CT3536 Games Programming
Unity3D

Raycasting

Raycasting

Raycasting is an important and useful concept in games
'Cast a ray' (theoretically) from a source position in a
specified direction, and see what it hits (in the Physics
world)

In Unity, raycasts are implemented as static methods of the
Physics class

Raycasts can be performed against Colliders and/or Triggers
As well as rays, Unity lets you cast larger volumes such as
spheres or boxes in a direction

You can also filter by "Layer"

There are also other, related methods provided by the
Physics class for finding Colliders that coincide with
volumes of space (without using an actual raycast)

Physics.Raycast

A simple Raycast that returns true/false identifying whether

there is a collision: Only the 15t 2 params

/ are mandatory
public static bool Raycast(Vector3 origin, Vector3 direction,
float maxDistance = Mathf.Infinity, int layerMask = DefaultRaycastLayers,
QueryTriggerinteraction queryTriggerinteraction = QueryTriggerinteraction.UseGlobal);

Parameters

origin The starting point of the ray in world coordinates.

direction The direction of the ray (world coords).

maxDistance The max distance the ray should check for collisions.
layerMask A Layer mask that is used to selectively ignore Colliders when

casting a ray. (See: https://docs.unity3d.com/Manual/Layers.html)
queryTriggerinteraction Specifies whether this query should hit Triggers.

(Raycasts will not detect Colliders for which the Raycast origin
is inside the Collider.)

https://docs.unity3d.com/Manual/Layers.html

Physics.Raycast

Or if you need detailed information on the raycast-hit:

public static bool Raycast(Vector3 origin, Vector3 direction, out RaycastHit hitInfo
float maxDistance = Mathf.Infinity, int layerMask = DefaultRaycastLayers,
QueryTriggerinteraction queryTriggerinteraction = QueryTriggerinteraction.UseGlobal);

If true is returned, hitlnfo will contain more information about the
(first) collider that was hit:
.collider - the Collider that was hit
.distance - distance from ray's origin to impact point
.normal - the surface normal (Vector3) of the hit surface
.point - the impact point (Vector3) in world space
rigidbody - the rigidbody of the collider that was hit
(could be null)

In C#, "out" is a way of passing by reference

Physics.RaycastAll

Cast a ray through the scene and return all hits (as an array of
RaycastHit objects). Note that order is not guaranteed.

public static RaycastHit[] RaycastAll(Vector3 origin, Vector3 direction, float
maxDistance = Mathf.Infinity, int layermask = DefaultRaycastLayers,
QueryTriggerinteraction queryTriggerinteraction =
QueryTriggerinteraction.UseGlobal);

Unity also allows you to "cast shapes" (that are wider than
rays):

* Physics.BoxCast

* Physics.CapsuleCast

* Physics.SphereCast

Physics static methods that are
related to Raycasting

Unity offers various methods for collecting an array of
Colliders that intersect with specifically-shaped volumes of
space in the world:

P
P
P

nysics.Over
nysics.Over

nysics.Over

apBox
apCapsule
apSphere

E.g. we'll use this in a later example (in a 2D context) to check
that an area of the world is empty before spawning a zombie
into it

Steering-with-Raycasting demo

(this project has been made available on Canvas)

public class MovementController : MonoBehaviour { // (attached to the car)
public Rigidbody rigid;
public GameObject debugSphere;
//

private Quaternion twentyDegreesYAxisRotation = Quaternion.AngleAxis(20f, Vector3.up);
private Quaternion minusTwentyDegreesYAxisRotation = Quaternion.AngleAxis(-20f, Vector3.up);
private RaycastHit hitInfo = new RaycastHit();

void FixedUpdate () {
// raycast forward-left and forward-right to determine steering (with angular force)
Vector3 leftDirection = twentyDegreesYAxisRotation * transform.forward;
Vector3 leftFromPos = transform.position + 0.1f * leftDirection;
float leftDist = GetRaycastDistance (leftFromPos, leftDirection);
Vector3 rightDirection = minusTwentyDegreesYAxisRotation * transform.forward;
Vector3 rightFromPos = transform.position + 0.1f * rightDirection;
float rightDist = GetRaycastDistance (rightFromPos, rightDirection);
if (leftDist < rightDist && leftDist <= 1.5f) {
rigid.AddTorque (new Vector3 (0f, -0.03f / leftDist, 0f));
debugSphere.SetActive (true);
debugSphere.transform.position = leftFromPos + leftDirection * leftDist;
}
else if (rightDist <= 1.5f) {
rigid.AddTorque (new Vector3 (0f, ©0.03f / rightDist, 0f));
debugSphere.SetActive (true);
debugSphere.transform.position = rightFromPos + rightDirection * rightDist;
}
else
debugSphere.SetActive (false);
// Add linear force forwards
if (rigid.velocity.magnitude<9.5f)

rigid.AddForce (transform.forward); (completed on next slide)

(MovementController script, continued..)

private float GetRaycastDistance(Vector3 fromPos, Vector3 direction) {
Physics.Raycast (fromPos, direction, out hitInfo); // out => pass-by-ref
return hitInfo.distance;

}
} (RigidBody settings of "car"
¥ % Rigidbody [%,
Mass (1 |
(FollowCam script, attached to the camera) Drag 1 1
Angular Drag [2.5 |
Use Gravity]
. . Is Kinematic]
public class FollowCam : MonoBehaviour { Interpolate [None :
Collision Detection | Discrete :]
public Transform followTransform; '“:’“’"i“t: o DL
public Vector3 followOffset; e Zx0Y 22
. L . . | v|c| ¥Movement Controller (Script) %,
// Use this]CO’" initialization |l script - MovementController o]
void Start () { Rigid TACar (Rigidbody) o
Debug Sphere ‘wDebugRaycastSphere | ®
}

// Update is called once per frame

void Update () {
transform.position = followTransform.position + followOffset;
transform.LookAt (followTransform);

DemonPit use of Raycasts

We use raycasts in numerous places, e.qg.:

Raycast guns
* Do a raycast from the centre of the screen (where

there's a crosshair) to see if the player hit something
(simulates an infinitely-fast moving bullet)

Teleport/Lasso

e Raycast every frame from centre of screen to see

whether a 'teleport node' is selected — turn a light on
these on/off to give visual feedback

Monsters chasing the player: don't fall into a hole or run

into walls — see next slide

Monsters: can they see the player at all? — see 2 slides

ahead

DemonPit Walkers: don't fall into a
hole or run into walls

In Monster::FixedUpdate()

if (rigid.useGravity) {

// walkers have to move in the direction they're facing, so make sure it's almost the right way
Vector3 targetDir = (targetPos-myCurrentPos).normalized;
if (Vector3.Dot(targetDir,transform.forward)>0.85f) {

// don't run into walls
if (!Physics.Raycast(myCurrentPos, targetDir, 1.5f, GameManager.wallsMask)) {
// don't run over an edge
Vector3 posPlus3Metres = myCurrentPos + (3f*targetDir);
if (Physics.Raycast(posPlus3Metres, Vector3.down, 2f, GameManager.floorsMask))
// here's where we actually give the monster some velocity
// (note that the direction of force is straight at target, not our local forward)
rigid.AddForce(targetDir * (acceleration * Time.fixedDeltaTime * 50f * rigid.mass));

else
Debug.Log("Avoiding laval");

DemonPit: Monster::CanSeePlayer()
and CanSeePlayerFrom()

public bool CanSeePlayer() { Question:
Vector3 fromPos = transform.position;

How do we calculate

for (float x=-0.2f; x<=0.2f; x+=0.2f) { dirToPlayer and
for (float z=-0.2f; z<=0.2f; z+=0.2f) { distFromP]ayer?
fromPos.x = myCurrentPos.x + X;
fromPos.z = myCurrentPos.z + z;
if (Physics.Raycast(fromPos, dirToPlayer, distFromPlayer-0.4f,
seePlayerTestMask))
return false;

}

} public static LayerMask seePlayerTestMask;
seePlayerTestMask = LayerMask.GetMask("ArenaFloor","ArenalnnerWalls");

return true;

}

public bool CanSeePlayerFrom(Vector3 fromPos) {
Physics.queriesHitBackfaces = true;
// go back a bit, just incase our gun is embedded in the wall etc.
fromPos -= dirToPlayer.normalized;

if (Physics.Raycast(fromPos, dirToPlayer, distFromPlayer+1f-0.4f, seePlayerTestMask))
return false;

return true;

Another Raycasting
example RN

. In "Let's Break Stuff!" (2012,
Shiva3D) during the level
builder mode, the user selects
objects (from a Ul) and drags in
the 3D world to position them

. This mvolves projecting a line
from the camera 1n the direction
they are pointing with the
mouse, and casting rays
downwards at intervals along 1t

. The highest (y axis) result is
accepted

Yet Another Raycasting example

. In "The Necromancer's Tale" we raycast every frame from the
camera to the player character.

. Objects blocking this ray have their material settings changed
in order to animate their opacity down to about 20%, and back
up to 100% when they stop blocking the player's view of the
character

