performed on the survivors of the selection process using a generalised crossover(population, crossover_rate,
number_to_replace) function which randomly alternates between Partially Mapped Crossover (PMX) and Order Crossover
(OX), the algorithmic steps for which I took from Wikipediaz; while not a scholarly source for a reference, I feel that it’s
reasonable to use for the algorithmic steps in this case as they evidently produce the desired the results or do not and can be
quite easily verified.

The PMX operator works as follows: first, two indices within the two parent solutions are selected at random to serve as
crossover points. If the first crossover point occurs after second in the list, they are swapped. Then, the sub-sequence from the
first parent from the first crossover point to the second is copied directly to the child solution in the same positions. Then, the
second parent is iterated over from the first crossover point to the second crossover point: for each city m in the second parent
that is not yet in the child solution, the city n that occurs in the child at the index at which m occurs in the parent is selected.
The index of 7 in the second parent is found to create the partial mapping, and m is copied into the child at the index at which
n occurs in the second parent, provided that index is empty in the child. If the index occupied by 7 in the parent is already
occupied by some element & in the child, m is placed in the child at the index at which & occurs in the second parent. After the
genes from the selected sub-sequence in the second parent are all copied into the child, the remaining positions in the child are
filled with the genes from the second parent that still have yet to be copied into the child in the order that they appear in the
second parent. This is done by iterating over each index in the second parent, and if the city at that index is not found in the
child, it is inserted into the child in the next empty position, until every city is accounted for and every index in the child is filled.
Thus, high-quality sub-sequences that have evolved in the parents have a chance of being preserved in the child, while introduc-
ing variance. The partial mapping allows us to ensure that the child solution remains a valid solution with no duplication of cities.

The OX operator works as follows: like the PMX operator, two crossover points are selected at random and the sub-sequence
defined by these crossover points is copied directly into the child.

2 Experimental Results & Analysis
2.1 Performance Comparison with Known Optimal Solution

3 Potential Improvements

References

[1] Abdoun Otman, Chakir Tajani, and Jaafar Abouchabaka. “Hybridizing PSM and RSM Operator for Solving NP-Complete
Problems: Application to Travelling Salesman Problem”. In: International Journal of Computer Science Issues 9 (2012-03).

[2] Wikipedia. Crossover (evolutionary algorithm) — Wikipedia, The Free Encyclopedia. 2025. URL: https://en.wikipedia.
org/wiki/Crossover (evolutionary algorithm) Accessed on: 2025-02-19.

https://en.wikipedia.org/wiki/Crossover_(evolutionary_algorithm)
https://en.wikipedia.org/wiki/Crossover_(evolutionary_algorithm)

	Implementation & Design
	Arguments
	Initialisation
	TSP File Ingestion
	Population Initialisation

	Evolution
	Selection
	Crossover

	Experimental Results & Analysis
	Performance Comparison with Known Optimal Solution

	Potential Improvements

