
CT3536 Games Programming
Unity3D

Raycasting

Raycasting

• Raycasting is an important and useful concept in games
• 'Cast a ray' (theoretically) from a source position in a

specified direction, and see what it hits (in the Physics
world)

• In Unity, raycasts are implemented as static methods of the
Physics class

• Raycasts can be performed against Colliders and/or Triggers
• As well as rays, Unity lets you cast larger volumes such as

spheres or boxes in a direction
• You can also filter by "Layer"
• There are also other, related methods provided by the

Physics class for finding Colliders that coincide with
volumes of space (without using an actual raycast)

Physics.Raycast
A simple Raycast that returns true/false identifying whether
there is a collision:

public static bool Raycast(Vector3 origin, Vector3 direction,
float maxDistance = Mathf.Infinity, int layerMask = DefaultRaycastLayers,
QueryTriggerInteraction queryTriggerInteraction = QueryTriggerInteraction.UseGlobal);

Parameters
origin The starting point of the ray in world coordinates.
direction The direction of the ray (world coords).
maxDistance The max distance the ray should check for collisions.
layerMask A Layer mask that is used to selectively ignore Colliders when
casting a ray. (See: https://docs.unity3d.com/Manual/Layers.html)
queryTriggerInteraction Specifies whether this query should hit Triggers.

(Raycasts will not detect Colliders for which the Raycast origin
is inside the Collider.)

Only the 1st 2 params
are mandatory

https://docs.unity3d.com/Manual/Layers.html

Physics.Raycast
Or if you need detailed information on the raycast-hit:

public static bool Raycast(Vector3 origin, Vector3 direction, out RaycastHit hitInfo
float maxDistance = Mathf.Infinity, int layerMask = DefaultRaycastLayers,
QueryTriggerInteraction queryTriggerInteraction = QueryTriggerInteraction.UseGlobal);

If true is returned, hitInfo will contain more information about the
(first) collider that was hit:

.collider - the Collider that was hit

.distance - distance from ray's origin to impact point

.normal - the surface normal (Vector3) of the hit surface

.point - the impact point (Vector3) in world space

.rigidbody - the rigidbody of the collider that was hit
(could be null)

In C#, "out" is a way of passing by reference

Physics.RaycastAll
Cast a ray through the scene and return all hits (as an array of
RaycastHit objects). Note that order is not guaranteed.

public static RaycastHit[] RaycastAll(Vector3 origin, Vector3 direction, float
maxDistance = Mathf.Infinity, int layermask = DefaultRaycastLayers,
QueryTriggerInteraction queryTriggerInteraction =
QueryTriggerInteraction.UseGlobal);

Unity also allows you to "cast shapes" (that are wider than
rays):
• Physics.BoxCast
• Physics.CapsuleCast
• Physics.SphereCast

Physics static methods that are
related to Raycasting

Unity offers various methods for collecting an array of
Colliders that intersect with specifically-shaped volumes of
space in the world:

Physics.OverlapBox
Physics.OverlapCapsule
Physics.OverlapSphere

E.g. we'll use this in a later example (in a 2D context) to check
that an area of the world is empty before spawning a zombie
into it

Steering-with-Raycasting demo
(this project has been made available on Canvas)

public class MovementController : MonoBehaviour { // (attached to the car)
public Rigidbody rigid;
public GameObject debugSphere;
//

private Quaternion twentyDegreesYAxisRotation = Quaternion.AngleAxis(20f, Vector3.up);
private Quaternion minusTwentyDegreesYAxisRotation = Quaternion.AngleAxis(-20f, Vector3.up);
private RaycastHit hitInfo = new RaycastHit();

void FixedUpdate () {
// raycast forward-left and forward-right to determine steering (with angular force)
Vector3 leftDirection = twentyDegreesYAxisRotation * transform.forward;
Vector3 leftFromPos = transform.position + 0.1f * leftDirection;
float leftDist = GetRaycastDistance (leftFromPos, leftDirection);
Vector3 rightDirection = minusTwentyDegreesYAxisRotation * transform.forward;
Vector3 rightFromPos = transform.position + 0.1f * rightDirection;
float rightDist = GetRaycastDistance (rightFromPos, rightDirection);
if (leftDist < rightDist && leftDist <= 1.5f) {

rigid.AddTorque (new Vector3 (0f, -0.03f / leftDist, 0f));
debugSphere.SetActive (true);
debugSphere.transform.position = leftFromPos + leftDirection * leftDist;

}
else if (rightDist <= 1.5f) {

rigid.AddTorque (new Vector3 (0f, 0.03f / rightDist, 0f));
debugSphere.SetActive (true);
debugSphere.transform.position = rightFromPos + rightDirection * rightDist;

}
else

debugSphere.SetActive (false);
// Add linear force forwards
if (rigid.velocity.magnitude<0.5f)

rigid.AddForce (transform.forward);
}

(completed on next slide)

private float GetRaycastDistance(Vector3 fromPos, Vector3 direction) {
Physics.Raycast (fromPos, direction, out hitInfo); // out => pass-by-ref
return hitInfo.distance;

}
}

public class FollowCam : MonoBehaviour {

public Transform followTransform;
public Vector3 followOffset;

// Use this for initialization
void Start () {

}

// Update is called once per frame
void Update () {

transform.position = followTransform.position + followOffset;
transform.LookAt (followTransform);

}
}

(MovementController script, continued..)

(FollowCam script, attached to the camera)

(RigidBody settings of "car")

DemonPit use of Raycasts

• We use raycasts in numerous places, e.g.:
• Raycast guns
• Do a raycast from the centre of the screen (where

there's a crosshair) to see if the player hit something
(simulates an infinitely-fast moving bullet)

• Teleport/Lasso
• Raycast every frame from centre of screen to see

whether a 'teleport node' is selected – turn a light on
these on/off to give visual feedback

• Monsters chasing the player: don't fall into a hole or run
into walls – see next slide

• Monsters: can they see the player at all? – see 2 slides
ahead

DemonPit Walkers: don't fall into a
hole or run into walls

In Monster::FixedUpdate()

if (rigid.useGravity) {
// walkers have to move in the direction they're facing, so make sure it's almost the right way
Vector3 targetDir = (targetPos-myCurrentPos).normalized;
if (Vector3.Dot(targetDir,transform.forward)>0.85f) {

// don't run into walls
if (!Physics.Raycast(myCurrentPos, targetDir, 1.5f, GameManager.wallsMask)) {

// don't run over an edge
Vector3 posPlus3Metres = myCurrentPos + (3f*targetDir);
if (Physics.Raycast(posPlus3Metres, Vector3.down, 2f, GameManager.floorsMask))

// here's where we actually give the monster some velocity
// (note that the direction of force is straight at target, not our local forward)
rigid.AddForce(targetDir * (acceleration * Time.fixedDeltaTime * 50f * rigid.mass));

else
Debug.Log("Avoiding lava!");

}

}

}

DemonPit: Monster::CanSeePlayer()
and CanSeePlayerFrom()

public bool CanSeePlayer() {
Vector3 fromPos = transform.position;

for (float x=-0.2f; x<=0.2f; x+=0.2f) {
for (float z=-0.2f; z<=0.2f; z+=0.2f) {

fromPos.x = myCurrentPos.x + x;
fromPos.z = myCurrentPos.z + z;
if (Physics.Raycast(fromPos, dirToPlayer, distFromPlayer-0.4f,

seePlayerTestMask))
return false;

}
}

return true;
}

public bool CanSeePlayerFrom(Vector3 fromPos) {
Physics.queriesHitBackfaces = true;
// go back a bit, just incase our gun is embedded in the wall etc.
fromPos -= dirToPlayer.normalized;

if (Physics.Raycast(fromPos, dirToPlayer, distFromPlayer+1f-0.4f, seePlayerTestMask))
return false;

return true;
}

Question:
How do we calculate
dirToPlayer and
distFromPlayer?

public static LayerMask seePlayerTestMask;
seePlayerTestMask = LayerMask.GetMask("ArenaFloor","ArenaInnerWalls");

Another Raycasting
example

● In "Let's Break Stuff!" (2012,
Shiva3D) during the level
builder mode, the user selects
objects (from a UI) and drags in
the 3D world to position them

● This involves projecting a line
from the camera in the direction
they are pointing with the
mouse, and casting rays
downwards at intervals along it

● The highest (y axis) result is
accepted

Yet Another Raycasting example
● In "The Necromancer's Tale" we raycast every frame from the

camera to the player character.
● Objects blocking this ray have their material settings changed

in order to animate their opacity down to about 20%, and back
up to 100% when they stop blocking the player's view of the
character

