
Overview of Docker 1

�
Overview of Docker
What is a docker ?

Docker is an open-source platform for building, deploying, and managing
containerized applications.

Why Docker?:

Simplifies container creation and management.

Provides a consistent environment for development, testing, and
production.

Key Terms:

Image A lightweight, stand-alone, and executable package that
includes everything an application needs (code, runtime, libraries,
dependencies).

Container A runtime instance of an image. While images are static,
containers are dynamic and can be started, stopped, or moved across
environments.

Dockerfile A text file with instructions to build a Docker image. It
defines the steps to configure an environment, install dependencies,
and set up the application.

Overview of Docker 2

Docker Hub A cloud-based repository for finding and sharing container
images, both public and private.

Why Use Docker in Modern Development?
Consistency Across Environments:

Docker ensures that the application runs the same regardless of
where it's deployed (local machine, production server, or cloud).

Isolation:

Containers provide process isolation, so multiple applications or
microservices can run side by side without interfering with each
other.

Scalability:

Containers are lightweight and can be easily scaled horizontally
(replicating containers to handle more traffic).

Efficiency:

Compared to virtual machines, containers use fewer resources since
they share the host machine's kernel, making them much faster to
start and stop.

Portability:

Overview of Docker 3

Applications packaged in Docker containers can be easily moved
across environments, cloud platforms, and OSes, ensuring smooth
and reliable deployments.

Key Docker Components
Docker Engine The runtime that runs and manages containers.

Docker Hub A public repository where users can publish and share
container images.

Dockerfile A text file that contains instructions on how to build a Docker
image.

Installing Docker on Various Platforms

Windows:
Step 1 Go to the Docker Desktop for Windows download page.

Step 2 Download the Docker Desktop installer.

Step 3 Double-click the installer and follow the prompts to install.

Step 4 Ensure that Windows Subsystem for Linux WSL 2 is enabled
for a smoother experience.

Overview of Docker 4

Step 5 Once installed, launch Docker Desktop. You can verify the
installation by running the following in PowerShell or CMD

docker --version

macOS:
Step 1 Go to the Docker Desktop for Mac download page.

Step 2 Download the installer for macOS.

Step 3 Open the .dmg file and drag Docker.app to the Applications
folder.

Step 4 Launch Docker from the Applications folder. Once it is running,
verify by opening a terminal and typing:

docker --version

Linux (Ubuntu Example):
Step 1 Update the package index:

sudo apt update

Step 2 Install Docker:

sudo apt install docker.io

Step 3 Start Docker and enable it on boot:

sudo systemctl start docker

sudo systemctl enable docker

Step 4 Verify installation:

docker --version

Post-Installation Steps (All Platforms):

Overview of Docker 5

Step 1 Run the Docker hello-world image to confirm everything is set up
correctly:

docker run hello-world

Step 2 Ensure you have permissions to run Docker as a non-root user:

For Linux, add your user to the docker group:

sudo usermod -aG docker $USER

Building and Running Applications in Docker Containers
� Dockerfile Structure:

Base Image The starting point (e.g., openjdk:17 for Java
applications).

WORKDIR The directory inside the container where the application
will reside.

COPY Copies files from the host system into the container.

RUN Executes commands (e.g., installing dependencies).

CMD Defines the default command to run when the container starts
(e.g., java -jar app.jar).

Example Dockerfile for a Spring Boot application:

FROM openjdk:17-jdk-slim

WORKDIR /app

COPY target/musicFinder-1.0.jar app.jar

EXPOSE 8080

ENTRYPOINT ["java", "-jar", "app.jar"]

� Building the Docker Image:

Command: docker build -t my-app .

This command builds the Docker image by reading the
Dockerfile .

� Running the Docker Container:

Overview of Docker 6

Command: docker run -p 8080:8080 my-app

This command runs the container, mapping the container's port
8080 to the host's port 8080.

Docker Best Practices
� Keep Images Lightweight:

Use minimal base images (e.g., alpine) to reduce the size of the final
image, leading to faster build times and fewer security
vulnerabilities.

� Multi-Stage Builds:

Separate the build environment from the final image to reduce size
and improve performance.

FROM maven:3.8-jdk-11 AS builder

WORKDIR /build

COPY . .

RUN mvn clean package

FROM openjdk:11-jre-slim

WORKDIR /app

COPY --from=builder /build/target/app.jar /app.jar

CMD ["java", "-jar", "/app.jar"]

� Use .dockerignore :

Similar to .gitignore , it prevents unnecessary files from being copied
into the container, optimizing build times.

� Tagging:

Tag your images (docker build -t my-app:v1 .) for version control and
easier management of deployments.

� Security Best Practices:

Regularly update base images to avoid security vulnerabilities.

Avoid running containers as root (use non-root users).

Scan your Docker images for vulnerabilities (e.g., using tools like
Clair or Anchore).

Overview of Docker 7

Common Docker Commands
Listing Containers:

docker ps  List running containers.

docker ps -a  List all containers (including stopped ones).

Stopping/Removing Containers:

docker stop container_id  Stops a running container.

docker rm container_id  Removes a stopped container.

Viewing Logs:

docker logs container_id  Shows the logs of a container.

Entering a Running Container:

docker exec -it container_id /bin/bash  Opens a terminal inside the
running container.

Advantages of Docker in Development
Consistency Eliminates the "works on my machine" problem by
providing a consistent environment across all stages of development.

Efficiency Uses fewer system resources and has fast startup times
compared to traditional VMs.

Easy Integration Seamlessly integrates with CI/CD tools and workflows.

