Security in Databases

November 14, 2023

Issues

- Legal and Ethical Issues
- Policy Issues
- System Issues levels at which security should be enforced.
- Security Levels

- DBMS typically includes security and an authorisation systems.
- Areas of consideration:
 - Preventing unauthorised access
 - Access systems
 - discretionary
 - 2 mandatory
 - Statistical database security.

The database administrator (DBA) has access to a number of commands for granting and revoking access for users and groups. These include:

- account creation
- privilege granting
- privilege revocation
- security level assignment

Access Protection

- All users have a user name and password.
- Keep track of all operations (particularly updates)
- expand system log.

Operations against the database may be controlled.

Two levels of assigning privileges:

- account level
- relation level

Account level

Capabilities provided for the account:

These include CREATE SCHEMA, CREATE VIEW, ALTER, DROP, MODIFY, SELECT

Introduction

- follows the access matrix model
- rows correspond to subjects
- columns correspond to objects
- Mi, j corresponds to the privilege subject i has on object j
- Privilege ∈ {read, write, update}

Can be extended in SQL to allow the following privileges:

- SELECT
- MODIFY (UPDATE, DELETE, INSERT)
- REFERENCES (can refer to relation R, when specifying referential integrity)

- Can specify privileges using VIEWS.
- Create a view over a base relation (or set of).
- Define privileges on R.

Propagation of Privileges

One can grant privileges with the GRANT option.

GRANT SELECT ON EMPLOYEE TO user22

WITH GRANT OPTION

Limiting Propagation

One can grant privileges with the GRANT option. Techniques exist based on horizontal and vertical limits.

- Horizontal: can grant to at most i users
- Vertical: limits 'depth' of granting grants. Vertical limit zero is equivalent to granting privilege without the grant option.

- Allows a number of security classes (e.g. TOP SECRET, SECRET, CLASSIFIED, UNCLASSIFIED)
- Can be used with discretionary access control.
- Can have a number of security classes that form a lattice.
- Classify subjects as belonging to a class.
- Classify objects as belonging to a class.

Two restrictions/Properties (Bell-LaPadula Model

- A subject S is not allowed read access to an object O unless: class(S) ≥ class(O) (simple security property)
- A subject *S* is not allowed to write to an object *O* unless: $class(S) \le class(O)$ (star property)

■ The schema then becomes

Introduction

$$R(A_1; C_1; A_2; C_2; ... A_n; C_n; TC)$$

Mandatory Access Control

0000

where TC is the classification of the tuple, set to be $max(C_1,...,C_N)$

The apparent key is the set of attributes that would ordinarily form the key.

- store entire tuple at a high classification and produce lower-level classications through 'filtering'
- polyinstantiation: multiple copies of the same tuple. Also requires modified definitions with respect to integrity rules.

Statistical Databases

- Used to produce statistics on various 'populations'
- Individual tuples are classified.
- Queries involve applying statistical functions to a population of tuples.
- Only allow: COUNT, SUM, MIN, MAX, AVERAGE. STANDARD DEVIATION.
- Still potential may exist for 'inference' of classified data.

Introduction

■ Q2: SELECT AVG(<attribute> FROM <relation> WHERE <condition>

By modifying <condition>, we can infer data.

Can use this idea to create 'linear set of equations':

- Query 1 = cond1 AND cond2 AND cond3
- Query 2 = cond2 AND cond3
- Query 3 = cond1 AND cond3

Prevention Techniques

- Apply to query track user queries and disallow query in the sequence that infers data. Very difficult to do.
- Apply to data
 - Suppression
 - Concealment/Disguise