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2 THE ESSENCEOF TIME: FROMMEASUREMENTTONAVIGATION& BEYOND

1 Introduction

1.1 Lecturer Contact Information

• Name: Dr. Michael Schukat.

• E-mail: michael.schukat@universityofgalway.ie.

• Office: CSB-3002.

• Name: Dr. JawadManzoor.

• E-mail: jawad.manzoor@universityofgalway.ie.

• Office: CSB-3012.

1.2 Assessment

• 2 hours of face-to-face & virtual labs per week fromWeek 03.

• 30% Continuous Assessment:

– 2 assignments, 10% each.
– 2 in-class quizzes betweenWeek 07 &Week 12, worth 5%.

1.3 Introduction to Real-Time Systems

A system is said to be real-time if the total correctness of an operation depends not only upon its logical correctness
but also upon the time in which it is performed. Contrast functional requirements (logical correctness) versus non-
functional requirements (time constraints). There are two main categorisation factors:

• Criticality:

– Hard RTS: deadlines (responsiveness) is critical. Failure to meet these have severe to catastrophic conse-
quences (e.g., injury, damage, death).

– Soft RTS: deadlines are less critical, in many cases significant tolerance can be permitted.

• Speed

– Fast RTS: responses in microseconds to hundreds of microseconds.
– Slow RTS: responses in the range of seconds to days.

A safety-critical system (SCS) or life-critical system is a system whose failure or malfunction may result in death or
serious injury to people, loss of equipment / property or severe damage, & environmental harm.

2 The Essence of Time: From Measurement to Navigation & Beyond

Time is the continued sequence of existence & events that occurs in an apparently irreversible succession from past,
through the present, into the future. Methods of temporal measurement, or chronometry, take two distinct forms:

• The calendar, a mathematical tool for organising intervals of term;

• The clock, a physical mechanism that counts the passage of time.

Global (maritime) exploration requires exact maritime navigation, i.e., longitude & latitude calculation. Latitude
(north-south) orientation is straightforward; longitude (east-west orientation) requires a robust (maritime) clock.

Ground-based navigation systems like LORAN (LOng RAnge Navigation) were developed in the 1940s and
were in use until recently, and required fixed terrestrial longwave radio transmitters, and receivers on-board of ships &
planes. They are also referred to as hyperbolic navigation or multilateration. The principles of ground-based navigation
systems is as follows:
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3 TIME SYNCHRONISATION INDISTRIBUTED SYSTEMS

1. Amasterwith a known location broadcasts a radio pulse.

2. Multiple slave stations with a known distance from the master send their own pulse, upon receiving the master
pulse.

3. A receiver receives master & slave pulses and measures the delay between them.

4. This allows the receiver to deduce the distance to each of the stations, providing a fix.

NEED TO FINISH

3 Time Synchronisation in Distributed Systems

A distributed system (DS) is a type of networked system wherein multiple computers (nodes) work together to
perform a task. Such systems may or may not be connected to the Internet. Time & synchronisation are important
issues here: think of error logs in distributed systems – how can error events recorded in different computers be cor-
related with each other if there is no common time base? The problem is that GNSS-based time synchronisation
may or may not be available, as GPS signals are absorbed or weakened by building structures. There is no other time
reference such systems can rely onbecause in such a distributed system there are just a series of imperfect computer clocks.

In distributed systems, all the different nodes are supposed to have the same notion of time, but quartz oscillators
oscillate at slightly different frequencies. Hence, clocks tick at different rates (called clock skew), resulting in an increasing
gap in perceived time. The difference between two clocks at a given pot is called clock offset. The clock synchronisation
problem aims to minimise the clock skew and subsequently the offset between two or more clocks. A clock can show a
positive or negative offset with regard to a reference clock (e.g., UTC), and will need to be resynchronised periodically.
One cannot just set the clock to the “correct” time: jumps, particularly backwards, can confuse software and operating
systems. Instead, we aim for gradual compensation by correcting the skew: if a clock runs too fast, make it run slower
until correct and if a clock runs too slow, make it run faster until correct.

Synchronisation can take place in different forms:

• Based on physical clocks: absolute to each other by synchronising to an accurate time source (e.g., UTC),
absolute to each other by synchronising to locally agreed time (i.e., no link to a global time reference), where the
term absolutemeans that the differences in timestamps are proper time intervals.

• Based on logical clocks (i.e., clocks are more like counters): timestamps may be ordered but with no notion of
measurable time intervals.

In either case, the DS endpoints synchronise using a shared network. For physical clock synchronisation, network
latenciesmust be considered as packets traverse from a sending node to a receiving node. In aperfect network, messages
always arrive, with a propagation delay of exactly d; the sender sends time T in a message, the receiver sets its clock to
T + d, and synchronisation is exact.

In a deterministic network, messages arrive with a propagation delay 0 < d ≤ D; the sender sends time T in
a message, the receiver sets its clock to T + D

2 , and therefore the synchronisation error is at most D
2 . Deterministic

communication is the ability of a network to guarantee that a message will be transmitted in a specified, predictable
period of time.

3.1 Synchronisation in the Real World

Most off-the-shelf networks are asynchronous, that is, data is transmitted intermittently on a best-effort basis. They
are designed for flexibility, not determinism, and as a result, propagation delays are arbitrary and sometimes even
unsymmetric (i.e., upstream& downstream latencies are different). Therefore, synchronisation algorithms are needed
to accommodate these limitations.
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3 TIME SYNCHRONISATION INDISTRIBUTED SYSTEMS

3.1.1 Cristian’s Algorithm

Cristian’s algorithm attempts to compensate for symmetric network delays:

1. The client remembers the local time T0 just before sending a request.

2. The server receives the request, determines TS , and sends it as a reply.

3. When the client receives the reply, it notes the local arrival time T1.

4. The correct time is then approximately (TS + (T1−T0)
2 ).

The algorithm assumes symmetric network latency. If the server is synced to UTC< all clients will follow UTC.
Limitations of Cristian’s algorithm include:

• Assumes a symmetric network latency;

• Assumes that timestamps can be taken as the packet hits the wire / arrives at the client;

• Assumes that TS is right in the middle of the server process; for example, consider the server process being
pre-empted just before it sends the response back to the client, which will corrupt the synchronisation of the
client.

3.1.2 Berkeley Algorithm

In the Berkeley algorithm, there is no accurate time server: instead, a set of client clocks is synchronised to their
average time. The assumption is that offsets / skews of all clocks follow some symmetric distribution (e.g., a normal
distribution) with some clocks going faster and others slower, and therefore a mean value close to 0.

1. One node is designated to be themaster nodeM .

2. The master node periodically queries all other clients for their local time.

3. Each client returns a timestamp or their clock offset to the master.

4. Cristian’s algorithm is used to determine and compensate for RTTs, which can be different for each client.

5. Using these, the master computes the average time (thereby ignoring outliers), calculates the difference to all
timestamps it has received, and sends an adjustment to each client. Again, each computer gradually adjusts its
local clock.

Client clocks are adjusted to run faster or slower, to be synced to an overall agreed system time. The client networks is an
intranet, i.e., an isolated system. Therefore, the Berkeley algorithm is an internal clock synchronisation algorithm.
The Berkeley algorithmwas implemented in theTEMPO time synchronisation protocol, whichwas part of the Berkelely
UNIX 4.3BSD system.

3.2 Logical Clocks

Logical clocks are another concept linked to internal clock synchronisation. Logical clocks only care about their
internal consistency, but not about absolute (UTC) time; subsequently, they do not need clock synchronisation and
take into account the order in which events occur rather than the time at which they occurred. In practice, if clients or
processes only care that event a happens before event b, but don’t care about the exact time difference, they can make
use of a logical clock.

We can define the happens-before relation a → b:

• If events a and b are within the same process, then a → b if a occurs with an earlier local timestamp: process
order.

• If a is the event of a message being sent by one process, and b is the event of the message being received by another
process, then a → b: causal order.
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3 TIME SYNCHRONISATION INDISTRIBUTED SYSTEMS

• We also have transitivity: if a → b and b → c, then a → c.

Note that this only provides a partial order: if two events a and b happen in different processes that do not exchange
messages (not even indirectly), then neither a → b nor b → a is true. In this situation, we say that a and b are
concurrent and write a ∼ b, i.e., nothing can be said about when the events happened or which event happened first.

Happens-before can be implemented using the Lamport scheme:

1. Each process Pi has a logical clockLi, whereLi can be simply an integer variable initialised to 0.

2. Li is incremented on every local event e; we writeLi(e) orL(e) as the timestamp of e.

3. When Pi sends a message, it incrementsLi and copies its content into the packet.

4. When Pi receives a message from Pk, it extractsLk and setsL := max(Li, Lk) and then incrementsLi.

This guarantees that if a → b, thenLi(a) < Lk(b), but nothing else.

The primary limitation of Lamport clocks is that they do not capture causality. Lamport’s logical clocks lead to
a situation where all events in a distributed system are ordered, so that if an event a (linked to Pi) “happened before”
event b (linked to Pk), i.e., a → b, then awill allso be positioned in that ordering before b such that Li(a) < Lk(b)
or simply L(a) < L(b); however, nothing can be said about the relationship between two events a& b by merely
comparing their time valuesLi(a) andLk(b.): we can’t tell if a → b or b → a or a ∼ b unless they occur in the same
process.

3.2.1 Vector Clocks

In practice, causality is captured by means of vector clocks:

1. There is an ordered list of logical clocks, with one per process. Each process Pi maintains a vector ~Vi, initially
containing all zeroes. Each index k of a vector clock ~Vi[k] represents the number of events that processPi knows
have occurred in process Pk. ~Vi[i] is the count of events that have occurred locally at process Pi, while ~Vi[k] (for
k 6= i) is the count of events in process Pk that Pi is aware of.

2. On a local event e, Pi increments its own clock component ~Vi[i]. If the event is “message send”, a new ~Vi is
copied into the packet, so that on message sends the current vector state is included in the message.

3. If Pi receives a message from Pm, then each index ~Vi[k]where k 6= i is set to max( ~Vm[k], ~Vi[k]), and ~Vi[i] is
incremented.

Intuitively, ~Vi[k]is the number of events in process Pk that have been observed by Pi.

Figure 1: Vector clocks example
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4 THENTP PROTOCOL

In the above example, when process P2 receives messagem1, it merges the entries from P1’s clock by choosing the
maximum value of each position. Similarly, when P3 receivesm2, it merges in P2’s clock, thus incorporating the
changes from P1 that P2 already saw. Vector clocks explicitly track the transitive causal order: f ’s timestamp captures
the history of a, b, c, & d.

To use vector clocks for ordering, we can compare them piecewise:

• We say ~Vi = ~Vj if and only if ~Vi[k] = ~Vj [k]∀k.

• We say ~Vi ≤ ~Vj if and only if ~Vi[k] ≤ ~Vj [k]∀k.

• We say ~Vi < ~Vj if and only if ~Vi ≤ ~Vj and ~Vi 6= ~Vj .

• We say ~Vi ∼ ~Vj otherwise, e.g., ~Vi = [2, 0, 0] and ~Vj = [0, 0, 1].

For any two event timestamps T (a)& T (b):

• if a → b, then T (a) < T (b); and

• if T (a) < T (b), then a → b.

Hence, we can use timestamps to determine if there is a causal ordering between any two events.

Figure 2: Lamport clocks versus vector clocks

4 The NTP Protocol

The options for computer clocks are essentially as follows:

• Option A: stick to crystals.

– Costly precision manufacturing.
– Works indoors.
– Temperature Compensated Crystal Oscillator (TCXO).
– Oven Controlled Crystal Oscillator (OCXO).
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4 THENTP PROTOCOL

• Option B: buy an atomic clock ($50,000 – $100,000) or a GNSS receiver (based on an atomic clock, but doesn’t
work indoors), or a time signal radio receiver if you are based in central Europe.

• Option C: use software-based approaches to discipline cheap crystal clocks. Less quality, but useful for certain
applications, and works indoors.

Distributed master clocks provide a time reference to hosts that are inter-connected via a network. The underlying
time-synchronisation protocols combine aspects of Cristian’s algorithm (i.e., RTD calculation) and Berkeley’s algorithm
(i.e., combining multiple reference time sources). Good time synchronisation requires:

• Good time references: easily done with GPS, atomic clocks, etc.

• Predictable / symmetric / deterministic network latencies: doable in LAN setups, but not guaranteed in Internet
data communication.

There are two main distributed master clock protocols:

• Network Time Protocol (NTP): defined in RFC 5905, originally used in the Unix-based NTP daemon, one
of the first Internet protocols that ever evolved.

• Precision Time Protocol (PTP): designed for managed networks, e.g., LAN.

Figure 3: NTP& PTP characteristics

In uni-directional synchronisation a reference clock sends a timestamp to a host via a network. The host then uses
the timestamp to set its local clock. Useful when message latencies are minor relative to the synchronisation levels
required.

In round-trip synchronisation (RTS) a host sends a request message, receives a reference clock response message with
known (local) submission & arrival times, allowing for the calculation of the round-trip delay (1) and the host clock
error (2), i.e., the phase offset. Variations of RTS form the basis for NTP& PTP.

δ = (Ti+3 − Ti)− (Ti+2 − Ti+1) (1)

θ = (Ti+1 − Ti) +
(Ti+2 − Ti+3)

2
(2)
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4 THENTP PROTOCOL

Figure 4: RTS example

4.1 NTP

The NTP architecture, protocol, & algorithms have evolved over the last 40 years to the latest NTP Version 4. NTP is
the standard Internet protocol for time synchronisation & co-ordinated UTC time distribution. It is a fault-tolerant
protocol, as it automatically selects the best of several available time sources to synchronise with. It is highly scalable, as
the nodes form a hierarchical structure with reference clock(s) at the top:

• Stratum 0: Time Reference Source (e.g., GPS, TAI atomic clocks, DCF 77).

• Stratum 1: Primary Time Server.

NTP applies some general aforementioned principles such as avoiding setting clocks backwards and avoiding large step
changes; the required change (positive or negative) is amortised over a series of short intervals (e.g., over multiple ticks).

NTP is the longest-running and continuously operating Internet protocol (since around 1979). Government agencies
in many other countries and on all continents (including Antarctica) operate public NTP primary servers. National &
regional service providers operate public NTP secondary servers synchronised to the primary servers. Many government
agencies, private& public institutions including universities, broadcasters, financial institutions, & corporations operate
their own NTP networks.

Figure 5: NTP hierarchy
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4 THENTP PROTOCOL

In client/server mode, UDP is used for data transfer (no TCP), i.e., NTP over UDP on UDP port 123. There is also
the optional use of broadcasting or multicasting (not covered here). Several packet exchanges between the NTP client
and the Stratum server take place to determine the client offset:

1. The client sends a packet with originate timestampA.

2. The server receives the packet and returns a response containing the originate timestampA as well as the receive
timestampB and the transmit timestampC .

3. The client receives this packet and processesA,B,C , as well as the packet arrival timeD of the received packet;
it then determines the offset and the round-trip delay (RTD).

Figure 6: NTP operation

The above example is of a symmetric network with a 15ms delay each way; the client’s clock lags 5ms behind the server’s
clock:

RTD = (D −A)− (C −B) = 32− 2 =30ms

Offset =
((B −A) + (C −D))

2
=

(20 + (−10))

2
=5ms

Figure 7: Network delay asymmetry

In the above example, the client’s clock still lags 5ms behind the servers clock, but there is an asymmetric network
latency: 10ms versus 20ms:

RTD = (D −A)− (C −B) = 32− 2 =30ms

Offset =
((B −A) + (C −D))

2
=

(15 + (−15))

2
=0ms

Typical NTP performance for various set-ups is as follows:

• Small LAN:∼10 microseconds best possible case on a 2-node LAN,∼220 microseconds on a real-world small
LAN.
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4 THENTP PROTOCOL

• Typical large-building LAN:∼2ms.

• Internet with a few hops: 10–20ms.

• Long distance and/or slow or busy link: 100ms–1s.

Accuracy is further degraded on networks with asymmetric traffic delays.

TheNTP time format has a reference scale of UTC. Time parameters are 64 bits long:

• Seconds since January 1, 1900 (32 bits, unsigned).

• Fraction of second (32 bits, unsigned).

The NTP time format has a dynamic range of 136+ years, with rollover in 2036. Its resolution is 2-32 seconds∼232
picoseconds.

4.1.1 NTP Protocol Header

Figure 8: NTP protocol header

• LI (Leap Indicator) 2-bit:

– 0: no warning;
– 1: last minute of the day has 61 seconds;
– 2: last minute of the day has 59 seconds.

• VN (Version Number) 2-bit: currently 4.

• Mode: 3-bit integer, including:

– 3: client;
– 4: server.

• Stratum: 8-bit integer for Stratum server hierarchy level, including:

– 1: primary server (i.e., stratum 1);

9



4 THENTP PROTOCOL

– 2–15: secondary server.

• Poll: 8-bit signed integer representing the maximum interval between successive message, in log2 seconds. This
field indicates the interval at which the client will poll the NTP server for time updates. The client dynamically
adjusts this interval based on its clock’s stability & the network conditions to balance accuracy & network load.

• Precision: 8-bit signed integer representing the resolution of the system clock (the tick increment) in log2
seconds; e.g., a value of -18 corresponds to a resolution of about one microsecond (2-18) seconds.

• Root Delay: round-trip packet delay from a client to a stratum 1 server. It gives a crude estimate of the worst-case
time transfer error between a client and a stratum 1 server due to network asymmetry, i.e., if all of the round-trip
delay was in one direction and none in the other direction.

For a single client clock, the dispersion is a measure of howmuch the client’s clockmight drift during a synchronisation
cycle:

Dispersion = DR× (D −A) + TS

where (D − A) is the duration of a synchronisation cycle, with A being the first timestamp and D being the last
timestamp, DR being the local clock skew (i.e., the deviation of actual clock tick frequency to nominal clock tick
frequency), and TS being the timestamping errors due to the finite resolution of the clock and delays in reading the
clock when fetching a timestamp.

The root dispersion of a client clock is the combined dispersions of all stratum servers along the path to a Stra-
tum 1 server.

The root distance is the sum of root dispersion and half the root delay. It provides a comprehensive measure of
the maximum error in time synchronisation as the total worst case timing error accumulated between the Stratum 1
server and the client.

Figure 9: Example root dispersion & root delay
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4 THENTP PROTOCOL

Figure 10: Annotated NTP protocol header

A reference ID (refid) is a 32-bit code (4 ASCII bytes) identifying the particular server or reference clock, e.g.,:

• GPS: Global Positioning System;

• GAL: Galileo Positioning System;

• PPS: Generic Pulse-Per-Second;

• DCF: LF Radio DCF77Mainflingen, DE 77.5 kHz;

• WWV: HF RadioWWV Fort Collins, Colorado;

• GOOG: unofficial Google refid used by Google NTP servers as time4.google.com.

Figure 11: NTP architectural overview

An NTP client synchronises with multiple stratum servers. It uses a range of algorithms to deal with variable &
asymmetric non-deterministic network delays and to determine its most likely offset, thereby running a series of
processes:

• The peer process runs when a packet is received;

• The poll process sends packets at intervals determined by the clock discipline process & remote server;

• The system process runs when a new update is received;

11



4 THENTP PROTOCOL

• The clock discipline process implements clock time adjustments;

• The clock adjust process implements periodic clock frequency (VFO) adjustments.

For each stratum there is a poll process that sends NTP packets at intervals ranging from 8 seconds to 36 hours.
The corresponding peer processes receive NTP packets and, after performing some packet sanity tests, T1 – T4 are
determined / extracted. The NTP daemon calculates offset & delay as seen before. The time series of offset & delay
values calculated by multiple peer processes are processed by a sequence of algorithms, thus eliminating servers with
long RTD or servers that show “strange” offsets which, for example, are often the result of network asymmetries.

4.1.2 Mitigation Algorithms

The clock filter algorithm uses a sliding window of eight samples for each stratum server and picks out the sample with
the least expected error, i.e., it chooses the sample with the minimumRTD. It is effective at removing spikes resulting
from intermittent network congestions.

Figure 12: Clock filter algorithm before and after

Figure 13: The wedge scattergram plots sample points of offset versus delay (RTD) collected over a 24-hour period by a
client clock communicating with a single stratum server. For this experiment, the client clock is externally synced to the
stratum server, so the offset should be zero; however, as the (network) round trip delay increases, the offset variability
increases, resulting in increasingly larger offset errors. Therefore, the best samples are those at the lowest delay. This is
taken into account by the clock filter algorithm.

The intersection algorithm selects a subset of peers (i.e., stratum servers) and identifies truechimers & truetickers
based on the intersection of confidence (offset) intervals (i.e., min/max offsets of a clock over x readings determines its
invterval).

12



4 THENTP PROTOCOL

Figure 14: Plot range of offsets calculated by each peer with 1, 2, & 3 overlapping

Marzullo’s algorithm is an agreement protocol for estimating accurate time from a number of noisy time sources by
intersecting offset intervals; if some intervals don’t intersect, it considers the intersection of the majority of intervals. It
eliminates false tickers.

The clock cluster algorithm processes the truechimers returned by the clock intersection algorithm. It produces a list
of survivors by eliminating truechimers that have a comparably large root delay & root dispersion. Finally, the clock
combining algorithm averages the time offsets of survivors using their root dispersions as a weight, i.e., survivors with
a small root dispersion have a higher weight.

The combining algorithm provides a final offset, so the client clock can be adjusted. The UNIX Clock Model
provides the kernel variable tickadjwhich amortises the required change gradually by making adjustments every tick
e.g., every 10 milliseconds.
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