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2 SEARCH

1 Introduction

1.1 Assessment

* Exam: 60%.

* 2 projects: 20% each.

1.2 Introduction to Artificial Intelligence

The field of Artificial Intelligence has evolved & changed many times over the years, with changes focussing both on the
problems & approaches in the field; many problems that were considered typical Al problems are now often considered
to belong in different fields. There are also many difficulties in defining intelligence: the Turing test attempts to give
an objective notion of intelligence and abstracts away from any notions of representation, awareness, etc. It attempts to
eliminate bias in favour of living beings by focusing solely on content of questions & answers. There are many criticisms
of the Turing test:

* Bias towards symbolic problem-solving criticisms;
* Doesn’t test many aspects of human intelligence;

* Possibly constrains notions of intelligence.

1.2.1 Approaches to Al
* Classical AI uses predicate calculus (& others) and logical inference to infer or find new information. It is a

powerful approach for many domains, but issues arise when dealing with noise or contradictory data.

* Machine learning learns from data and uses a distributed representation of learned information. It is typified
by neural networks & deep learning approaches.

* Agent-based systems view intelligence as a collective emergent behaviour from a large number of simple
interacting individuals or agents. Social systems provide another metaphor for intelligence in that they exhibit
global behaviours that enable them to solve problems that would prove impossible for any of the individual
members. Properties of agent-based systems / artificial life include:

— Agents are autonomous or semi-autonomous;
— Agents are situated;

— Agents are interactional;

— Society is structured;

— Intelligence is emergent.

2 Search

Many problems can be viewed as a search problem; consider designing an algorithm to solve a sudoku puzzle: in every
step, we are effectively searching for a move (an action) that takes us to a correct legal state. To complete the game, we are
iteratively searching for an action that brings us to legal board and so forth until completion. Other examples include
searching for a path in a maze, word ladders, chess, & checkers. The problem statement can be formalised as follows:

* The problem can be in various states.
* We start in an initial state.

* There is a set of actions available.

* Each action changes the state.

¢ Each action has an associated cost.
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* We want to reach some goal while minimising cost.
More formally:
* There is a set of (possible/legal) states .S
* There is some start state sg € .5}
* There is a set of actions A and action rules a(s) — s's
* There is some goal test g(s) — {0, 1} that tests if we have satisfied our goal;
* There is some cost function C'(s, a, s’) — R that associates a cost with each action;
* Search can be defined by the S-tuple (S, s, a, g, C).

We can then state the problem as follows: find a sequence of actions a1 . . . a,, and corresponding states sg . . . 55, such
that:

* g(sn) =1

while minimising the overall cost Y ;- | ¢(a;).

The problem of solving a sudoku puzzle can be re-stated as:
* Sudoku states: all legal sudoku boards.
* Start state: a particular, partially filled-in, board.
* Actions: inserting a valid number into the board.
* Goal test: all cells filled with no collisions.
* Cost function: 1 per move.

We can conceptualise this search as a search tree: a node represents a state, and the edges from a state represent the
possible actions from that state, with the edge pointing to the new resulting state from the action. Important factors of
a search tree include:

* The breadth of the tree (branching factor).

* The depth of the tree.

* The minimum solution depth.

* The size of the tree O(b%).

* The frontier: the set of unexplored nodes that are reachable from any currently explored node.

* Choosing which node to explore next is the key in search algorithms.
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2.1 Uninformed Search

In uninformed search, no information is known (or used) about solutions in the tree. Possible approaches include
expanding the deepest node (depth-first search) or expanding the closest node (breadth-first search). Properties that
must be considered for uninformed search include completeness, optimality, time complexity (the total number of
nodes visited), & space complexity (the size of the frontier).

visited = {};
frontier = {sSg};
goal found = False;

while (not goal found):
node = frontier.next();
frontier.delete(node);

if (g(node)):
goal found = True;
else
visited.add(node);
for child in node.children():
if (not visited.contains(child)):
frontier.add(child);

Listing 1: Pseudocode for an uninformed search

The manner in which we expand the node is key to how the search progresses. The way in which we implement
frontier.next() determines the type of search; otherwise the basic approach remains unchanged.

Depth-first search is good regarding memory cost, but produces suboptimal solutions:
* Space: O(bd).
* Time: O(b?).
* Completeness: only for finite trees.
* Optimality: no.
Breadth-first search produces an optimal solution, but is expensive with regards to memory cost:

* Space: O(b™ 1), where m is the depth of the solution in the tree.
* Time: O(b™).
¢ Completeness: yes.

* Optimality: yes (assuming constant costs).

Iterative deepening search attempts to overcome some of the issues of both breadth-first and depth-first search. It
works by running depth-first search to a fixed depth of z by starting at d = 1 and if no solution is found, incrementing
d and re-running.

* Low memory requirements (equal to depth-first search).
* Not many more nodes expanded than breadth-first search.

* Note that the leaf level will have more nodes than the previous layers.

Thus far, we have assumed each edge has a fixed cost; consider the case where the costs are not uniform: neither
depth-first search or breadth-first search are guaranteed to find the least-cost path in the case where action costs are not
uniform. One approach is to choose the node with the lowest cost: order the nodes in the frontier by cost-so-far (cost
of the path from the start state to the current node) and explore the next node with the smallest cost-so-far, which gives
an optimal and complete solution (given all positive costs).
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2.2 Informed Search

Thus far, we have assumed we know nothing about the search space; what should we do if we know something about
the search space? We know the cost of getting to the current node: the remaining cost of finding the solution is the
cost from the current node to the goal state; therefore, the total cost is the cost of getting from the start state to the
current node, plus the cost of getting from the current node to the goal state. We can use a (problem-specific) heuristic
h(s) to estimate the remaining cost: h(s) = 0is sisagoal. A good heuristic is fast to compute and close to the real costs.

Given that g(s) is the cost of the path so far, the A* algorithm expands the node s to minimise g(s) + h(s). The
frontier nodes are managed as a priority queue. If h never overestimates the cost, the A* algorithm will find the optimal
solution.

2.3 Adversarial Search

The typical game setting is as follows:
* 2 player;
* Alternating turns;
* Zero-sum (gain for one, loss for another);
* Perfect information.
A game is said to be solved if an optimal strategy is known.
* A strong solved game is one which is solved for all positions;
* A weak solved game is one which is solved for some (start) positions.
A game has the following properties:
* Asetof possible states;
o A start state;
¢ A set of actions;
* A set of end states (many);
* An objective function;
* Control over actions alternates.

The minimax algorithm computes a value for each node, going backwards from the end-nodes. The max player
selects actions to maximise return, while the min player selects actions to minimise return. The algorithm assumes
perfect play from both players. For optimal play, the agent has to evaluate the entire game tree. Issues to consider
include:

* Noise / randomness;
* Efficiency - size of the tree;
* Many game trees are too deep;

* Many game trees are too broad.
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Alpha-beta pruning is a means to reduce the search space wherein sibling nodes can be pruned based on previously
found values. Alpha represents the best maximum value found so far (for the maximising player), and beta represents
the best minimum value found so far (for the minimising player). If a node’s value proves irrelevant (based on the
alpha & beta values), its entire subtree can be discarded. In reality, for many search scenarios in games, even with
alpha-beta pruning, the space is much too large to get to all end states. Instead, we use an evaluation function
which is effectively a heuristic to estimate the value of a state (the probability of a win or a loss). The search is ran to a
fixed depth and all states are evaluated at that depth. Look-ahead is performed from the best states to another fixed depth.

Horizon effects refer to the limitations that arise when the algorithm evaluates a position based on a finite search depth
(the horizon):

* What if something interesting / unusual / unexpected occurs at horizon + 1?

* How do you identify that?

* When to generate and explore more nodes?

* Deceptive problems.

2.4 Monte Carlo Tree Search

Minimax and alpha-beta pruning are both useful approaches, and alpha-beta pruning eftectively results in computing
the square root of the branching factor. In many cases, however, game trees have too high a blocking factor and
evaluating the leaf nodes is not possible; instead, an estimation function is used instead.

Monte Carlo tree search continually estimates the value of tree nodes. It combines ideas from classical tree search
with ideas from machine learning, and balances the exploration of unseen space with exploitation of the best known
move. Monte Carlo tree search works by exploring all potential options at the time. The best move is identified and
other option are searched for while validating how good the current action is. It uses play out, which is simulation
considering random actions.

1. Selection: pick a suitable path.

2. Expansion: expand from that path.
3. Simulation: simulation / play outs.
4. Back propagation: update states.

There is a trade-off between exploration and exploitation; the balance is usually controlled by the number of parameters
/ factors, including the number of wins, simulations, & exploration cost. Monte Carlo grid search is used in a large
number of domains, including AlphaGo, DeepMind, & many video games.

2.5 Local Search Algorithms

In many domains, we are only interested in the goal state: the path to finding the goal is irrelevant. The main idea in local
search algorithms is to maintain the current state and repeatedly try to improve upon the current state. This results in
little memory overhead and can find reasonable solutions even in large or infinite spaces. Local search algorithms are
suitable only for certain classes of problems in which maximising (or minimising) certain criteria among a number of
candidate solutions is desirable. Local search algorithms are incomplete algorithms, as they may not find the optimal
solution.

2.6 Hill Climbing

Hill climbing involves moving in the direction of increasing value and stopping when a peak is reached. There is
no look-ahead involved, and only the current state & the objective function are maintained. One problem with hill
climbing algorithms is local maxima & minima; therefore, the success of the algorithm depends on the shape of the
search space. One approach to solve this problem is random restart.
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current _node = initial state;

while (stopping criteria):
neighbour = current node.fittest neighbour;

if neighbour.value > current node.value:

current_node = neighbour;

Listing 2: Hill climbing pseudocode

One problem that can be solved with a hill climbing algorithm is the 8 queens problem: place 8 queens on a chess
board so that no two queens are attacking each other. The problem can be stated more formally as: given an 8 X 8 grid,
identify 8 squares so that no two squares are on the same row, column, or diagonal. The problem can also be generalised
toan N X N board. An algorithm can be generated using hill climbing to find a solution. However, it must be noted
that the algorithm may get caught at a local maximum.

Simulated annealing attempts to avoid getting stuck in local maxima by randomly moving to another state. The move
is based on the fitness of the current state, the new state, and the temperature (a parameter which decreases over time
and reduces the probability of changing states).

2.7 Well-Known Optimisation Problems

2.7.1 Knapsack Problem

There are a set of items, each with a value & a weight. The goal is to select a subset of items such that the weight of these
items is below a threshold and the sum of the values is optimised / maximised. The problem is how to select those items.
More formally, given two n-tuples of values < vg, v1, ..., v, >and < wp, wr, ..., w, >, choose a set of items ¢
from the nitems such that ), v(7) is maximised and ) _, w(i) < 7.

The brute force approach is to enumerate all subsets and keep the subset that gives the greatest payoff: O(2"). The
greedy approach is more efficient but won’t give the best solution.

There are many variations on the knapsack problem; the variation described above is the 0/1 knapsack problem;
there are other scenarios where part of an item may be taken, variations wherein there are constraints over the items
where the value of an item is dependent on another item being chosen or not, and variations with multiple knapsacks.

2.8 Travelling Salesman Problem

Given N cities, devise a tour that involves visiting every city once. The distance, or cost, between pairs of cities is
known and the goal is to minimise the cost of the tour. There are many applications of this problem in scheduling &
optimisation.

The brute force approach is to enumerate all tours and choose the cheapest, and is computationally intractable.

3 Genetic Algorithms

Genetic algorithms are directed search algorithms inspired by biological evolution, developed by John Holland in the
1970s to study the adaptive processes occurring in natural systems. They have been used as search mechanisms to find
good solutions for a range of problems. At a high level, the algorithm is as follows:

1. Produce an initial population of individuals.
2. Evaluate the fitness of all individuals.

3. While the termination condition is not met, do:
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Select the fitter individuals for reproduction.
Recombine between individuals.
Mutate individuals.

Evaluate the fitness of the modified individuals.

A

Generate a new population.

There are many potential options for the representation of chromosomes, including bit strings, integers, real numbers,
lists of rules/instructions, & programs. To initialise the population, we typically start with a population of randomly
generated individuals, but we can also use a previously-saved population, a set of solutions provided by a human expert,
or a set of solutions provided by another algorithm. As rules of thumb, we generally use a data structure as close as
possible to the natural representation, write appropriate genetic operators as needed, and, if possible, ensure that all
genotypes correspond to feasible solutions. Selection can be fitness-based (roulette wheel), rank-based, tournament
selection, or elitism.

Crossover is a vital component of genetic algorithms that allows the recombination of good sub-solutions and speeds
up search early in evolution. Mutation represents a change in the gene; the main purpose is to prevent the search
algorithm from becoming trapped in a local maxima.

As a simple example, suppose that one wishes to maximise the number of 1s in a string of [ binary digits. Simi-
larly, we could set the target to be an arbitrary string of 1s and 0s. An individual can be represented as a string of binary
digits. The fitness of a candidate solution is the number of 1s in its genetic code. A related problem, maintaining the
same representation as before, is to modify the fitness function as follows: for strings of length [ with x 1s,if x > 1,
then fitness is equal to x; else, fitness is equal to [ + k for & > 0.

3.1 Schema Theorem

Consider a genetic algorithm using only a binary alphabet. {0, 1, *} is the alphabet, where  is a special wildcard symbol
which can be either 0 or 1. A schema is any template comprising a string of these three symbols; for example the schema
[1 % 1%] represents the following four strings: [1010], [1011], [1110], [1111].

The order of a schema S is the number of fixed positions (0 or 1) presented in the schema. For example, [01 * 1x] has
order 3, [1 % 1% 10 % 0] has order 5. The order of a schema is useful in estimating the probability of survival of a schema
following a mutation.

The defining length of a schema S is the distance between the first and last fixed positions in the schema. For
example, the schema 7 = [01 * 1x] has defining length 3. The defining length of a schema indicates the survival
probability of the schema under crossover.

Given selection based on fitness, the expected number of individuals belonging to a schema S at generation ¢ 4 1 is
equal to the number of them present at generation ¢ multiplied by their fitness over the average fitness. An “above
average” schema receives an exponentially increasing number of strings over the evolution. The probability of a schema
S surviving crossover is dependent on the defining length: schemata with above-average fitness with short defining
lengths will still be sampled at exponentially increasing rates. The probability of a schema S surviving mutation is
dependent on the order of the schema: schemata with above-average fitness with low orders will still be sampled at
exponentially increasing rates.

The schema theorem states that short, low-order, above-average schemata receive exponentially increasing repre-
sentation in subsequent generations of a genetic algorithm. The building-block hypothesis states that a genetic
algorithm navigates the search space through the re-arranging of short, low-order, high-performance schemata, termed

building blocks.
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3.2 Landscapes

A landscape is a visualisation of the relationship between genotype & fitness; it can give an insight into the complexity
of the problem at hand. Landscapes can be adaptive.

Fitness

Dimension 1 """ Dimension 2

Figure 1: Fitness landscape example. The peaks on the landscape represent high fitness and hence the ability of the
genotype to survive. The valleys or troughs indicate low fitness.

An NK fitness landscape is a model of genetic interactions, developed to explain & explore the effects of local features
on the ruggedness of a fitness landscape — ruggedness plays a key roles in ascertaining how difficult it is to find the global
optimum. NK landscapes allow us to tune the ruggedness. Each component (gene) of the solution space makes a
contribution to the fitness; the contribution to the landscape depends on the value of that gene itself but also on the
state of K other nodes, where K can be changed to give different landscapes. If K = 0, all genes are independent and
this is typically a smooth multi-modal landscape; as K increases, the landscape becomes more rugged.

One approach to create NK fitness landscapes is to use a lookup table of size 2% where each row in the lookup ta-
ble represents the neighbourhood values and the fitness achieved. Variations on NK fitness landscapes can be made by
using non-uniform interaction sizes or allowing non-adjacent genes to influence each other’s fitness.

Fitness clouds can be created by randomly sampling the population, generating K mutated versions of the sam-
pled genotypes, measuring their fitness, and plotting their fitness over time, thus giving insight into the landscape.

3.3 Objective/Fitness Functions

We usually specify the objective in the fitness function, for example, the thing we are trying to maximise or minimise or
some constraint that we want to satisfy. This can be very difficult, and sometimes we don’t even know how to specify
the function; furthermore, fitness functions can be costly to evaluate. Issues arise with this:

* “Most ambitious objectives don’t illuminate a path to themselves.”
* “Many great discoveries are not the result of objective-driven search.”
* “Natural evolution innovates through an open-ended process that lacks a final objective.”

* “Searching for a fixed objective, the dominant paradigm in EC and ML, may ultimately limit what can be
achieved.”

The more ambitious the objective fitness function, the less likely it is that evolution will solve it. The two big issues with
fitness landscapes (neutral plains and ruggedness) can both be attributed, at least in part, to the fitness function
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3.4 Diversity

It’s important to maintain diversity in the population for genetic algorithms. Once a population converges on a local
optima, it can be difficult to introduce sufficient diversity to climb out of local optima. Many approaches have been
proposed to maintain diversity. If diversity decreases, then a big increase in mutation levels called hypermutation
can be used in the hopes of introducing novelty. Then, we need some measure of diversity: it can be measured at the
genotypic, phenotypic, or fitness levels.

Co-evolution is often used as a means to help diversity where interactions between individuals contribute to the
fitness with the goal that a form of competition will lead to better performance. Alternative representations can also be
used to encourage greater diversity by building redundancy into the representation:

* Multi-layered GA: add an extra layer or layers between the genotype and the phenotype, thus allowing multiple
genotypes to map to a phenotype. This can allow multiple mutations to occur which aren’t immediately
represented in the phenotype, maintaining increased diversity.

* Diploid representations: represent each chromosome by two genetic sequences, one of which is subject to
evolutionary pressures, the pother following a random walk. Periodically, a small percentage of chromosomes
swap their sequences.

¢ Island models for the GA: partition the population of solutions into sub-groups, with each sub-group evolving
separately. Periodically, some solutions are swapped among the separate populations.

Several approaches have been attempted to make the rates of mutation and crossover subject to evolution itself: self-
adaptation. For example, add a gene to each chromosome which represents the rate at which mutation should be
applied to that chromosome or solution. The goal is that the evolutionary process itself will find a suitable mutation
rate.

3.5 Novelty Search

The central thesis of novelty search is that by solely evolving according to an objective function, we decrease creativity,
novelty, & innovation. It argues that this is because many objective functions are deceptive and that we should instead
reward solutions (or sub-solutions) that are unique and phenotypically novel. Ithas been successfully applied in a range of
domains including the evolution of movement for robots. In many domains, novelty search has out-performed searching
directly for an objective. The standard approach to novelty search involves maintaining an archive of previously-found
novel solutions. To decide are the size of the archive, the similarity measure, and the balance between novelty & fitness.

4 Game Theory

4.1 Reasoning about Interactions

Assume that we have just two agents, 7 and j, and that these agents are self-interested. Let there be a set of “outcomes”

Q= {Q1,Q,...,Q,} over which the agents have preferences. Preferences are expressed by utility functions:
Uj - QO—-R
Uy : Q—-R

These functions lead naturally to preference orderings over outcomes:

We need a model of the environment in which agents can act. Let us assume agents act simultaneously to choose an
action to perform, and as a result of the actions an outcome will result. The actual outcome depends on the combination
of actions. This can be represented as a state transformation function:

7 : Action; X Action; — €2
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For the time being, we will make the simplifying assumption that an agent can make one of two actions: to co-operate
C or to defect D. We say a certain move is rational if the outcomes that arise through the action are better than all
outcomes that arise from the alternative action.

Player j

C D
C (1, 1) (1, 4)
Player i:
D (4, 1) (4, 4)

Figure 2: For player j, D is the rational choice

4.2 Dominant Strategy

Given a particular strategy s for agent ¢, there will be a number of possible outcomes. We say s1 dominates s» if every
outcome possible by agent 7 playing s1 is preferred over every possible outcome by agent ¢ playing s2. A rational agent
will never play a dominated strategy. However, there is not usually a unique undominated strategy.

4.3 Nash Equilibrium

Two strategies 51 and s3 are in Nash equilibrium if:
* Assuming agent ¢ plays s1, agent j can do no better than play sg; and
* Assuming agent j plays s2, agent ¢ can do no better than play s1.

In Nash equilibrium, neither agent has any incentive to deviate from their strategy. Not all possible interactions have a
Nash equilibrium, and some interactoins can have several Nash equilibria.

4.4 Prisoner’s Dilemma

The Prisoner’s Dilemma is usually expressed in terms of pay-ofts (or rewards) for co-operating or defecting:

Player j
£ b
Playeri C| (3,3) (0,5)
D| (5,0) (1,1)

* If'both co-operate, they each get a reward of 3.
¢ Ifboth defect, they each get a reward of 1.

* If one co-operates and the other defects, the com-operators gets 0 (the sucker’s payoft) and the other gets 5.

10
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The individually rational action is to defect: it guarantees a payoft of no worse than 1, whereas co-operating guarantees
a payoff of no worse than 0. So, defection is the best response to all strategies; however, common sense indicates that
this is not the best response.

The prisoner’s dilemma occurs in many domains and is suitable for modelling large classes of multi-agent interac-
tions. There have been many real-world scenarios that are implicitly prisoner’s dilemmas (or variations):

* Arms race;
¢ Environmental issues;
* Free-rider systems;
e Warfare;
* Behaviour in many biological systems — bats, guppie fish, etc;
* Competition between nodes in a distributed computer system;
* Modelling competition and collaboration between information providers;
* Sports.
Variations on the prisoner’s dilemma include:

¢ N-player dilemma: for example, the voter’s paradox, where it is true that a particular endeavour would return
a benefit to all members where each individual would receive rewards; it is also true that any member would
receive an even greater reward by contributing nothing. Elections, environment actions, and the tragedy of the
commons are all examples of this phenomenon.

* Spatial organisations: where agents are placed in some 2-dimensional space and can only interact with neigh-
bours.

* Partial co-operation: acts are no longer co-operative or non-co-operative, but can be in some range. If we
consider extending the classical IPD to this domain, we can define landscapes using pay-oft equations.

* Noise: problems arise if we introduce any degree of noise, which will lead co-operations to be interpreted as
defections, etc. Consider two TFTs playing witha degree of noise.

Summay so far:

* We need a means to organise & co-ordinate agents. There are underlying problems here with respect to co-
operation.

* Game theory & extensions provides a tool to reason about and to develop multi-agent systems.

* We assume agents have a rational ordering of possible outcomes and a set of actions they may choose to bring
about those outcomes.

* We have limited the types of interactions to very simple cases.
One extension is the ultimatum game. We are no longer just discussing outcomes for simple choices:
* Two players i and j.
* The goal is to distribute some resource, e.g., €100.
* Player 7 picks a number z, in a range (0-100).
* Player j must accept or reject the offer.

* If Player j rejects: both get 0.

11
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* If Player j accepts: Player ¢ gets « and Player j gets 100 — .

This allows us to reason about more complex scenarios. Many extensions are available and have been researched. If
we wish to reason about two or more agents/systems agreeing on value for some exchange (information, service), we
can look to auction theory. To reason about more complex scenarios, negotiation & argumentation theory has been

adopted.

4.5 Auction Theory

Auction theory can be used as a method to allow agents to arrive at an agreement regarding events & actions when
agents are self-interested. In some cases, no agreement is possible at all. However, in most scenarios, there is the potential
to arrive at a mutually beneficial agreement. There are several approaches that have been adopted to do this; all can
bee seen as a form of negotiation or argumentation by the agents. Negotiation or argumentation is governed by some
protocol or mechanism: this protocol defines how the agents are to interact, i.c., the actual rules of encounter. Questions
that arise include:

* How to design a protocol such that certain properties exist?

* Howto design strategies for agents to use a given set of protocols?

Desired features from protocols include: guaranteed success, simplicity, maximising social utility, pareto-efficiency,
& individual rationality. Auctions represent a class of useful protocols, and are used in many domains. An auction
takes place between an agent (auctioneer) and a set of other agents (bidders). The goal is to allocate the goods to one of
the bidders. Usually, an auctioneer attempt to maximise the price; the bidders desire to minimise the price. We can
categorise auctions according to a range of features:

* Bids may be:
— Open-cry;
— Sealed bid.
* Bidding may be:

— One shot;
— Ascending;
— Descending.

Selling goods by auction is more flexible than setting a fixed price and less time-consuming than explicit negotiation
(haggling). In many domains, the value of an item may vary enough to preclude direct & absolute pricing. Itis a pure
form of market; it is efficient in that auctions usually ensure goods are allocated to those who value them most. The
price is set, not by the sellers, but by the buyers. No one auction protocol is the best; some are preferred by sellers, others
by buyers. Some auctions attempt to prevent cheating, or at least decrease the incentive to cheat; others provide several
means to cheat. People tend to bid in auctions for two reasons:

* They wish to acquire the goods (bases bid on private evaluation).

* They wish to acquire the goods to re-sell (bases bid on private evaluation and estimates on future valuations).

4.5.1 English Auction

In an English auction, the auctioneer begins with the lowest acceptable price (reserve), and proceeds to obtain
successively higher bids from bidders until no-one will increase the bid. It is effectively first-price, open-cry, & ascending.
The dominant strategy is to successively bid a small amount more than the current highest id until it reaches their
valuation, then withdraw. Potential problems with English auctions include:

* Rings;
e Shills in the bidders;

e Winner’s curse.

In some English auctions, the reserve price is kept secret to attempt to prevent rings from forming.

12
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4.5.2 Dutch Auction

In a Dutch auction, bidding starts at an artificially high price. Lower prices are offered, in descending order, until a
bidder equals to the current price. Goods are then sold to the bidder for that price Dutch auctions are descending,
open-cry auctions. From a seller’s perspective, the key to a successful auction is the effect of competition on the bidders.
In an English auction, a winner may pay well under their valuation and thus the seller loses out; this is not the case in a
Dutch auction.

4.5.3 First-Price, Sealed Bid

First-price, sealed bid auctions are usually one-shot auctions. Each bidders submits a sealed bid. The goods are sold
to the highest bidders. Best strategy is to bid to true valuation. Interesting variations exist if there are a number of goods
to be sold and a number of rounds.

4.5.4 Vickrey Auction

A Vickrey auction is a sealed-bid, second-price auction. The price paid by the winner is that price offered by the
second-placed bidder. In this type of auction, contrary to initial intuition, sellers make as much, if not more than the
first-price auctoins. In reality, bidders are not afraid to bid high, knowing that they will have to pay the second price;
bidders tend to be more competitive.

Other auction types exist also: reverse auctions, double auctions, haphazard (whisper auction, handshake auction), etc.
We can use auctions as a means to allow agents to agree on a price for buying goods or services. Depending on the type
of auction chosen, we will favour buyers or sellers. We sill have some problems though:

* Are auctions the best way?

* What happens following an auction, if upon receiving goods, one doesn’t pay?

* What happens following an auction, if upon paying, one realise that the goods are not as expected?
* Isit possible to prevent shills, rings, & other forms of manipulation?

* In auctions, agents agree on a price; can we deal with more dimensions of negotiation?

5 Automated Negotiation

Negotiation is a means for a group to arrive at an agreement. It is a process of joint decision-making where parties
with different preferences seek to reach a mutually acceptable solution. It is a fundamental mechanism in multi-agent
systems & human society. Negotiation research deals with three topics:

* Negotiation protocols;
* Negotiation objects; &

* Agents’ decision-making models.

5.1 Negotiation Protocols
Negotiation protocols are a set of rules that govern the interaction:

* Includes the permitted type of participants;
* Negotiation states;

* Events that change states;

* Actions of participants;

* Rules for agreement formation; &

¢ Termination conditions.

13
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5.2 Negotiation Objects

Negotiation objects consist of a range of issues over which agreement must be reached. Related issues include the type
of operations on agreements and altering the structure of the negotiation.

5.3 Agents’ Decision-Making Models
The agents’ decision-making models are influenced by protocol, the nature of the negotiation objects, & the range of
operations. The relative importance of the components varies depending on the domain.

5.4 Domain Variation in Negotiation

In some domains, the negotiation protocol is the dominant concern. For example, in some auction settings, the best
strategy for an agent is to bid to their true evaluation — hence no strategic analysis is really required. In other domains,
the converse is true; given the wide range of possibilities, there is no best technique for automated negotiation.

5.5 Negotiation as Distributed Search

Negotiation can be viewed as a distributed search through a space of potential agreements; the dimensionality &
topology of this space is determined by the structure of the negotiation object. One could consider each attribute of the
negotiation object to have a separate dimension associated with it. As dimensions are added (or removed), the number
of points of agreement may increase (or decrease). Similarly, if an agent changes one of the values, it is moving from one
point in the agreement space to another.

In a negotiation, participants are the active components that determine the direction of the search. Initially, each agent
will have a portion of the space in which it will be willing to make an agreement. Also, agents will have some means to
rate the points in the space. Negotiation involves the agents suggesting points or spaces.

5.6 Minimal Negotiation Capabilities

The minimal negotiation capabilities are:

* To propose some point of space as being acceptable; &

* To respond to such a proposal by indicating whether or not it is acceptable.
A simple setting is a Dutch auction:

* One agent (the auctioneer) calls out prices.

¢ If there is no signal of acceptance by an agent, then the auctioneer makes a new offer which it believes will be
more acceptable.

* The process repeats.

If agents can only accept or reject offers, the negotiation will be very time-consuming & inefficient. The proposer is
effectively picking points in the agreement space based on what it perceives & hopes to stumble upon correct point. For
negotiation to be more efficient, the recipient needs to offer feedback.

5.7 Feedback in Negotiation

Feedback can be a critique, or a counter-proposal. A critique provides two forms of feedback: it suggests constraints
on issues, and indicates acceptation or rejection of particular negotiation issues. The more information placed in the
critique, the easier it is for the original agent to determine the boundaries of the agreement space.

A counter-proposal is a proposal that is more favourable to the sender, made in response to a previous proposal. It can

suggest amendments or additions, provides implicit information about preferences, and can significantly speed up the
negotiation process.
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5.8 Limitations of Simple Proposals

Proposals, critiques, & counter-proposals are mere statements of what the agents want; hence, the scope is confined.
Agents can’t justify their negotiation stance or persuade one another to change the negotiation stance. This leads to the
idea of argumentation-based negotiation: allow agents to offer more information than available proposals, critiques,
& counter-proposals.

5.9 Approaches to Negotiation

Approaches to reasoning in a negotiation setting can be loosely categorised as game-theoretic, heuristic, or argumentation-

based.

5.9.1 Game-Theoretic Approach

The game-theoretic approach can be applied in two manners:
* Designing appropriate protocols that will govern agent’s interactions; &
* Design of a particular agent’s strategy.
Properties of the game-theoretic approach include:
¢ We usually assume that a rational agent will choose the best strategy;
* Finding the best strategy can be computationally intractable; &

* Disadvantages include that it may be difficult to characterise agent’s preferences with respect to all possible
outcomes.

5.9.2 Heuristic Approach

The heuristic approach secks to search the negotiation space in a non-exhaustive fashion. It produces good solutions
rather than optimal solutions. Disadvantages of the heuristic approach include:

* Sub-optimality: it adopts an approximate notion of rationality and does not fully examine the negotiation space;
* Models need extensive analysis true simulation; &

* Itis usually difficult to predict behaviour.

5.9.3 Argumentation-Based Approach

In the argumentation-based approach, agents aim to persuade or change the opponent’s ratings over the agreement
space. Additional information is provided in addition to proposals, etc., usually taking the form of:

* Threats: “if you don’t accept, I'll have to...”;
* Rewards: “if you accept this offer, in the future I'll...”; &

* Appeals: “this is standard practice in our industry...”.

5.10 Extended Topics in Negotiation
5.10.1 Learning in Negotiation

Agents can adapt strategies based on past interactions. Types of learning:
* Learning opponent’s preferences;
* Learning effective negotiation strategies; &

. Learning from past negotiation outcomes.
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5.10.2 Trust & Reputation

Trust & reputation are critical when agreements must be enforced overtime. Trust models help agents to decide with
whom to negotiate. Reputation systems aggregate experiences across multiple agents. There are mechanisms for:

* Preventing reneging on agreements;
* Handling deception in negotiation; &

* Building long-term relationships.

6 Communication in Agent-Based Systems

We have considered mechanisms for agents to interact: mechanisms such as auction protocols or negotiation protocols
allow agents to hopefully reach an agreement. In order to do so, agents need to be able to communicate in an expressive
manner. Many approaches to communication in (multi-)agent systems are inspired by Austin’s work in Speech-Act
Theory (1962); speech-act theories are pragmatic theories of how language is used to achieve goals and / or intentions.
Austin argued that many utterances are similar to physical actions in that they bring about a change in the state of the
world, e.g., “you’re fired”. More generally, things human utter are done so with the intention of satisfying some goal,
for example, asking a question, answering a question, making a request. A theory of how utterances are to achieve
intentions is a speech-act theory.

John Searle (1969) classified types of speech acts as:
1. Representatives: such as informing, e.g., “it is cold”;
2. Directives: attempts to get the listener to do something, e.g., “please pass the beer”;
3. Commissives: which commit the speaker to doing something, e.g., “I promise to pay...”;
4. Expressives: whereby a speaker expresses a mental state, e.g., “thank you”.
S. Declarations: such as declaring war.
We can view a speech act as having two components:
1. A performative verb (e.g., to request, inform, promise, etc.).
2. Propositional content (e.g., “the light is on”).

We can have the same content but the meaning is different depending on the performative. Consider, for example, the
content “the light is on”:

Performative Content Speech Act
Request “the light is on” | “Please turn on the light.”
Inform “the light is on” “The light is on!”
Inquire “the light is on” “Is the light on?”

Table 1: Same content, different meanings

Questions arise as to how to define the semantics of a speech act. The semantics of speech acts can be formalised using a
set of pre-conditions & post-conditions. For example, when considering a “request” speech act, there are certain things
that should be true prior to the request and a set of things that should be true following the request. The semantics for
a request are as follows:

request(a, b, X')  (i.e., agent a asks agent b to do X)

The pre-conditions are:
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* g believes b can do X;;
¢ ¢ believes b believes b can do X;
* a believes a wants X.

The post conditions are:

¢ b believes that a believes a wants X.

6.1 Agent Communication Languages (ACLs)

There have been several attempts to create Agent Communication Languages (ACLs) based on speech-act theory,
e.g., KQML, FIPA ACL. KQML is comprised of tow parts:

* The knowledge query & manipulation language (KQML); &
* The knowledge interchange format (KIF).
KQML allows one to define various acceptable “communicative verbs” or performatives. Examples include:
* ask-if: (“isit true that...”);
* perform: (“please perform the following action...”);
* tell: (“isit true that...”);
* reply: (“the response is...”);

KIF Is a language for expressing the content of the messages.

FIPA allows inform & request as basic primitives:

(inform

:sender agentl

:receiver agent2

:content (price item3 250)
:language scheme
rontology art-auction

Listing 3: Example FIPA inform request

7  Artificial Life

Artificial life is the study of man-made systems that exhibit behaviours characteristic of natural living systems. It
involves the investigation of the essence of life & the ability to construct life or life-like systems, and the investigation of
biological / naturally-occurring systems. It attempts to develop life-like behaviours & properties from simple rules &
interactions. The core principle of artificial life is creating complex behaviours from simple rules & interactions.

Artificial life has connections with many existing fields:
* Physics;
* Artificial intelligences;
* Computer science;

¢ Social science;
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* Philosophy;
* Psychology.
It has been explored as a means to understand the emergence of:
* Language;
* Order;
¢ Culture — norms, artefacts;
* Social structures.

Modelling approaches include simulation, robotics, & virtual environments, while key areas of study include emergence,
self-organisation, adaptation, evolution, & collective behaviour. Many models of creatures & animals have been built in
robotics & in simulation which allows the exploration of the issues of co-operation & competition in these “species”.

7.1 Cellular Automata

A cellular automaton (CA) is a model of a parallel compute, consisting of processors (cells), usually connected in an
n-dimensional grid. Cellular automata are characterised by very simple rules and potentially very complex emergent
behaviours; very simple rules govern interactions between neighbouring cells but give rise to recognisable groups of
patterns, including static, dynamic, mobile, & cyclic patterns.

2-D Cellular Automata:

1-D Cellular Automata:

OO0

Figure 3: Types of cellular automata

7.1.1 John von Neumann’s Universal Constructor

John von Neumann’s universal constructor is a self-replicating machine existing in a cellular environment developed
by Jon von Neumann in the 1940s with the aim of specifying an abstract machine which, when ran, would replicate itself.
The original experiment was created to see if a simple rule system could create a universal computer, a Turing machine
capable of emulating any kind of information processing through a simple rule system. It was the first theoretical
demonstration that self-reproduction based on on logical rules was possible.

7.1.2 Conway’s Game of Life

Conway’s Game of Life is a simple mathematical game where patterns unfold according to a set of rules. It is a form of
cellular automata, and consists of a rectangular grid of “living” (on) & “dead” (off) cells. Complex patterns result from
simple structures. Three simple rules govern the Game of Life:

1. Loneliness: live cell dies if it has fewer than two live neighbours.
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2. Overcrowding: a live cell dies if it has more than three live neighbours.
3. Reproduction: a dead cell becomes alive if it has exactly three live neighbours.

From these simple rules emerge structures, oscillators, gliders, & even computational elements.

7.1.3 Computational Properties of Cellular Automata

Von Neumann Neighborhood: Moore Neighborhood:

4 adjacent cells (N, E, S, W) 8 adjacent cells (including diagonals)

Figure 4: Different neighbourhoods are possible in cellular automata

There are many open questions about the computational properties of cellular automata:
* What kind of patterns will emerge given a certain starting pattern?
* Update rules and their effect?
* Can CA be used to perform computation?
Stephen Wolfram put forward 4 classifications:
1. Class 1: evolution leads to a stable homogeneous state.
2. Class 2: evolution leads to a simple stable or periodic structures.
3. Class 3: evolution leads to chaotic patterns.
4. Class 4: evolution leads to complex structures with long transients.

There are similar emergent properties witnessed in evolutionary spatial game theory and in models & simulations of
multi-agent systems.

7.2 Ant Colonies

Ant colonies are distributed systems of social insects, consisting of simple individuals with limited “processing” capa-
bilities. The intelligence of the colony is far greater than the intelligence of the individuals, due to emergent intelligence
through simple local interactions. Ant colonies have been studied in detail, and exhibit lots of properties desirable in
computational systems: responsive to changes in environment, robust solutions, task decomposition & allocation.

Complex tasks are broken down into simpler sub-tasks:
* Leaf-cutting;
* Transportation;

* Transformation to pulp & pellets;

19



7 ARTIFICIAL LIFE

* Planting fungi into pellets;
¢ Tending to pellets.

There are several million ants per colony working collectively; tasks are assigned based on local conditions and the needs
of the colony. Individual ants can switch roles as needed. There is emergent organisation: without central control,
ants self-organise into efficient work groups.

7.2.1 Self-Organisation

Self-organisation is a set of dynamical mechanisms whereby structure appears at the global level as the result of
interactions among lower-level components. The rules specifying the interactions among the constituent units of the
system are executed based on purely local information. The four basic ingredients of self-organisation are:

1. Multiple interactions;
2. Randomness;
3. Positive feedback;

4. Negative feedback.

7.2.2 Indirect Communication in Ant Colonies

Stigmergy is co-ordination through environment modification. Ants deposit pheromone trails as they travel; the
strength of the trial indicates desirability and the trails evaporate over time (regative feedback). When presented with
two paths, ants collectively select the shorter one, demonstrating collective problem-solving capability (double bridge
experiments, Deneubourg).

Indirect communication is mediated by modifications of environmental states which are only locally accessible by the
communicating agents. Features of artificial stigmergy include indirect communication & local accessibility. Ant
algorithms are multi-agent systems that exploit artificial stigmergy as a means for co-ordinating artificial ants for the
solution of computational problems, such as:

¢ Shortest path;
* Network routing;
* Task allocation of labour;
* Robotics & co-ordination;
* Graph partitioning.
7.2.3 Ant Colony Optimisation

Ideas from ant colony optimisation can be mapped to a search algorithm, originally applied to the Travelling Salesman
Problem but can eb applied to a range of optimisation problems. An overview of the algorithm is as follows, although
there are many extensions & variants:

1. Ants initially perform a random walk on the graph, leaving a pheromone trail as they walk. Domain knowledge
or heuristics can be included on the edges of the graph.

2. Ants are placed on cities randomly.
3. Choose paths through the graph (initially random).

4. Update the pheromone level as a function of the solution quality.
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The probability of an ant k at node ¢ choosing to move to node j is:

k _ ZZENJk[Til}j'[nil]B If] (& N’L
Pij = !

otherwise

where:

* Tij is the pheromone intensity on edge (7, j);

* 1);5 is the heuristic information (typically 7;; = % where d;; is the distance);

* « & [3 are parameters controlling the relative importance of pheromone versus heuristic;

. Nf is the set of feasible nodes for ant k when at node 4.

The pheromone intensity influence which edges are followed. The value 7;; on edge (3, j) is updated periodically, based

on two factors: evaporation & reinforcement.

7.2.4 Swarm Intelligence in Other Species

Similar phenomena have been identified in other species:

* Termites: complex nest-building behaviour, temperature & humidity regulation;

* Honeybees: nest location identification & decision-making, several scouts explore & decisions are made through

communication, waggle dance for communicating food sources;

* Bird flocking & fish schooling: simple rules of separation, alignment, & cohesion, create complex & co-ordinated

movement patterns.

7.2.5 Digital Evolution Systems

* Avida: digital platform for studying evolution.

— Digital organisms compete for resources;
— Mutations affect their ability to process information;

— Natural selection emerges without being explicitly programmed.
* Tierra: created by Thomas Ray.

— Self-replicating computer programs;
— Programs evolve, compute for CPU time;

— DParasites, immunity, & other biological phenomena emerge.
* Polyworld: artificial ecosystem with 3D physics.

— Organisms with neural networks as brains;

— Evolution of complex behaviours & strategies.

8 Neural Networks

8.1 Biological Underpinnings

Neurons are specialised cells that process & transmit information. The structure of neurons include:

* Soma: the cell body which contains the nucleus and processes inputs;

* Dendrites: receives signals from other neurons;
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Axon: transmits signals to other neurons;

Synapses: connection points between neurons.

The human brain contains over 80 billion neurons. Each neuron may connect to thousands of other. Signals can be
excitatory (increase firing probability) or inhibitory (decrease firing probability).

An artificial neuron has input connections to receive signals, an activation function (sigmoid, ReLU, etc.) that

activates depending on the weighted sum of the inputs, and transmits the result on the output connection. Artificial

neurons have weighted connections to other neurons. They learn through backpropagation and are used in parallel
computing architectures. Key simplifications made in the artificial neural network model include:

8.2

Discrete time steps instead of continuous firing;
Simplified activation functions;
Uniform neuron types instead of diverse cell types;

Backpropagation instead of local learning rules.

History of Artificial Neural Networks

1934: McCulloch & Pitts proposed the first mathematical model of a neuron, with binary threshold units
performing logical operations, and demonstrated that networks of these neurons could compute any arithmetic
or logical function.

1949: Donald Hebb published The Organisation of Behaviour, introducing Hebbian learning (“neurons that
fire together, wire together”) and first proposed learning rules for neural adaptation.

1958: Frank Rosenblatt introduced the perceptron, the first trainable neural network models using a binary
classifier with adjustable rates. It could learn from examples using an error-correction rule.

y=1 <szmz +b> where f(z) = {1 ifz>0
=1

0 otherwise

1969: Minsky & Papert published Perceptrons, proving the fundamental limitations of single-layer perceptrons
and demonstrated that they could notlearn simple functions like X0R; the famous XOR problem became emblematic
of perceptron limitations. The impact of this was a shift of focus to symbolic Al approaches. There was a need
for multiple layers to solve non-linearly separable problems, and there was a lack of effective training methods for
multi-layer networks.

1986: Rumelhart, Hinton, & Williams popularised backpropagation, an efficient algorithm for training
multi-layer networks based on the chain rule for computing gradients, thus solving the XOR problem and more
complex pattern-recognition tasks. Challenges that limited the adoption of artificial neural networks at this time
included:

Computational limitations (training was extremely slow);

Vanishing / exploding gradient problems in deep networks;

— Other approaches outperformed neural networks on many tasks;

Need for large labelled datasets.
2006: Hinton et al. introduced deep belief networks, allowing for effective training of deep architectures.

2010: GPU computing transformed neural network training, making it orders of magnitude faster for matrix
operations and enabling training of much larger networks.
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8.3 Neuro-Evolution

Neuro-evolution is the application of evolutionary algorithms to optimise neural networks. It is also adopted in the
field of Artificial Life as a means to explore difterent learning approaches. The main approaches include direct encoding
(weights, topologies) & indirect encoding. Neuro-evolution can achieve global optimisation as they are less prone to
local optima, can optimise both architectures & hyperparameters. It is a useful approach when the architecture is
unknown and is useful on highly multi-modal landscapes.

In Artificial Life, neural networks are viewed as “brains”: controllers for artificial organisms that enable complex
behaviours & adaptation. The biological inspiration is from the evolution of nervous systems and environmental
pressures driving cognitive complexity. The goal is to understand how intelligence emerges through evolutionary
processes.

Open-ended evolution is defined by continuous adaptation & complexity growth. Challenges associated with open-
ended evolution in Artificial Life include creating sufficient environmental complexity, maintaining selective pressure
over time, & avoiding evolutionary dead-ends. Increasing network complexity for neural networks in open-ended
evolution correlates with behavioural complexity, and incremental evolution builds on previous capabilities. The
current research frontier is creating truly open-ended neural evolution.

Simple neuro-evolution has a fixed network topology with a pre-determined architecture (e.g., layers, connectivity)
and only weights are evolved. The encoding strategy is direct, with each weight being a separate gene. The genetic
operators used are mutation (applying random perturbations to weights) & crossover (combining weights from par-
ents). The advantage of this approach is that it is simple & efficient, but it is limited by architecture constraints. The
neuro-evolution process is as follows:

1. Initialisation: generate an initial population of neural networks.

2. Evaluation: assess the fitness of each network on a task.

3. Selection: choose networks to reproduce based on their fitness.

4. Reproduction: create new networks through crossover & mutation.
S. Repeat: iterate through generations until convergence.

Potential representations for neuro-evolution include direct coding, marker-based encoding, & indirect coding

8.3.1 NEAT

NeuroEvolution of Augmenting Topologies (NEAT) is concerned with the simultaneous evolution of weights
and topology that starts with a minimal network and grows the complexity as needed. It uses speciation to protection
innovations. Its genetic operators include weight mutation, add connection, add node, & crossover with history tracking.
The advantages of NEAT is that it facilitates the exploration of large search spaces, adapts to dynamic environments,
and is effective for complex problem domains. It has applications in evolutionary robotics & game-playing agents.

8.3.2 Artificial Life Models

In addition to application to practical optimisation problems, the neuro-evolution model has been adopted in a range
of artificial life models where one can explore the interplay between population-based learning (genetic algorithms),
lifetime learning (NNs), & other forms of learning, and has led to some interesting results. Key areas in which Artificial
Life models are used include signalling, language evolution, movement behaviours, flocking/clustering, & means to
explore the interplay between different learning types. Types of learning in Artificial Life include:

* Population-based learning (modelled with GAs);
* Lifetime learning (modelled with NNis);

* Cultural learning (allows communication between agents).
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Consider a population of agents represented by NN subject to evolutionary pressures (GAs). Many theories have
been proposed to explain the evolution of traits in populations (Darwinian, Lamarckian, etc.). The Baldwin effect is
a concept in evolutionary biology that suggests that learned behaviours acquired by individuals during their lifetime
can influence the direction of evolution. Learned behaviours initially arise through individual learning and are not
genetically encoded. Over time, individuals with adaptive learned behaviours may have higher fitness, leading to differ-
ential reproduction. Selection pressure favours those individuals with certain learned behaviours. Eventually, these
once-learned behaviours may become innate or genetically predisposed in subsequent generations. Hinton & Nowlan
experiments show this effect.

Combining lifetime & evolutionary learning can evolve greater plasticity in populations and can evolve the ability
to learn useful functions. This can be useful in changing environment, as it allows populations to adapt. Cultural
learning allows agents to learn from each other, and has been shown to allow even greater plasticity in populations.
It has been used in conjunction with lifetime learning & population-based learning and has been used to model the
emergence of signals, “language”, dialects, etc.

8.4 Case Studies
8.4.1 Evolved Communication

The problem of evolving multi-agent communication involves agents with neural signalling networks with no pre-
defined communication protocols, that must evolve signals & interpretations. The key findings are that communication
emerges when beneficial and signal complexity matches task complexity. Applications involve the origin of language
models, emergent semantics, & multi-agent co-ordination.

8.4.2 Predator-Prey Co-Evolution

The experimental set-up for predator-prey evolution consists of populations of predator & prey agents, neural controllers
for sensing & movement, and evolving in a shared environment. The Red Queen dynamics are a continuous arms
race with adaptation & counter-adaptation, and no stable equilibrium.

8.4.3 Evolving Deep Neural Networks

Challenges include the high-dimensional search spaces, computational requirements, & efficient encoding of complex
architectures.
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