
ct414

Distributed Systems & Co-Operative Computing

Name: AndrewHayes
Student ID: 21321503
E-mail: a.hayes18@universityofgalway.ie

2025–01–22

mailto://a.hayes18@universityofgalway.ie

CONTENTS

Contents

1 Introduction 1
1.1 Client-Server Architectures . 1

1.1.1 Two-Tier Architectures . 1
1.2 Three-Tier Architecture . 1
1.3 Network Programming Paradigms . 1

2 Java RMI 2
2.1 Steps to Creating an RMI Application . 2
2.2 Example Java RMI Program . 3

3 Enterprise Java Beans 7
3.1 Distributed System Scenario . 7
3.2 EJB . 7

i

1 INTRODUCTION

1 Introduction

1.1 Client-Server Architectures

1.1.1 Two-Tier Architectures

A two-tier client-server architecture is a client-server architecture wherein a client talks directly to a server, with no
intervening server. It is typically used in small environments (. 50 users).

A common development error is to prototype an application in a small, two-tier environment, and then scale up
by simply addingmore users to the server: this approach will usually result in an ineffective system, as the server becomes
overwhelmed. To properly scale to hundreds or thousands of users, it is usually necessary to move to a three-tier
architecture.

Figure 1: Client & server using TCP/IP protocols to communicate. Information can flow in either or both directions.
The client & server can interact with a transport layer protocols.

1.2 Three-Tier Architecture

A three-tier client-server architecture introduces a server or agent (or load-balancer) between the client & the
server. The agent has many roles:

• Translation services: such as adapting a legacy application on a mainframe to a client-server environment.

• Metering services: such as acting as a transaction monitor to limit the number of simultaneous requests to a
given server.

• Intelligent agent services: as in mapping a request to a number of different servers, collating the results, and
returning a single response to the client.

1.3 Network Programming Paradigms

Practically all network programming is based on a client-server model; the only real difference in paradigms is the level
at which the programmer operates. The sockets API provides direct access to the available transport layer protocols.
RPC is a higher-level abstraction that hides some of the lower-level complexities. Other approaches are also possible:

• Sockets are probably the best-known andmostwidely-used paradigm. However, problems of data incompatibility
across platforms can arise.

• RPC libraries aim to solve some of the basic problems with sockets and provide a level of transport independence.

• Neither approach works very well with modern applications (Java RMI and other mdoern technologies, e.g.,
web services are better).

1

2 JAVARMI

2 Java RMI

Remote Method Invocation (RMI) is a Java-based mechanism for distributed object computing. RMI enables the
distribution of work to other Java objects residing in other processes or on other machines. The objects in one Java
Virtual Machine (JVM) are allowed to seamlessly invoke methods on objects in a remote JVM. To call a method of a
remote object, we must first get a reference to that object, which can be obtained from the registry name facility or by
receiving the reference as an argument or return value of a method call. Clients can call a remote object in a server that
itself is a client of another server. Parameters of method calls are passed as serialised objects:

• types are not truncated, and therefore, object-oriented polymorphism is supported;

• parameters are passed by value (deep copy) and therefore object behaviour can be passed.

The Java Object Model is still supported with distributed (remote) objects. A reference to a remote object can be passed
to or returned from local & remote objects. Remote object references are passed by reference: therefore, the whole
object is not always downloaded. Objects that implement the Remote interface are passed as a remote reference, while
other objects are passed by value (using object serialisation).

Figure 2: Java RMI Architecture

The client obtains a reference for a remote object by calling Naming.lookup(//URL/registered_name)which is amethod
which returns a reference to another remote object. Methods of the remote object may then be called by the client.
This call is actually to the stubwhich represents the remote object. The stub packages the arguments (marshalling)
into a data stream (to be sent across the network). On the implementation side, the skeleton unmarshals the argument,
calls the method, marshals the return value, and sends it back. The stub unmarshals the return value and returns it to
the caller. The RMI layer sits on top of the JVM and this allows it to use Java Garbage Collection of remote objects,
Java Security (a security manager may be set for the server, now deprecated), and Java class loading.

2.1 Steps to Creating an RMI Application

1. Define the interfaces to your remote objects.

2. Implement the remote object classes.

3. Write the main client & server programs.

2

2 JAVARMI

4. Create the stub & skeleton classes by running the rmic compiler on the remote implementation classes. (No
longer needed in later Java versions).

5. Start the rmiregistry (if not already started).

6. Start the server application.

7. Start the client (which contains some initial object references).

8. The client application/applet may then call object methods in the remote (server) program.

2.2 Example Java RMI Program

1 // Remote Object has a single method that is passed

2 // the name of a country and returns the capital city.

3 import java.rmi.*;

4

5 public interface CityServer extends Remote

6 {

7 String getCapital(String Country) throws

8 RemoteException;

9 }

Listing 1: Example Java RMI Program

1 import java.rmi.*;

2 import java.rmi.server.*;

3

4 public class CityServerImpl

5 extends UnicastRemoteObject

6 implements CityServer

7 {

8 // constructor is required in RMI

9 CityServerImpl() throws RemoteException

10 {

11 super(); // call the parent constructor

12 }

13

14 // Remote method we are implementing!

15 public String getCapital(String country) throws

16 RemoteException

17 {

18 System.out.println("Sending return string now - country requested: " + country);

19 if (country.toLowerCase().compareTo("usa") == 0)

20 return "Washington";

21 else if (country.toLowerCase().compareTo("ireland") == 0)

22 return "Dublin";

23 else if (country.toLowerCase().compareTo("france") == 0)

24 return "Paris";

25 return "Don't know that one!";

26 }

27

28 // main is required because the server is standalone

29 public static void main(String args[])

3

2 JAVARMI

30 {

31 try

32 {

33 // First reset our Security manager

34 System.setSecurityManager(new RMISecurityManager());

35 System.out.println("Security manager set");

36

37 // Create an instance of the local object

38 CityServerImpl cityServer = new CityServerImpl();

39 System.out.println("Instance of City Server created");

40

41 // Put the server object into the Registry

42 Naming.rebind("Capitals", cityServer);

43 System.out.println("Name rebind completed");

44 System.out.println("Server ready for requests!");

45 } catch(Exception exc)

46 {

47 System.out.println("Error in main - " + exc.toString());

48 }

49 }

50 }

Listing 2: Example Server Implementation

1 public class CityClient

2 {

3 public static void main (String args[])

4 {

5 CityServer cities = (CityServer) Naming.lookup("//localhost/Capitals");

6 try {

7 String capital = cities.getCapital("USA");

8 System.out.println(capital);

9 } catch (Exception e) {}

10 }

11 }

Listing 3: Example Client Implementation

No distributed system can mask communication failures: method semantics should include failure possibilities. Every
RMI remote method must declare the exception RemoteException in its throw clause. This exception is thrown when
method invocation or return fails. The Java compiler requires the failures to be handled.

When implementing a remote object, the implementation class usually extends the RMI class UnicastRemoteObject:
this indicates that the implementation class is used to create a single (non-replicated) remote object that uses RMI’s
default sockets-based transport for communication. If you choose to extend a remote object from a non-remote class,
you need to explicitly export the remote object by calling the method UnicastRemoteObject.exportObject().

The main method of the service first needs to create & install a security manager, either the RMISecurityManager or
one that you have defined yourself. A security manager needs to be running so that it can guarantee that the classes
loaded do not perform “sensitive” operations. If no security manager is specified, no class loading for RMI classes is
allowed, local or otherwise.

TO make classes available via a web server (or your classpath), copy them into your public HTML directory. Al-
ternatively, you could have compiled your files directly into your public HTML directory:

4

2 JAVARMI

1 javac -d ~/project_dir/public_html City*.java

2 rmic -d ~/project_dir/public_html CityServerImpl

The files generated by rmic (in this case) are: CityServerImpl_Stub.class& CityServerImpl_Skel.class.

Polymorphic distributed computing is the ability to recognise (at runtime) the actual implementation type of
a particular interface. We will use the example of a remote object that is used to computer arbitrary tasks:

• Client sends task object to compute server.

• Compute server runs task and returns result.

• RMI loads task code dynamically in the server.

This example shows polymorphism on the server, but it also works on the client, for example the server returns a
particular interface implementation.

Our example task will be a simple interface that defines an arbitrary task to compute:

1 public interface Task extends Serializable

2 {

3 Object run();

4 }

Listing 4: Simple Task interface

We will also define a Remote interface:

1 import java.rmi.*;

2

3 public interface Compute extends Remote

4 {

5 Object runTask(Task t) throws RemoteException;

6 }

Listing 5: Simple Task interface

A task may create a Remote object on the server and return a reference to that object; the Remote object will be garbage-
collected when the returned reference is dropped (assuming that no-one else is given a copy of the reference). A task may
create a Serializable object and return a copy of that object; the original object will be locally garbage-collected when
the Task ends. If the Task creates an object that is neither a Remote nor a Serializable object, a marshalling exception
will be thrown.

1 import java.rmi.*;

2 import java.rmi.server.*;

3

4 public class ComputeServer extends UnicastRemoteObject implements Compute

5 {

6 public ComputeServer() throws RemoteException {}

7

8 public Object runTask(Task t)

9 {

10 return t.run();

11 }

12 }

5

2 JAVARMI

Listing 6: Compute server implementation

1 public static void main(String args[])

2 {

3 System.setSecurityManager(new RMISecurityManager());

4 try

5 {

6 ComputeServer cs = new ComputeServer();

7 Naming.rebind("Computer", cs);

8 }

9 catch (Exception e)

10 {

11 // Exception handling

12 }

13 }

Listing 7: Compute server implementation

1 public class Pi implements Task

2 {

3 private int places;

4

5 public Pi (int places)

6 {

7 this.places = places;

8 }

9

10 public Object run()

11 {

12 // Compute Pi

13 return result;

14 }

15 }

Listing 8: Task to compute π

1 Compute comp = (Compute) Naming.Lookup("//www.t.nuigalway.ie/Computer");

2

3 Pi pi = new Pi(100);

4 Object piResult = comp.runTask(pi);

5

6 // print results

Listing 9: The client

In conclusion, RMI is flexible and allows us to pass objects (both Remote& Serializable) by exact type rather than
declared type and download code to introduce extended functionality in both client & server. However, it is Java-
only and has been superseded by SOAP&REST as the de-facto standards for communicating with remote services.
Nonetheless, RMI is still worth learning to help understand concepts around distributed objects & distributed systems
architecture.

6

3 ENTERPRISE JAVA BEANS

3 Enterprise Java Beans

3.1 Distributed System Scenario

Imagine a worldwide financial company with 10,000 online customers that wants to add a new currency converter
software component that is heavily used with 1,0000 hits/second. The design will consist of the business logic and the
distributed infrastructure. The distributed infrastructure includes security, load-balancing, transaction management, &
object-relational mapping; Enterprise Java Beans takes care of this, and provides an API & framework.

Figure 3: Business logic, distribute the object, add security manager, add load balancing agent.

3.2 EJB

Enterprise Java Beans (EJB) is a server-side component architecture that enables and simplifies the process of building
enterprise-class distributed object applications in Java. It allows you to write scalable, reliable, and secure applications
without writing your own complex distributed object frameworks. EJB is a specification.

Figure 4: The EJB process

The EJB Container is where the EJBs run and is responsible for managing EJBs. The EJB Server is a runtime
environment for container(s) that manages the low-level system resources.

7

3 ENTERPRISE JAVA BEANS

Figure 5: The EJB server & containers

Figure 6: EJ Bean types

Session beans are “business process objects” (e.g., price quoting, order entry, video compression, stock trades, etc.) and
live for as long as the client’s session. They are usable by 1 client at a time and are not shared. The EJB server manages the
lifetime of beans. Stateless session beans are single request with no state kept, e.g., currency converter, compression
utility, or credit card verification.

Entity beans / JPA represent persistent data. They are the object-oriented in-memory view of data in an under-
lying data store. They are long-lasting and have shared access. Sub-types of entity beans include: bean-managed
persisted entity beans and container-manager persistent entity beans. Bean-managed persistencemust be persisted
manually and must look after saving, loading, & finding. They make use of a persistence API such as JDBC or SQL/J.
Container-managed persistence is automatic persistence wherein the container/server looks after the loading, saving,
& finding of component data. You must describe what you want persisted. Deployment tools provide support for
defining simple object-relational mappings.

The client never invokes the bean instance, instead it invokes the EJB object by an invocation that is intercepted
by the container, delegated to the bean instance. The EJB object is a surrogate, network-aware wrapper object that
serves as a layer of indirection between the client & the bean; it is essentially the glue between the client & the bean. EJB
objects must clone every business method that your bean class exposes, specified in the remote interface. All remote
interfaces derive from javax.ejb.EJBObject.

8

3 ENTERPRISE JAVA BEANS

Figure 7: EJB Objects

The session bean interface is implemented by all session beans and specifies lifecyclemethods thatmay be implemented
inn the bean such as setSessionContext, ejbCreate, ejbRemove, ejbPassivate, & ejbActivate.

The Java Naming & Directory Interface is used to find an object. The resource (e.g., a bean) is associated with a
nickname when deploying; clients of this bean can then use this nickname to look up the resource across a deployment.
The client code looks up the reference in JNDI and calls business methods on the EJB object.

9

	Introduction
	Client-Server Architectures
	Two-Tier Architectures

	Three-Tier Architecture
	Network Programming Paradigms

	Java RMI
	Steps to Creating an RMI Application
	Example Java RMI Program

	Enterprise Java Beans
	Distributed System Scenario
	EJB

