
L E C T U R E 1 1 - 1 3 (W E E K 5)

I / O S T R E A M S

D R A D R I A N C L E A R
S C H O O L O F C O M P U T E R S C I E N C E

CT326 Programming III

Objectives for this week
• Understand the various IO Stream classes that java provides,

their organisation and functionality
• Demonstrate the use of some of these
• Illustrate the use of Scanner and Formatting for high-level

structuring of character streams

IO Streams
• To bring in information, a program opens a stream on an

information source (a file, memory, a socket) and reads the
information serially, like this:

IO Streams
• Similarly, a program can send information to an external

destination by opening a stream to a destination and writing the
information out serially, like this:

IO Streams
• No matter where the information is coming from or going to and

no matter what type of data is being read or written, the
algorithms for reading and writing data are usually the same.

Reading Writing
open a stream open a stream
while more information while more information

read information write information
close the stream close the stream

IO Streams
• The java.io package contains a collection of stream classes

that support reading and writing streams.
• Divided into two class hierarchies based on the data (either

characters or bytes) on which they operate.

IO Streams
• However, it's often more convenient to group the classes

based on their purpose rather than on the data type they read
and write.

• Thus, we can cross-group the streams by whether they read
from and write to data "sinks" or process the information as its
being read or written.

Data Sink Streams
• Data sink streams read from or write to specialised data sinks

such as strings, files, or pipes.
• Typically, for each reader or input stream intended to read from

a specific kind of input source, java.io contains a parallel writer
or output stream that can create it.

• Note that both the character stream group and the byte stream
group contain parallel pairs of classes that operate on the
same data sinks.

Processing Streams
• Processing streams perform some sort of operation, such as

buffering or data conversion, as they read and write.
• Like the data sink streams, java.io often contains pairs of

streams:
• One that performs a particular operation during reading and another that

performs the same operation (or reverses it) during writing.
• Note also that in many cases, java.io contains character streams and

byte streams that perform the same processing but for the different data
type.

Byte Streams
• Programs should use the byte streams, descendants of

InputStream and OutputStream, to read and write 8-bit bytes.
• InputStream and OutputStream provide the API and some

implementation for input streams (streams that read 8-bit
bytes) and output streams (streams that write 8-bit bytes).

• These streams are typically used to read and write binary data
such as images and sounds.

Byte Streams
• Subclasses of InputStream and OutputStream provide

specialised I/O. Those that read from or write to data sinks are
shown in grey in the following figures, those that perform some
sort of processing are shown in white:

Byte Streams
• Note that these also fall into two categories:
• Data sink streams and processing streams (again shown in grey and

white):

Byte Stream demo

Character Streams
• Reader and Writer are the abstract super-classes for character

streams in java.io.*
• Reader provides the API and partial implementation for readers

- streams that read 16-bit unicode characters.
• Writer provides the API and partial implementation for writers -

streams that write 16-bit characters.
• Subclasses of Reader and Writer implement specialised

streams.

Class hierarchies for the Reader and Writer
classes
• Those that read from or write to data sinks are shown in grey in

the following figures, those that perform some sort of
processing are shown in white.

Character Streams

• Most programs should use readers and writers to read and write information.
• This is because they both can handle any character in the Unicode character set

(while the byte streams are limited to ISO-Latin-1 8-bit bytes).

Character Stream demo

Data Sink Streams
Sink Type Character Streams Byte Streams

Memory CharArrayReader ByteArrayInputStream
CharArrayWriter ByteArrayOutputStream
StringReader StringBufferInputStream
StringWriter

Pipe PipedReader PipedInputStream
PipedWriter PipedOutputStream

File FileReader FileInputStream
FileWriter FileOutputStream

Processing Streams
Process Character Streams Byte Streams

Buffering BufferedReader BufferedInputStream
BufferedWriter BufferedOutputStream

Filtering FilterReader FilterInputStream
FilterWriter FilterOutputStream

Stream InputStreamReader
Conversion OutputStreamWriter

Concatenation SequenceInputStream

Processing Streams
Process Character Streams Byte Streams

Data Conversion DataInputStream,
DataOutputStream

Counting LineNumberReader LineNumberInputStream

Peeking Ahead PushbackReader PushbackInputStream

Printing PrintWriter PrintStream

Object Serialization ObjectInputStream ObjectOutputStream

Scanner
• in the java.util package but can be passed an InputStream as a

constructor parameter
• often used for reading from the console (i.e. the System.in InputStream)

• used for working with input of formatted data consisting of
primitive types and strings

• translates input to tokens based on their data type and using a
delimiter pattern

• has a collection of “next” methods for different data types

Formatting
• PrintWriter is a processing Character stream
• Includes common methods for formatting
• print
• println
• format

• format method formats multiple arguments based on a format
string that includes format specifiers
• can be used similar to tokens in Scanner

• See java.util.Formatter class for documentation on format
string syntax

Scanner and formatting demo

Next time…
• Object Serialisation

