X
VAT OLLSCOILNAGAILLIMH]

> Clinile
o‘lnlﬂ UNIVERSITY OF GALWA

/@\ OLLSCOILNA GAILLIMHE
3 l.'.-.l UNIVERSITY oOF GALWAY

Objectives...

- By the end of this lecture, you will:

1. have been introduced to testing terminology and the
main kinds of testing

2. understand the practice of Test Driven Development
(TDD)

3. have been introduced to unit testing and JUnit, the Java
unit testing framework

4. have written some tests using a TDD approach

/@\ OLLSCOILNA GAILLIMHE
g UNIVERSITY OF GALWAY

‘v‘v

Testing

- Systematic process of analysing a system or system
component to detect the differences between specified
(required) and observed (existing) behavior.

- Attempt to show that the implementation of a system is
inconsistent with the desired functionality

- Goal is to design tests that exercise defects in the system
and to reveal problems

- Can't test everything in a large system.
- Tradeoffs required with budget and time constraints.

/@\ OLLSCOILNA GAILLIMHE
g UNIVERSITY OF GALWAY

‘v‘v

Levels of testing

- Unit testing involves testing individual classes and
mechanisms.

- Integration testing involves testing groups of classes or
components and the interfaces between them.

- System testing involves integration testing the system as
a whole to check it meets the requirements.

/uu\ OLLSCOILNA GAILLIMHE
g, UNIVERSITY oF GALWAY

‘v‘v

Test-Driven Development (TDD)

- A software development process that relies on
the repetition of a very short development cycle

- The general rationale behind this methodology is
“first write the test, then the code” such that the
tests drive the development of your code

- Tries to find faults in participating objects and/or
subsystems with respect to the use cases from
the use case model.

QLLSCOILNA GAILLIMHE
UNIVERSITY oF GALWAY

The TDD cycle

, START

Add new
test to test
suite

Run test
suite

Refactor
code

Code
application
logic

QLLSCOILNA GAILLIMHE
UNIVERSITY oF GALWAY

Red, Green, Refactor!

- A test will initially fail; start

we write a minimal Wite toat s i
implementation P

amount of code to
make a test pass

- Refactor our

application and test -
code before moving
On to the neXt One Refactor

implementation
and test code

- Build a test suite as
our implementation
p rog resses Image from www.codecademy.com

Runs: 9/9 B Errors: 0O B Failures: 1

Runs: 9/9 B Errors: 0 B Failures: 0

QLLSCOILNA GAILLIMHE
UNIVERSITY oF GALWAY

Use case descriptions for a shopping cart

Use case description: Add item(s) to cart
1.

Customer adds items to their shopping cart by selecting the item to add and indicating the
number that they wish to add.
2. System confirms that items have been added successfully.

Use case description: Remove item(s) from cart
1. Customer performs “View shopping cart” use case
2. Customer selects an item to remove.

3. System removes the item from the cart such that the quantity of the item in the cart is 0.

Use case description: Update number of items in cart

1. Customer performs “View shopping cart” use case
2.

Customer indicates the new number of a particular item that they wish to have in their cart.
3.

System changes the number of the item in the cart and updates the display.

Use case description: View shopping cart

1. Customer indicates that they wish to view all of the items currently in their cart.
2. System displays items currently contained in the shopping cart

TDD example in Eclipse

¥ (=2 CT326Testing
P =\ JRE System Library [JavaSE-1.8]
¥ (3B src
v 8 ie.nuigaiway CTIZ6 Testing— Good practice to separate tests
» [J) Shoppi j — :
1) ShoppingCart java from production code

v (B tests

v i ie.nuigalway.ct326.testing
» |J] ShoppingCartTests.java

P g, JUnit 5

> Once you create a new folder for your tests,
you'll need indicate that it should be used
as a source folder

Build Path | 4 £ Use as Source Folder

Refactor NET >
g Configure Build Path...
o IMport...

QLLSCOILNA GAILLIMHE
UNIVERSITY oF GALWAY

Getting started...

We start with an empty
ShoppingCart class

1
2
3e
4
5
6
7
8
9
0

1

Create our first Test Case by
right-clicking on the tests
package and selecting

New --> Junit Test Case

You may be prompted to add
JUnit to your project. I'm
using JUnit 5 here

QLLSCOILNA GAILLIMHE
UNIVERSITY oF GALWAY

package ie.nuigalway.ct326.testing;

/¥

* Class representing a shopping cart for an online supermarket.
* @author Adrian Clear

*
*/

public class ShoppingCart {

}

V1% Week 9

» m), JRE System Library [JavaSE-1.8]

A\

¥ H com.ct548 week9.shopping
» [J] ShoppingCart.java

v (B tests
e T
»=iJunta Golnto [Project...

I;ﬁ;:::;up Open in New Window & Package

& Week11 Open Type Hierarchy . F4 @ Class

8 a::::: Show In X#EW » @ Interface
[Copy ®C & Enum
Bz Copy Qualified Name @ Annotation
[[3 Paste BV &4 Source Folder
¢ Delete ® 44 Java Working Set

9 Folder
[File

RUicifat y > | 2 Untitled Text File
Source \» #®S » e Task
Refactor X#T > = "
2 Import...
4 Export... [Example...
References > [Other... #N
Declarations >
& Refresh F5
Assign Working Sets...
Q Run As >
%5 Debug As >
Restore from Local History...
Team >
Compare With >

V] Validate

Properties ®l

QLLSCOILNA GAILLIMHE
UNIVERSITY oF GALWAY

Test cases

- A test component is a part of the system that can be
isolated for testing

- could be an object, a group of objects, or one or more subsystems.

- Unit testing finds differences between a specification of
an object and its realisation as a component

- JUnit is a unit testing framework for test-driven
development in Java
- available in Eclipse out-of-the-box

/@\ OLLSCOILNA GAILLIMHE
g UNIVERSITY OF GALWAY

‘v‘v

Test cases

- A test case is a set of inputs and expected results that
exercises a test component with the purpose of causing
failures and detecting faults.

- Blackbox tests focus on the input/output behaviour of the
component (i.e., the functionality, not the internal aspects)

- Whitebox tests focus on the internal structure and
dynamics of the component

QLLSCOILNA GAILLIMHE
UNIVERSITY oF GALWAY

Our first test

» Let's start with the adding and item use case

Use case description: Add item(s) to cart
1. Customer adds items to their shopping cart by selecting the item
to add and indicating the number that they wish to add.

2. System confirms that items have been added successfully.

e ...and a test that’'s “Red”

{8 Package Explorer gu JUnit 83 = B | [J] shoppingCartTests.java 53

4 4 g8 & EE Q;' EE: 1 package ie.nuigalway.ct326.testing; o An nOtationS te”
Finished after 0.138 seconds 2* import static org.junit.jupiter.api.Assertions.x;[] JUnit that thiS iS a

class ShoppingCartTests {

3
Runs: 111 B Errors: 0 B Failures: 1 g
8 P
. | diesi test case
10 void testItemSuccessfullyAddedToCart() {
1
12
13

¥ Eit) ShoppingCartTests [Runner: JUnit 5] (0.001 s) S 3 AL . .
E]testltemSuccessfullyAddedToCart() (0.001s) - } 1A W T h e fa I I () a Sse rtl O n
14) explicitly causes a

test to fail

QLLSCOILNA GAILLIMHE

UNIVERSITY OF GALWAY
Let’ It test cod
@] ShoppingCartTests.java 2 = [J] ShoppingCart.java
5 import org.junit.Test;
6
7 public class ShoppingCartTests {
8
9= @Test
10 public void testItemSuccessfullyAddedToCart() {
11 ShoppingCart myCart = new ShoppingCart();
& 12 myCart.add(new Item(new Product(), 1)); //I need to make a design decision here that
13 //an item is represented as a quantity of products
14
8 15 assertTrue(myCart.getNoOfItems() =="HNg //Again, I need to make a design decision that a
16 //Shopping Cart will contain some sort of list and
17 hat the ShoppingCart class will have a method for
18 //rédgning the total number of items in it.|
19 ¥
20
21 }

Notice the red underline

« JUnit uses assertions to indicate as these haven't been
assumptions about the outcome of a test implemented yet

« |f the assertion is correct, the test passes;
otherwise, it fails

« assertTrue(boolean statement): We assume the statement is true for
an implementation that matches the specified requirement

QLLSCOILNA GAILLIMHE
1 TJNIVERSITY oF GALWAY

The TDD cycle in OO develo ent

Add class
stubs to
model

Add new
test to test
suite

START

Run test
suite

Refactor
code

You cannot even begin to
write a test if you don’t
have at least the definitions
and method names of the
classes that you are
testing!

Code
application
logic

OLL!LQ)IL NA GAILLIMUE
UNIVERSITY oF GALWAY

Assert methods

- assertTrue(boolean test)
assertTrue(String message, boolean test)

- assertFalse(boolean test)
assertFalse(String message, boolean test)

- assertEquals(Object expected, Object actual)
assertEquals(String message, Object expected, Object actual)

- assertSame(Object expected, Object actual)
assertSame(String message, Object expected, Object actual)

- assertNotSame(Object expected, Object actual)
assertNotSame(String message, Object expected, Object actual)

- assertNull(Object object)
assertNull(String message, Object object)

- assertNotNull(Object object)
assertNotNull(String message, Object object)

- fail()
fail(String message)

{8 Package Explorer gfu JUnit §3

Finished after 0.14 seconds

Runs: 11 B Errors: 0 B Failures: 1

I

QLLSCOILNA GAILLIMHE
UNIVERSITY oF GALWAY

Make your test compile

8 public class ShoppingCart {

9

10 public void add(Item item) {

11 // TODO Auto-generated method stub
12

13 }

14

15€ public int getNoOfItems() {

16 // TODO Auto-generated method stub
17 return 0;

18 }

19

20 }

21

G5

1 package ie.nuigalway.ct326.testing;

2
3 public class Item {
4
5& public Item(Product product, int i) {
6 // TODO Auto-generated constructor stub
7 }
8
9 }
1 |package ie.nuigalway.ct326.testing;
2
3 public class Product {
4
5 }
6

= 8 @ ShoppingCartTests.java &3 Product.java

4 ¢ g® & N: Q EER: 1 package ie.nuigalway.ct326.test

2

6

3@ import static org.junit.jupiter

7 class ShoppingCartTests {

...but it should still fail as we

9- @Test
"EShepmnaCariess el 0900200 1 spinecare meare —n - NAVEN't implemented any
testitemSuccessfullyAddedToCart() (0.020 s) 12 myCart.add(new Item(new . . .
13 functionality yet to make it
14 assertTrue(myCart.getNo
15 } pass.
16

QLLSCOILNA GAILLIMHE
UNIVERSITY oF GALWAY

“Go green”: Write minimum code to pass

« This is obviously not the correct public int getNoOfItems() {
implementation but it's sufficient (the return 1;
minimum code) to make our test pass)
Runs: 1/1 B Errors: 0 B Failures: 0 (7)
« Let's make our test more sophisticated =~ F————“8 0
by addlng a SeCOnd Item b Git) ShoppingCartTests [Runner: JUnit 5] (0.026 s) i?
 We're back to red, indicating a
deficiency with our previous
implementation
Runs: 11 B Errors: 0 B Failures: 1 g class ShoppingCartTests {
7_ . eTest
%ShoppingCanT&sts [Runner: JUnit 5] (0.031s) i? v°1dszg;;{:;2§g:c:;§::lIZAggsdgzgg;}.r(‘;cgrt();

E]testltomSuccessfuIIyAddedToCart() (0.0315s) 12 myCart.add(new Item(new Product(), 1));

14 assertTrue(myCart.getNoOfItems() ==1);

16 myCart.add(new Item(new Product(), 3));
17 assertTrue(myCart.getNoOfItems() == 2);|

WL Ly

NI OLLSCOILNAGAILLIMUE
. slimals -
o‘I.'.-.Ii UNIVERSITY oF GALWAY

We code again to make our test pass

[Package Explorer Ju JUnit $3 =248
Q
b

e &1 BE @ &

Finished after 0.123 seconds

Wit

| v

Runs: 11 B Errors: 0 B Failures: 0

> E’QShoppingCartTests [Runner: JUnit 5] (0.024 s)

ShoppingCartTests.java [7] Product.java Item.java [J] shoppingCart.java $3

1 package ie.nuigalway.ct326.testing;

3= import java.util.List;
4 import java.util.ArraylList;

6© /¥x

7 *x Class representing a shopping cart for an online supermarket.
8 x @author Adrian Clear

9 x

10 *x/

11 public class ShoppingCart {

13 List<Item> items;
15 public ShoppingCart() {

16 items = new ArrayList<Item>(); //1 need to decide what data structure I'm going
17 } //to use for storing cart items.

20 public void add(Item item) {
21 items.add(item);|

pZ public int getNoOfItems() {
25 return items.size();

@Test

public void testItemSuccessfullyAddedToCart() {
ShoppingCart myCart = new ShoppingCart();
myCart.add(new Item(new Product(), 1));

assertTrue(myCart.getNoOfItems() == 1); ° Our firSt meaningful teSt goeS green!

myCart.add(new Item(new Product(), 3))
assertTrue(myCart.getNoOfItems() == 2)

QLLSCOILNA GAILLIMHE
=" ¥ UNIVERSITY oF GALWAY

Demo: Account

- It should be possible to

- Withdraw a non-negative amount from the account that doesn't
exceed the balance

- Deposit a non-negative amount to the account
- query an account for its balance and account number

« An account must have an account number

QLLSCOILNA GAILLIMHE
UNIVERSITY oF GALWAY

- Use TDD to implement the withdraw functionality
- Write a test for making a valid withdrawal
- Red, Green, Refactor

- Use TDD to implement the “get account number”
functionality

