
CT3536
(Games Programming using 

Unity3D)

State Machines
‘Psychic Cards’ Example



Finite State Machines
● You have a fixed set of states of 

which precisely one is always 
selected. 
● For our example, a character could 

be standing, jumping, ducking, 
diving, or dead; 

● or, a game could be inMenu, 
inPause, or inGame

● Conditions/events determine the 
transition between states

● This approach is very appropriate to apply at various times in games: 
anywhere that your objects need to have different behaviours in different 
circumstances

● Knowing what state an object is in can be useful in various places, with 
appropriate code blocks executed (perhaps using a switch statement)

● http://gameprogrammingpatterns.com/state.html

http://gameprogrammingpatterns.com/state.html


Example: Psychic 
Cards

This game of “Psychic match pairs” is written entirely using 
GUI programming in Unity, and takes a State Machine 
approach.

Each card has a state any any time, with these possible 
values, which makes programming their behaviour easy and 
error-free:
• MovingToInitialPosition
• BackFaceUp
• FrontFaceUp
• FlippingToFrontFaceUp
• FlippingToBackFaceUp
• FadingToRemove

The game is controlled via 
the player’s brain waves: 
the symbols ”show 
through” the cards when 
you focus well



PsychicCard.cs
void Update() (pseudocode)

if (state==CardState.MovingToInitialPosition)
• Move the card’s transform.position a little towards its target position on the table
• When arrived, change state to CardState.BackFaceUp

else if (state==CardState.FlippingToFrontFaceUp)
• Advance animation (sprite) towards face-up 
• When fully face-up:

• Change state to CardState.FrontFaceUp
• Set symbol on card to maximum opacity
• If this was the 2nd card (of a pair) to be turned over

• .. and the pair matches, then change state of both cards to 
CardState.FadingToRemove

• .. and the pair doesn’t match, then change state of both cards to 
CardState.FlippingToBackFaceUp, and reduce 1 player “life”

Continued on next slide… 



PsychicCard.cs
void Update() (pseudocode)

else if (state==CardState.FlippingToBackFaceUp)
• Advance animation (sprite) towards face-down
• When full face-down, change card state to CardState.BackFaceUp

else if (state==CardState.FadingToRemove)
• Reduce opacity of card a little
• When at zero opacity, remove from the table and add 1 point to score

else if (state==CardState.BackFaceUp)
• Update opacity of card’s symbol based on data from the Mindband device

The cards also have an OnClicked() method (which is called 
when they’re clicked as buttons)
• If the card’s state is CardState.BackFaceUp then change it to 

CardState.FlippingToFrontFaceUp


