
CT5106

JSP (Java Server Pages)

MVC Architecture

 There are a few different interpretations / implementations of this model,
but we will be using the following model:
 Model:

 Represents the application data. It includes the logic to manage access to and modification of
the data (e.g. basic CRUD operations).

 View:
 The view presents the model to the user, and gets user inputs / requests to change the

data(model). It gets data from the model and specifies how that data should be presented. A
view also forwards user input to a controller.

 Controller:
 The controller is the glue between the model and the view. It is responsible for controlling the

flow of the program as well as processing updates from the model to the view and visa versa.
A controller selects the next view to display based on the user interactions and the outcome of
the model operations.

MVC- an example

MVC = Model View Controller

http://www.javaskool.com/asfstruts20.jsp

A simple JSP page
today.jsp

Some explanations

 <%@page import="java.util.Date"%>

 Like an import in regular Java – here, we want to use the Date class

 <% Date today = new Date(); %>

 This is a JSP scriptlet (Java in the JSP page). It is executed every time the page is
requested

 So we have a longer example also where the Java is inside the <% … %>
tags

 PrintWriter writer = new PrintWriter(out);

 Here we get a PrintWrite object using the ‘out’ variable – one of a number of
useful variables pre-defined in JSP pages

 <%=date %>

 This is a JSP expression that is evaluated every time the page is requested

How are JSP’s executed?

 The first time a JSP is requested, it is converted into a servlet
(java), then compiled (turned into a .class file) and executed

JSP Life Cycle

 When the JSP is converted
into a class and loaded
into the servlet container it
is ready to be called

 When it is called first, it is
initialised (jspInit)

 Every request after that is
handled by the jspService
method.

Generated source

 Should be under the Payara server folder in the
domain which you create when installing Payara
from NetBeans, e.g.:

 By default in later versions this is switched off, to
switch it on..

"C:\Users\o_molloy\Payara_Server\glassfish\domains\domain1\generated\jsp\
week3-1.0-SNAPSHOT\org\apache\jsp\hellojsp_jsp.java"

Need to turn keepgenerated back on

 Edited default-web.xml in the comain config folder:

 C:\Users\0063190s\Payara_Server\glassfish\domains\
domain1\config

 Added this parameter in the <servlet> section
 <init-param>
 <param-name>keepgenerated</param-name>
 <param-value>true</param-value>
 </init-param>

JSP Pre-defined variables

 We will only be using a few of these (we’ve
already see ‘out’), for example:
 request
 response
 session
 application

JSP Comment

 Description:

 Developer comment that is not sent to the client
 Example:

<%-- Blah --%>

JSP Expression

 Description:

 Expression that is evaluated and sent to the client each
time the page is requested

 Example:

<%= Java Value %>
<h1>A random number is: <%= Math.random() %></h1>

http://www.google.com/search?hl=en&q=allinurl:math+java.sun.com&btnI=I'm%20Feeling%20Lucky

JSP Scriptlet

<% Date date = new Date(); %>

<h1>Hello World!</h1>
<h2>The date is: <%=date %></h2>

Mixing html and jsp script

<% for (int i=1;i<=15;i++)
{
%>
<p style="font-size:<%=i%>pt"> Getting Bigger </p>
<%
}
%>

fontLoop.jsp

Declaring variables

 Difference between the following?
1. <%! int numVisits1 = 0; %>
2. <% int numVisits2 = 0; %>

1. Using <%! int x=0; %> is like declaring a variable
once at the class level (called once at init)

2. using Using <% int x=0 %> declares a variable
locally (so it is re-run every time we call the service
method)

Example
visit.jsp

Generated Java shows what
happened

Form can call jsp directly
form.html

Retrieve in JSP using request
form.jsp

JSP page calls itself using <form>
callMyself.jsp

Including other pages in JSP

An MVC example

Simple Servlet

 Just puts an array of strings into the request object:

protected void processRequest(HttpServletRequest request, HttpServletResponse response)

throws ServletException, IOException {

String products[] = {"Flipchart","Projector","Whiteboard","Chair"};

request.setAttribute("products", products);

RequestDispatcher dispatcher = request.getRequestDispatcher("/catalog.jsp");

dispatcher.forward(request, response); // forwards request to catalog.jsp

}

createProduct.java

catalog.jsp displays the string array in a
table

<body>
<h1>Products</h1>
<table>

<thead> <td> Products </td></thead>
<%

String products[] = (String[]) request.getAttribute("products");
for (int i = 0; i < products.length; i++)
{

%>
<tr> <td>

<% out.println(products[i]); %> </td> </tr>
<%

}
%>

</table>
</body>

catalog.jsp

So far ……

 So far with JSP, we have see how to use implicit
objects to access their attributes:
 request.getParameter(“username”);

 Write Scriptlets (just ordinary Java code):
 <% Date date = new Date(); %>

 Write expressions that can be evaluated, e.g.:
 <%=date %>

We can write as much java as we like……

<html>
<body>
<%

String name=request.getParameter("uname");
out.print("welcome "+name);
%>

</form>
</body>
</html>

Other examples

 To run through quickly in lecture:
 definitionList.jsp
 expression.jsp
 table.jsp
 tableForLoop.jsp

To get the most out of JSP

 We need to use:
 JSP Standard Tag Library (JSTL)
 Expression Language (EL)

JSTL

 Like html tags, JSTL tags are used to simplify programming JSP.
 We will be using just some of the Core JSTL tags, which we will

introduce as we use them, e.g.
 <c:out>

 Like <%=…%>

 <c:if>
 Used like an if in normal code

 <c:forEach>
 Used to loop over a collection / array

 <c:url>
 used to specify a url, which we can use like a href

 NB Include the following line in the header of your jsp page:
 <%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>

Expression Language (EL)

 Mainly used to access properties of data classes
(beans) which are attached as attributes of the
request, session, etc..

 The syntax is:
 ${ expression }

 For example:
<body>
${1<2}
${1+2+3}
</body>

Simple EL usage

 If the servlet creates and instance (e.g. called myUser) of User
bean class, and adds it to the request, like:
 request.setAttribute(“user”, myUser);

 If the servlet forwards the request to a JSP page, it can access
the beans properties like so:
 ${user.userName}

 You don’t have to specify the context – it will search the page,
request, session and application, in that order, for an attribute
of that name

Putting params on the request
student.jsp

Have to use ${param.xxx}
display.jsp

Example of Bean class
import java.io.Serializable;

public final class User {

private String userName;
private String password;
private String email;

public User() {

}

public User (String name, String password, String email)
{

setUserName(name);
setPassword(password);
setEmail(email);

}

public String getUserName() {
return userName;

}

public void setUserName(String userName) {
this.userName = userName;

}

public String getPassword() {
return password;

}

public void setPassword(String password) {
this.password = password;

}

public String getEmail() {
return email;

}

public void setEmail(String email) {
this.email = email;

}
}

User.java

register.html

<h2>Register User</h2>

<form action="registerUser" method="POST">

Username <input type="text" name="username" value="" />

Password <input type="text" name="password" value="" />

email <input type="text" name="email" value="" />

<input type="submit" value="Register" />

</form>

register.html

Servlet – registerUser.java

protected void processRequest(HttpServletRequest request, HttpServletResponse response)

throws ServletException, IOException {

String username = request.getParameter("username");

String password = request.getParameter("password");

String email = request.getParameter("email");

User u1 = new User (username, password, email);

request.setAttribute("user", u1);

RequestDispatcher dispatcher = request.getRequestDispatcher("userCreated.jsp");

dispatcher.forward(request, response);

}

RegisterUser.java

userCreated.jsp

<body>

<h1>User Created</h1>

These lines all do the same thing!

<h3>${user.userName}</h3>

<h3><c:out value="${user.userName}" /></h3>

<h3>${requestScope.user.userName}</h3>

<h3><c:out value="${requestScope.user.userName}" /></h3>

</body>

userCreated.jsp

Product bean
Product.java

Supplier bean

getProducts servlet

displayProducts.jsp

viewSupplier.jsp

output

Explanation

 <c:forEach
 Like a for loop – you specify the collection you want to

iterate over (items), and what the individual item variable is
(var)

 So, in this case, each product object in the collection stored in the
attribute catalogue, will be stored in turn in the variable “prod”

 So, then ${prod.name} for example, just evaluates to the name attribute
of a Product object stored in the collection

 What really happens behind the scenes is the getter is called for that
attribute

 Important not to have any other attributes on the request, session etc.,
called “prod” in this case, as it could cause an error

<c:set>

 Used to set a property of a Java Bean object. The ${…} part is an
expression, so it is evaluated
<c:set var="salary" scope="session" value="${2000*2}"/>

<c:out value=“${salary}”/>

 Will output 4000

<c:set var="num" scope="page" value="${125*3.2}"/>

<p> ${num} </p

 Will output 400

 Generally, we try to avoid setting attributes in EL, as the JSP is supposed to
be the View, not the Controller!

<c:if>

<c:if test="${num < 500}">
<p> smaller than 500! </p>

</c:if>

 Fairly self-explanatory !

<c:choose>
<c:when>
<c:otherwise>

 Bit like a switch statement

Java

<c:import>

 Used to fetch content from a url and put it into a
variable (or import into the page if not variable
specified)

 E.g.

 Gives:

	CT5106
	MVC Architecture
	MVC- an example
	A simple JSP page
	Some explanations
	How are JSP’s executed?
	JSP Life Cycle
	Generated source
	Need to turn keepgenerated back on
	JSP Pre-defined variables
	Slide Number 11
	Slide Number 12
	JSP Comment
	JSP Expression
	JSP Scriptlet
	Mixing html and jsp script
	Declaring variables
	Example
	Generated Java shows what happened
	Form can call jsp directly
	Retrieve in JSP using request
	JSP page calls itself using <form>
	Including other pages in JSP
	Slide Number 24
	Slide Number 25
	Slide Number 26
	An MVC example
	Simple Servlet
	catalog.jsp displays the string array in a table
	So far ……
	We can write as much java as we like……
	Other examples
	To get the most out of JSP
	JSTL
	Expression Language (EL)
	Simple EL usage
	Putting params on the request
	Have to use ${param.xxx}
	Example of Bean class
	register.html
	Servlet – registerUser.java
	userCreated.jsp
	Product bean
	Supplier bean
	getProducts servlet
	displayProducts.jsp
	viewSupplier.jsp
	output
	Explanation
	<c:set>
	<c:if>
	<c:choose>�<c:when>�<c:otherwise>
	<c:import>

