
CT3536 (Games Programming)
Section 8

Unity Audio
Saving data with PlayerPrefs

Fun with Trigonometry
Some Game Dev Patterns & Techniques

Runtime Efficiency in Unity

Audio in Unity
• Unity provides 3D (spatialized) audio with configurable attenuation settings, as well as

dynamic runtime effects such as reverb
• AudioClip - this is associated with a sound file (typically wav, ogg, or mp3)
• It isn't a MonoBehaviour/component, but rather it's a simple data/media object which needs

an AudioSource to actually play it (in the same way that a JPG is not the same as a sprite)
• AudioSource – a component attached to a game object which can emit audio. An AudioSource

has one specific AudioClip associated with it at a time (this might remain fixed or it might
change as the game runs). Methods and properties:
• Play(), Stop(), Pause() methods
• isPlaying (Boolean)
• clip (reference to AudioClip object it’s currently using)
• loop (Boolean)
• Volume (in the range 0.0 to 1.0)

• AudioListener – a component; there should be one (and only one) of these instantiated at a
time. Typically attached to the object being controlled by the player (or to the camera)

• Example - my AudioObjectSimple class (see next slides)

// AudioObjectSimple only plays one sound at a time, either randomly from its list or
by id number

public class AudioObjectSimple : MonoBehaviour {

// inspector settings
public float volume = 1f;
public bool varyPitch = true;
public List<AudioClip> sounds = new List<AudioClip>();
//

private AudioSource source;

void Awake () {
source = gameObject.AddComponent<AudioSource>();
source.maxDistance = 7f;
source.spatialBlend = 1f; // full 3d
source.rolloffMode = AudioRolloffMode.Custom; // if we leave it at the

default (logarithmic) the max distance isn't where volume stops, it's where it stops
attenuating

source.volume = volume;
}

public void PlayRandomSound(int lowestIdx=0) {
if (sounds.Count==1)

source.clip = sounds[0];
else

source.clip = sounds[Random.Range(lowestIdx, sounds.Count)];

if (varyPitch)
source.pitch = Random.Range(0.833f, 1.2f);

source.Play();
}

public void PlaySoundByIndex(int idx) {
if (idx<sounds.Count) {

source.clip = sounds[idx];
if (varyPitch)

source.pitch = Random.Range(0.91f, 1.1f);
source.Play();

}
}

} // end of class

Multiple sounds playing at once
public class MyScript : MonoBehaviour {

private List<AudioSource> audioSources = new List<AudioSource>();

private AudioSource GetAudioSource() {
for (int i=0; i<audioSources.Count; i++) {

if (!audioSources[i].isPlaying) {
audioSources[i].loop = false;
return audioSources[i];

}
}
AudioSource asrc = gameObject.AddComponent<AudioSource>();
audioSources.Add(asrc);
asrc.playOnAwake = false;
asrc.dopplerLevel = 0f; // valid range is 0-5
asrc.loop = false;
return asrc;

}

}

AudioSource.PlayClipAtPoint()
static method

• This is a handy way to play a single sound clip at an arbitrary location in
the 3D world (not attached to any moving object)

• https://docs.unity3d.com/ScriptReference/AudioSource.PlayClipAtPoin
t.html

• AudioSource.PlayClipAtPoint(AudioClip clip, Vector3 position, float
volume = 1.0f);

• You need to have an instantiated AudioClip, of course. The easiest way
is via a public member in a script (i.e. assignable by dragging in the
inspector) - or perhaps an array of them (as above in
AudioObjectSimple)

https://docs.unity3d.com/ScriptReference/AudioSource.PlayClipAtPoint.html
https://docs.unity3d.com/ScriptReference/AudioClip.html
https://docs.unity3d.com/ScriptReference/Vector3.html

Saving (persisting) data to disk
• You can use the standard C# file handling class ‘File’
• Binary or Text files
• You can save to:
• Application.persistentDataPath + “/file.txt”

• Which maps to a directory your app can access, e.g. on Windows:
• C:\Users\Sam\AppData\LocalLow\PsychicSoftware\DemonPit\file.txt

PlayerPrefs
• Static methods of the PlayerPrefs class provide a very easy way to save

and load small pieces of data, to persist between game sessions
• Stored in a device/OS-specific place, e.g.:
• Windows: in the registry
• Mac: in ~/Library/Preferences

• DeleteAll Removes all keys and values from the preferences.
• DeleteKey Removes key and its corresponding value from the preferences.
• GetFloat Returns the value corresponding to key in the preferences if it exists.
• GetInt Returns the value corresponding to key in the preferences if it exists.
• GetString Returns the value corresponding to key in the preferences if it exists.
• HasKey Returns true if key exists in the preferences.
• Save Writes all modified preferences to disk (also occurs on normal quit)
• SetFloat Sets the value of the preference identified by key.
• SetInt Sets the value of the preference identified by key.
• SetString Sets the value of the preference identified by key.

Running code in the Editor
(to assist the scene editing process,

etc.)

(devtools are an important category of code that programmers
write- to assist other members of the team rather than as part of

the final game itself)

void OnDrawGizmosSelected() {
// debug draw in scene view only, when selected only
Gizmos.color = Color.red;
Gizmos.DrawSphere(transform.position+posOffset, 0.02f);

}

Unity can run code in the Editor (rather than the
live game)
e.g. I have used OnDrawGizmosSelected() to
draw a red sphere to help get posOffset set
correctly, in my FakeShadowCaster script

Editor
Code

Editor code added to Unity menus

• You can write code to run in the editor whenever you require,
• e.g. to add a collider to objects and size it correctly
• e.g. to find all lights in the scene and change one of their settings
• Or anything else which automates a manual task during scene

editing
• If you want a method to be added to a Unity menu, its class script has

to be stored in a folder named 'Editor'
• Now code can be run, at design-time, from a menu item, and can

interact with the Scene and the Assets
• (See next slide)

using UnityEditor;

public class CloneWithMove : EditorWindow {
Vector3 perObjectOffset;
int numClones = 1;

[MenuItem("Window/The Necromancer/Clone Selected Objects with Move %F3")]
static void MoveAndClone() {

CloneWithMove window = ScriptableObject.CreateInstance<CloneWithMove>();
window.position = new Rect(Screen.width / 2, Screen.height / 2, 250, 160);
window.Show();

}

private void OnGUI() {
EditorGUILayout.LabelField("Clone "+ Selection.count +" object(s)", EditorStyles.wordWrappedLabel);
GUILayout.Space(10);

perObjectOffset = EditorGUILayout.Vector3Field("Per Object Offset:", perObjectOffset);

numClones = EditorGUILayout.IntField("Num Clones:", numClones);

if (GUILayout.Button("Make Clones")) {
DoCloning();
this.Close();

}

if (GUILayout.Button("Cancel"))
this.Close();

}

void DoCloning() {
foreach (GameObject go in Selection.gameObjects) {

for (int num=1; num<=numClones; num++) {
GameObject go2 = Instantiate(go);
go2.transform.SetParent(go.transform.parent, false);
go2.transform.localPosition =

go.transform.localPosition + perObjectOffset * num;
}

}
}

}

public class AddColliderToFitChildren : MonoBehaviour {

[MenuItem("Window/The Necromancer/Add Collider To Fit Active Children")]
static void FitToChildren() {
foreach (GameObject rootGameObject in Selection.gameObjects) {
bool hasBounds = false;
Bounds bounds = new Bounds(Vector3.zero, Vector3.zero);

Quaternion rot = rootGameObject.transform.rotation;
rootGameObject.transform.rotation = Quaternion.identity;
for (int i = 0; i < rootGameObject.transform.childCount; i++) {
Transform t = rootGameObject.transform.GetChild(i);
if (t.gameObject.activeInHierarchy) {
Renderer childRenderer = t.GetComponent<Renderer>();
if (childRenderer!=null) {
if (hasBounds) {
bounds.Encapsulate(childRenderer.bounds);

}
else {
bounds = childRenderer.bounds;
hasBounds = true;

}
}

}
}

BoxCollider collider = rootGameObject.AddComponent<BoxCollider>();
collider.center = bounds.center - rootGameObject.transform.position;
collider.size = bounds.size;

rootGameObject.transform.rotation = rot;
}

}
}

Remove rotation by setting it to
Quaternion.identity before calculating
minimum axis-aligned bounding boxes.

Revert after.

Invisible Wall Builder

Click to indicate start + end of invisible walls (which exist as colliders only)

Raycast against a layer mask (I have set up WalkableSurface as a layer here)

Each piece of wall is a Game Object created as a child of the
main object (the one with the InvisibleWallBuilder script)

With MeshResolution==0 it creates boxes

With MeshResolution>0 it creates more complex collision meshes
conforming to the surface

InvisibleWallBuilder code is in a separate PDF. This also illustrates
how to programmatically build meshes as a set of triangles.

Pathfinding for Vehicles

Fun with vectors
(basic operations which every game

programmer should know)

Some Vector Operations
• Vectors are fundamental to several useful trigonometry/co-ordinate geometry

operations; in Unity use Vector2 and Vector3 classes
• Vector3 has .x, .y., .z components and can represent direction + length, or perhaps

just a 3D position
• Length (magnitude) of a vector is Mathf.Sqrt(v.x*v.x + v.y*v.y + v.z*v.z), (thanks

Pythagoras!) or in Unity use v.magnitude
• Multiplying a vector by a scalar (float) simply multiplies .x, .y. and .z independently
• Adding two vectors simply adds their .x, .y., and .z independently, or in Unity use v3 =

v1 + v2 (since the + operator has been overloaded for vectors)
• To get the difference between two vectors, subtract the .x, .y. and .z separately, or in

Unity use vdiff = v1 - v2
• Length (magnitude) of a difference vector is distance between two points v1 and v2
• Normalized difference vector is the direction from one point to the other, e.g. to find

a position p3 that is 25 units towards point p2 from point p1:
• Vector3 diff = p2 - p1;
• Vector3 dir = diff.normalized;
• Vector3 p3 = p1 + dir * 25f;

• Length of a velocity vector is speed

Some Vector Operations
• In 2D games, Arctan(y, x) is also very useful (turns a direction vector into a rotation)
• In Unity:

float rotation = Mathf.Atan2(float y, float x);

• To turn a rotation angle into x,y components (i.e. the reverse of the above):
• x = cos(ang) e.g. cos(0)=1, cos(PI/2)=0, cos(PI)=-1
• y = sin(ang) e.g. sin(0)=0, sin(PI/2)=1, sin(PI)=0

See also: https://docs.unity3d.com/Manual/VectorCookbook.html

https://docs.unity3d.com/Manual/VectorCookbook.html

Dot Product

The dot product of two normalised vectors
float dot = Vector3.dot(vec1, vec2);

This is the cosine of the angle between the vectors
+1 means the two vectors are facing precisely the same way
-1 means they're facing precisely opposite
0 means they're perpendicular
+0.9 (for example) means they're facing "almost" the same way

So for example in a top-down 2D game, if we want to know if a zombie
can see a player character (assuming the zombie has 180 degree field
of view):
• Obtain normalised vectors (a) zombie's facing direction (in Unity, we can use

zombie.transform.forward for this), and (b) direction from zombie to player (i.e. get the
normalized difference in positions, as in last slide)

• If the dot product of (a) and (b) is greater than 0, the zombie can see the player
• (The next step is probably a raycast to see if the zombie's view of the player is blocked)

To get the actual angle between the vectors, use the arccosine of the
dot product

float ang = Mathf.Acos(dot);

Some Vector Ops: Example
Demon Pit Lasso sections

(this code is in Player.cs)
void FixedUpdate() {

if (!isTeleporting && targetedTeleportNode!=null &&
Input.GetMouseButton(1)) {

isTeleporting = true;
rigid.isKinematic = true;
rigid.useGravity = false;
Vector3 myPos = transform.position;
Vector3 teleportPos = targetedTeleportNode.transform.position;
Vector3 diff = teleportPos-myPos;
initialDistanceToTeleportNode = diff.magnitude;

// spawn the lasso sections
diff = teleportPos-myPos;
Vector3 directionToTeleportNode = diff.normalized;

int numSections = Mathf.FloorToInt(initialDistanceToTeleportNode/2f)+1;
float lengthOfAllSections = numSections * 2f;
float offsetDist = lengthOfAllSections-diff.magnitude;
for (int i=0; i<numSections; i++) {

GameObject go = Instantiate(lassoSectionPrefab);
go.transform.position = myPos + (i*2f-offsetDist)* directionToTeleportNode;
go.transform.LookAt(teleportPos);
activeLassoSections.AddFirst(go);

}

}

Class members:
activeLassoSections is a List<GameObject>
initialDistanceToTeleportNode is a float
targetedTeleportNode is a GameObject

2 metres in length

if (targetedTeleportNode!=null && isTeleporting) {
// move player rapidly towards teleport node
Vector3 diff = (targetedTeleportNode.transform.position - transform.position);
float dist = diff.magnitude;
if (dist>1f) {

Vector3 dir = diff.normalized;
rigid.MovePosition(transform.position + dir*Time.fixedDeltaTime*50f*(1f+dist/30f));
float fracDistToGo = dist/initialDistanceToTeleportNode;
if (fracDistToGo>0.5f)

fpsCamera.fieldOfView = Mathf.Lerp(60f, 90f, 2f*(1f-fracDistToGo));
else

fpsCamera.fieldOfView = Mathf.Lerp(90f, 60f, 2f*(0.5f-fracDistToGo));
}
else {

// finished
rigid.isKinematic = false;
rigid.useGravity = true;
isTeleporting = false;
fpsCamera.fieldOfView = 60f;
foreach(GameObject go in activeLassoSections)

Destroy(go);
activeLassoSections.Clear();

}
}

} // end of FixedUpdate()

Some Vector Ops: Examples
Controlling a homing missile

(this code is in Projectile.cs)
void FixedUpdate() {

if (hasHoming && isAlive) {
Vector3 pos = transform.position;
Vector3 vel = rigid.velocity;
Vector3 forward = vel.normalized;

if (homingTarget==null || homingTarget.isDead) { // lock on ?
homingTarget = null;
float closestDist = HOMING_DIST*10f;
for (int i=0; i<MonsterManager.allActiveMonsters.Count; i++) {

Vector3 diff = MonsterManager.allActiveMonsters[i].transform.position - pos;
float dist = diff.magnitude;
if (dist <= HOMING_DIST) {

Vector3 dir = diff.normalized;
float dot = Vector3.Dot(forward, dir);
if (dot>0.9f) {

if (dist<closestDist) {
closestDist = dist;
homingTarget = MonsterManager.allActiveMonsters[i];

}
}

}
}

}

if (homingTarget!=null) {
Vector3 targPos = homingTarget.gameObject.transform.position;
if (homingTarget.isWalker)

targPos.y += 0.9f; // don't aim for their feet!
Vector3 turnToFacing = (targPos-pos).normalized;
Vector3 newFacing = Vector3.RotateTowards(forward, turnToFacing, Time.fixedDeltaTime*homingStrength, 1f);
rigid.velocity = newFacing * vel.magnitude;
if (homingTurnFacing)

transform.forward = newFacing;
}

}
}

MonsterManager.allActiveMonsters
is a List<> of Monster objects

homingTarget is a Monster object

Vector3 result = Vector3.RotateTowards(Vector3 current, Vector3
target, float maxRadiansDelta, float maxMagnitudeDelta);

HOMING_DIST is a float

https://docs.unity3d.com/ScriptReference/Vector3.html
https://docs.unity3d.com/ScriptReference/Vector3.html

Some Vector Ops: Examples
Part of the Explosion logic.

(this code is in Projectile.cs)
public void RemoveWithParticleFx(Vector3 explosionPoint, GameObject particlePrefab) {

Destroy(this.gameObject);

GameObject go = Instantiate(particlePrefab);
Vector3 diff = Player.currPlayerPos - explosionPoint;

if (doExplosionPositionOffsets) { // doExplosionPositionOffsets is a public Boolean (inspector setting)
float moveDist = 2.5f;
if (diff.magnitude<3f)

moveDist = diff.magnitude - 0.5f;
// move the particle emitter closer to the player to stop ugly clipping with geometry
go.transform.position = explosionPoint + (diff.normalized*moveDist);

}
else

go.transform.position = explosionPoint;

if (explosionRadius>0f && explosionDamage>0f) {
// Physics.OverlapSphere queries the physics world to get an array of colliders inside a sphere region
// The results are stored in the array collResults which is predefined to avoid garbage
int hits = Physics.OverlapSphereNonAlloc(explosionPoint, explosionRadius, collResults,

GameManager.explosionDamageLayerMask); // this layer mask will select only Player or Monster objects
for (int i=0; i<hits; i++) {

go = collResults[i].gameObject;
if (go.layer==GameManager.layerPlayer)

go.GetComponent<Player>().OnHitByExplosion(explosionDamage, explosionPoint);
else

go.GetComponent<Monster>().OnHitByExplosion((int)explosionDamage, explosionPoint);
}

}
}

Some useful game programming
patterns and efficiency

considerations

Binning (Bucketing)
• Storage of data elements in small sets, separated by (typically) their region in space
• Each small set may be stored as a simple array or linked list
• The high-level structure is essentially a 2D or 3D array, indexed on world position rounded off

to some predefined size (e.g. 5m x 5m x 5m) – each array entry is a Bin (or Bucket)
• As objects move, they are added to/removed from bins as appropriate
• Only a small set has to be traversed when we need to identify interactions between moving

objects
• This is certainly how Unity's physics engine also operates, in order to know which objects are

close to each other, prior to performing more expensive collision calculations
• E.g. for bullets in my “Orbs.it” web-game:

• Orbs are registered to bins
• Bullets only consider orbs in the same bin
• See also:

http://www.psychicsoftware.com/category/orbs-it/

http://www.psychicsoftware.com/category/orbs-it/

The Matterjs collision detector
Demonstrates coarse-to-fine algorithms

• Matterjs is a Javascript (i.e. open source) physics engine for 2D web-games (see
http://brm.io/matter-js/)

• Its collision detector is an interesting case study in efficiency for realtime systems
• How to efficiently and accurately find collisions between pairs of objects when there may be

thousands of objects, and it’s expensive to calculate collisions on pairs of objects if they have
complex shapes?

• Three steps (coarse-to-fine, aka broad-to-narrow)
• Broadphase (coarse stage)

• As objects move, they are registered/de-registered from 'buckets' that they enter/leave
(default bucket size in matterjs is 48x48, and a grid of buckets covers the world)

• Only consider objects for collision if they are registered to the same bucket
• Objects may be in multiple buckets at the same time (i.e. any bucket that their bounding

box overlaps)
• Midphase

• If objects are in the same bucket, then do their axis-aligned bounding boxes overlap?
• Narrow phase (fine stage)

• If both broadphase and midphase have been passed for a pair of objects, we can now
consider their actual vertices to look for penetration. This will also yield precise point(s)
of contact and surface normals at those points

http://brm.io/matter-js/

Texture Atlases
• Large images containing a collection, or "atlas", of sub-images, each of which is a texture map

for some part of a 2D or 3D model.
• The sub-textures can be rendered by modifying the texture coordinates of the object's uvmap

on the atlas, essentially telling it which part of the image its texture is in (cookie cutter
analogy)

• In an application where many small textures are used frequently, it is often more efficient to
store the textures in a texture atlas which is treated as a single unit by the graphics hardware
• ideally a single draw call
• certainly a reduction in draw-state changes
in graphics API

Triggers (sensors)
• Invisible components that are

activated (triggered) when a
character or other object passes
inside them

• Very common (and useful)
mechanism in games

• In Unity, use a Collider with its
Trigger property checked

• Various things they're used for in
Goblins & Grottos:

Goblin speech
Cutscene triggers
Trap triggers
Level exit (finished)
Etc.

Various things I have written about G&G:
http://www.psychicsoftware.com/category/goblins-grottos/

http://www.psychicsoftware.com/category/goblins-grottos/

Runtime Efficiency (1/2)
• Spread out work so that it tends to happen on different frames (a single

very CPU-intensive frame could cause a visible stutter in framerate)
• Avoid putting code in Update() unless you really need it to happen

every frame
• Perhaps iterate a list of jobs that need to be done, processing just 1 of

them per frame
• Use Coroutines / Invoke calls instead, to make work happen at less

frequent intervals, or even to break large pieces of work over multiple
frames

• Avoid putting code in OnCollisionStay() unless you really need to
process it every frame (otherwise use OnCollisionEnter())

• One useful trick for visual effects that are optional to your game is to
monitor Time.deltaTime to see whether to deploy special effects, or
decide whether unimportant game objects should be culled.. i.e. is the
player's device struggling to achieve a good framerate?

Runtime Efficiency (2/2)
• Know your language's memory management and garbage collector!

• Different languages/runtimes have different approaches
• Know what is stored in the Stack and what is stored in Heap memory
• In C#, generally primitive data (int, float, etc.) and also structs are

stored in the Stack, while objects (including strings) are stored in the
Heap

• Stack data is local to a function and is released as soon as the function
ends. Heap data is longer-lived and will wait to be garbage-collected

• In C#, the GC approach is 'mark and sweep’
• Use non-alloc raycasts in Unity rather than obtaining a new array of

results each time (because arrays use the Heap)
• Use Object Pools (see below)
• Perhaps use multi-threading, or at least Coroutines (see 'Thread Ninja'

asset in the Unity Assetstore)

Unity's (Horrible)
Memory Management (1/2)

aka "Strings are your enemy"
• https://unitygem.wordpress.com/memory-management/
• https://blogs.msdn.microsoft.com/abhinaba/2009/01/30/back-to-basics-mark-and-

sweep-garbage-collection/
• https://unity3d.com/learn/tutorials/topics/performance-optimization/optimizing-

garbage-collection-unity-games
• When a new Heap object is requested, the following steps take place:

• First, Unity must check if there is enough free memory in the heap. If there is
enough free memory in the heap, the memory for the object is allocated.

• If there is not enough free memory in the Heap (or if the Heap is fragmented as
cannot provide a contiguous block of memory that is large enough), Unity
triggers the garbage collector in an attempt to free up unused heap memory.
This can be a slow operation. If there is now enough free memory in the heap,
the memory for the variable is allocated.

• If there isn’t enough free memory in the heap after garbage collection, Unity
increases the amount of memory in the Heap. This can be a slow operation. The
memory for the variable is then allocated.

• Strings use the Heap, and are immutable. Use StringBuilder where possible.

https://unitygem.wordpress.com/memory-management/
https://blogs.msdn.microsoft.com/abhinaba/2009/01/30/back-to-basics-mark-and-sweep-garbage-collection/
https://unity3d.com/learn/tutorials/topics/performance-optimization/optimizing-garbage-collection-unity-games

(2/2)
• Garbage Collector needs to check for the reachability of all objects

allocated on the heap – this means a check for whether they can be
accessed from any code that is or could be running – if they can be then
the object is retained otherwise it is released

• "Mark": start from root/global references, and recursively visit all
reachable objects, marking them as accessible

• "Sweep": pass through *all* objects and delete those not marked as
accessible

• No other processing can happen during the mark-and-sweep process,
hence framerate stutters can happen in realtime environments/games
• And players will hate you and mock your dev skills

• Minimise GC calls, and minimise the impact of them when they do
happen, by minimising the amount of objects being instantiated and
discarded

• See also: https://docs.unity3d.com/Manual/BestPracticeUnderstandingPerformanceInUnity4-1.html
• Modern generational garbage collectors improve things a lot: the partition of objects

into different generations (time intervals) based on time of allocation, and giving them
different GC policies depending on age (older generations are rarely tested as part of the
mark & sweep process). Unity does not use a modern garbage collector.. but they keep
promising to

https://docs.unity3d.com/Manual/BestPracticeUnderstandingPerformanceInUnity4-1.html

The Object Pool pattern
• Instantiating large numbers of objects at run-time can be CPU

expensive (esp. if they're complex and include sprites/meshes etc.)
• Deleting them can also be expensive, and subsequent garbage

collection may cause frame stutters
• The Object Pool pattern is used in games and other realtime systems:
• Stores a pool (data structure, e.g. List<>) of 'spare/unused' copies

of objects, currently inactive and unused, yet still instantiated in
memory

• At run-time, objects are taken from and returned to the pool,
rather than actually instantiating and deleting them from memory

• See my PoolManager class.. next two slides

public class PoolManager {

// Each dictionary entry is indexed by Prefab name
// Each LinkedList contains spare objects of that type

private static Dictionary<string,LinkedList<GameObject>> Pools = new
Dictionary<string, LinkedList<GameObject>>();

public static GameObject GetGameObject(string prefabName) {
if (!Pools.ContainsKey(prefabName))

Pools.Add(prefabName, new LinkedList<GameObject>());

LinkedList<GameObject> pool = Pools[prefabName];

GameObject go;
if (pool.Count>0) {

go = pool.First.Value;
go.SetActive(true);
pool.RemoveFirst();

}
else {

go = (GameObject)GameObject.Instantiate(Resources.Load(prefabName));
go.name = prefabName; // get rid of "(Clone)"

}

return go;
}

public static void ReturnGameObject(GameObject go) {
if (!Pools.ContainsKey(go.name))

Pools.Add(go.name, new LinkedList<GameObject>());

LinkedList<GameObject> pool = Pools[go.name];

pool.AddFirst(go);

go.transform.position = Vector3.zero;

if (go.transform.rotation.z!=0f) {
go.transform.rotation = Quaternion.identity;

}
go.SetActive(false);

}

}

• Often, implementations of the Object Pool pattern start by ‘pre-
warming’ the pools by instantiating (and deactivating) a bunch of
objects when the game starts

• I haven’t found this necessary to do in any of my games – I’m simply
trying to avoid garbage

Unity non-alloc Physics queries
• Recall the use of Physics.RaycastAll, Physics.OverlapBox,

Physics.OverlapSphere etc. for querying spatial interactions with
colliders in the game

• These methods return new arrays of RaycastHit structs… so if this is
done often, there can be a lot of overhead

• If you will need to make these tests often (i.e. multiple times per
second.. e.g. in a platformer game) you should use the "non-alloc"
versions:
• Physics.RaycastNonAlloc
• Physics.OverlapBoxNonAlloc
• Physics.OverlapSphereNonAlloc

• These methods receive an array as an argument, and they populate the
array with the results

• So you could, for example, create a static array and send that each time
the test was needed. The same array would then be re-used each time
without new or delete operations happening

Pre-calculated lookup tables (1/2)
In games (and other real-time systems) it's often useful to create custom
structures of 'lookup' information when the program or game level starts,
to reduce CPU load per-frame at run-time

E.g. snow in Goblins & Grottos:
Map load-time:

• Perform vertical raycasts downwards from top of the world, at horizontal intervals of
32 pixels, to find collision with highest physics body.

• Store in a lookup array indexed by: Math.floor(x/32)
Run-time:

• When we need a new snow particle, pick a random position just above the player's
current camera position in the game world

• Only create a particle if this position is higher than the lookup array at that horizontal
position (i.e. no snow underground!)

• As snow particles are updated, query the internal Matter.js buckets for objects
whose bounding box contains the particle position – but only if the snow particle is
currently below the value stored in the lookup array at its horizontal position.
• Rather than having the snow particles under ‘proper’ control of the physics

engine (since that would be too expensive for 100s of snowflakes)

Pre-calculated lookup tables (2/2)
Water/Lava in G&G

• This is simply a 2D lookup array (bins), indexed by Math.floor(x/32) and Math.floor(y/32),
containing the 'liquid type' at each position: 0=none, 1=water, 2=lava

• Moving objects periodically test this lookup array to see if they have just entered/left a
liquid

• Most objects only test once per 300ms; fast-moving ones test every frame; sleeping
objects don't test at all

Navmaps in G&G
• Navigation map: stores valid positions for AI-controlled wizards/witches to teleport to
• Valid positions are directly above static ground/platform objects (in a 32x32 pixel grid).
• At map load-time, iterate through all static physics bodies. For each: check whether or not

there is a static physics body directly above them
• Stored in a 1D array containing x,y positions
• At run-time, when a wizard/witch wants to teleport:

• Pick randomly from the array, until a position that's close enough is found
• Cast a ray downwards from just above this position, to decide the precise position to move the

wizard/witch to (if a non-static object is currently in the way, the character will therefore
teleport on top of it rather than inside it)

Scoping
• What is relevant for processing?

• Physics objects only if moving now or recently (physics engines normally look after this
with the concept of 'sleeping' or 'idling')

• Physics and other objects only if onscreen (or other specific times) – in Unity you could
use the Renderer.isVisible property, or MonoBehaviour.OnBecameVisible() and
MonoBehaviour.OnBecameInvisible() to control whether scripts are running

• Examples from G&G:
• enemy AI code only executes if the character is onscreen (or 'nearly' onscreen)
• I made some modifications to matterjs internal code (thank you, open-source!) so

that offscreen physics bodies are not normally processed
• Unless they are moving fast
• Or unless they have been specifically flagged to 'always process until time X' –

e.g. if an offscreen trapdoor opens then all nearby non-static physics bodies will
be flagged to "always process until now+3000ms")

• These specific use-cases were selected by studying the Chrome profiler for CPU
bottlenecks while the game runs

• Scoping can be very relevant for networked games with lots of moving objects. At what rate do
we need to send update network packets to the other players? - might depend on how close
the object is to them? (also consider zone-based structure for MMO server clusters)

