
AS03 Refactoring & Application Deployment 📦 1

AS03: Refactoring &
Application Deployment 📦
Design Patterns and Application Deployment

Introduction:
This assignment builds upon the previous two and focuses on refactoring
the musicFinder application, and deploying the final version using Docker.

You will apply relevant design patterns to improve the maintainability and
scalability of the application.

The goal is to ensure the application follows modern software engineering
principles while maintaining a fully functional CI/CD pipeline.

Task 3.1 Refactoring with Design Patterns 25
marks]

Goal:
The objective of this task is to refactor specific parts of the musicFinder
application using design patterns to improve code readability,
maintainability, and scalability.

The skeleton codes are provided in the repository.

a) Singleton with Dependency Injection [5 marks]
Scenario:
Implement a
Logger class for the application, ensuring that only one instance exists
throughout the app. Refactor the Logger to use Spring's Dependency
Injection DI for cleaner code and better testability.

Instructions:

� Complete the Singleton Logger Class:

AS03 Refactoring & Application Deployment 📦 2

Implement the Logger class using the Singleton pattern to track
search requests and errors.

Use private static to ensure only one instance exists, but donʼt call it
manually.

� Refactor Logger to Use Springʼs DI

Use Spring's @Component annotation to register Logger as a bean.

@Autowired the Logger instance in the MusicFinderController to track
search requests.

b) Abstract Factory for Search Providers [5 marks]
Scenario:
Complete the
Abstract Factory Pattern to handle different types of search providers (e.g.,
YouTube and Lyrics providers).

You can refer to the existing API calls for each provider.

They offer a different type of search, but they should follow a common
interface.

Instructions:

� Complete the Search Provider Interface:

Implement a common interface for search providers, e.g.,
SearchProvider .

Each provider YouTube, Lyrics) will implement this interface.

� Implement the Concrete Factories:

Create concrete classes like YouTubeSearchProvider and
LyricsSearchProvider , implementing the interface methods.

Add logic to fetch the correct results from the APIs.

� Complete the Abstract Factory:

Implement an abstract factory SearchProviderFactory that provides
methods like createProvider() .

Create subclasses like YouTubeSearchProviderFactory and
LyricsSearchProviderFactory to instantiate specific search providers.

AS03 Refactoring & Application Deployment 📦 3

c) Decorator with Caching [5 marks]
Scenario:
Implement the
Decorator Pattern to add caching functionality to the search results.

 The first time a search is executed, the result should be fetched from the
API, but subsequent requests should be served from the cache.

Instructions:

� Complete the Cache Decorator:

Implement a CacheDecorator that wraps the search provider class.

Check if the search result exists in the cache before making a new
API request.

� Implement the Caching Mechanism:

Store the search results in a Map or any suitable caching solution
(CacheService) .

When a search query is repeated, retrieve the result from the cache
instead of hitting the API.

Additional Notes:

Use the CacheService to cache the search results, and
to check if the search results are already cached

Use "Cached Result:" as a prefix for the cached
results to differentiate them from the direct fetch of
uncached search results

d) Strategy Pattern for Search Algorithm [10 marks]
Scenario:
The app should support multiple search algorithms. Implement the
Strategy Pattern to switch between different search algorithms (e.g., fuzzy
search vs. exact search).

Instructions:

� Define the Search Strategy Interface:

AS03 Refactoring & Application Deployment 📦 4

Create a SearchStrategy interface with a method search() , taking
query parameters as input.

� Implement Different Strategies:

Implement different strategies: ExactSearchStrategy and
FuzzySearchStrategy .

ExactSearchStrategy will perform a straightforward match.

 FuzzySearchStrategy will allow partial matches.

Additional notes:

The search strategy implementation can be abstract
(i.e., you can simplify it to return different messages
representative of “hypotheticalˮ searches.

🚫 overkill solution necessary !

� Bonus:

Combine this with the caching decorator from the previous
challenge, so that the search results are cached regardless of the
strategy used.

💡 Submissions:
Ensure the refactored code is committed to your GitHub
repository.

Ensure there are meaningful commits showing your
refactoring process.

Task 3.2 Application Deployment 5 marks]

Goal:
Finalise the CI/CD pipeline and deploy the fully refactored version of the
musicFinder application. Ensure that the pipeline is capable of building,
testing, and deploying the Dockerized version of the application.

AS03 Refactoring & Application Deployment 📦 5

Instructions:

� Add a CI/CD pipeline:

Create a new .github/workflows/ci.yml file to include Docker build and
deployment steps.

Ensure the pipeline:

Builds the application using Maven.

Deploys the application inside a Docker container.

Ensure that the application can be accessed locally via
http://localhost:8080 .

Tips:

Test the pipeline manually before submitting to ensure everything runs
smoothly.

Ensure the Docker image is correctly configured to expose port 8080.

Helpful Links:

GitHub Actions for Docker

💡 Submissions:
Ensure your GitHub repository contains an updated
.github/workflows/ci.yml file.

The pipeline must be triggered automatically on every push.

Disclaimer:
This assignment will be evaluated using GitHub Actions, which will
automatically run checks on your repository. Please ensure that your pipeline
passes all required checks before the deadline.

Automated Testing — Each push will trigger GitHub Actions to validate
your work based on the CI/CD pipeline, refactored code, and Docker
deployment.

https://docs.github.com/en/actions/publishing-packages/publishing-docker-images

AS03 Refactoring & Application Deployment 📦 6

Monitoring Progress — Check the Actions tab in your repository to view
the status of your submission.

