PROGRAMMING

CT103
Dr. Karl Mason
Karl.Mason@nuigalway.ie

How to contact me

- Dr. Karl Mason
- karl.mason@nuigalway.ie

- Room 418 Top Floor IT Building

- Staff profile: https://www.nuigalway.ie/our-
research/people/engineering-and-informatics/karljohnmason/

mailto:owen.molloy@nuigalway.ie
https://www.nuigalway.ie/our-research/people/engineering-and-informatics/karljohnmason/

Course Info

- Lectures — 2 hours per week
- Monday 11 am, Dillon Theatre.
- Wednesday 1lam, McMunn Theatre.

- Attendance will be take at each lecture

- Labs — 2 hours per week
- Tuesdays IT102
- Group 1: 2pm-4pm Group 2: 4pm-6pm

- Tutorials
- Monday 4pm, IT202
- Attendance not mandatory, only if you need extra help.
- Starts 4™ October, none in September.

L
Lab Info

- We will be using Microsoft Visual Studio in the labs to do
the assignments

- You will have access to these tools via the College licence
(http://nuigalway-engineering-dreamspark.onthehub.com/)

- There are many other tools that can also be used (basically called
“C Compilers” — more on that later)

http://nuigalway-engineering-dreamspark.onthehub.com/

L
Lab Groups

- Group 1:
« 2pm —4pm surnames A to K

- Group 2:

- 4pm to 6pm surnames L to Z

L
Book

- Course text:

- Any decent introduction to programming in C will do
- “Absolute Beginners Guide to C” by Greg Perry, Published by SAMS
« “C for Dummies” by Dan Gookin, published by Wiley
- “C How to Program” by Deitel & Deitel, published by Prentice Hall

- DO NOT get a book on C++ or C# by mistake

- Plenty of C books in the library to borrow for free

L
Marking

- Lab Assignments — 25%
- Submitted on Blackboard at the end of each lab.
- Lab assignments in semester 1 and 2.

- Written exam — 75%
- End of semester 2 only.

L
Algorithm

- An Algorithm is a sequence of instructions for the
computer to follow

- It usually describes:
- The inputs you need to accomplish the task

- The formula you need to apply to the inputs or any other
manipulation of the inputs required

- The end result or output

Steps involved In writing software

/ Repeat until \
' it's "right"

2.
Build

Programming
building blocks

- Lists of instructions
- Like cooking, e.g. “beat eggs; add flour and sugar; mix; pour into
baking tin; bake at 180 for 20 minutes”
- IF Statements / Conditions
- Like “IF it is raining, take an umbrella”
- Loops - Repeating behavior
- 2 loop types: For loops and While loops.
- For example “jump up and down 3 times”, or “while there is petrol
left, keep driving”
- Computing results

- Performing a sequence of steps in a particular order to get the
result

- For example to calculate your BMI divide your weight by your
height squared

PseudoCode

- Example #1 - Computing Sales Tax

- Pseudo-code for task of computing the final price of an item after calculating
sales tax. Note the three types of instructions: input (get), process/calculate
(=) and output (display)

1.

GEENERIN

6.

get price of item

get sales tax rate

sales tax = price of time x sales tax rate
final price = price of item + sales tax
display final price

halt

- Variables: price of item, sales tax rate, sales tax, final price
- Note that the operations are numbered and each operation is unambiguous

- We also extract and list all variables used in our pseudo-code. This will be
useful when translating pseudo-code into a programming language

L
PseudoCode

- Example #2 - Computing Weekly Wages:

- Gross pay depends on the pay rate and the number of hours worked per week.
However, if you work more than 40 hours, you get paid time-and-a-half for all
hours worked over 40. Pseudo-code the task of computing gross pay given pay
rate and hours worked.

1. get hours worked
2. get pay rate
3 if hours worked < 40 then
3.1 gross pay = pay rate x hours worked
4.else
4.1 gross pay = pay rate x 40 + (1.5 x pay rate x (hours worked - 40)
5.display gross pay
6.halt

. Variables: hours worked, pay rate, gross pay

Flowcharts

Set for 5 Min.

w www.edrawsoft.com

Average 3 Times

Created by Edraw

Planning a program - flowcharts

- Popular symbols:

process

H

flow line

C
iInput / output Terminator
(start / stop)

Get hours worked

Get pay rate

Gross = 40*rate +

— *
Gross = hours*rate 1.5*rate*(hours-40)

Sequence

Do X

DoY

Do Z

l http://www.eod.qgvsu.edu/~blaucha/c2d2/Structured%20
Design%20Using%20Flowcharts.pdf

http://www.eod.gvsu.edu/~blaucha/c2d2/Structured%20Design%20Using%20Flowcharts.pdf

Seguence Flowchart to C Code

Flowchart Pseudocode C Code
i - Set Celsius — 10-:
Initialize temperature to 10 !
Celsius
temperature —_ * .
- Convert to Fahrenheit Y 2 K"'Ir o+32;
i temperature |
Cnmrerttp DlEPTETﬂp {}{r }rj r
Fahrenhert - Display temperatures
Dasplay
temperatures

http://www.eod.qgvsu.edu/~blaucha/c2d2/Structured%20
Design%20Using%20Flowcharts.pdf

http://www.eod.gvsu.edu/~blaucha/c2d2/Structured%20Design%20Using%20Flowcharts.pdf

R - :
IF-THEN-ELSE

- IF Raining? TRUE THEN
- Do A

- Otherwise
' «DoB

-

http://www.eod.qgvsu.edu/~blaucha/c2d2/Structured%20
\ Design%20Using%20Flowcharts.pdf

http://www.eod.gvsu.edu/~blaucha/c2d2/Structured%20Design%20Using%20Flowcharts.pdf

IF Statement Example

v X = 5;
Linut voltage Turn voltage }
to 5 volts off o]l g
X = 0;
Y http://www.eod.gvsu.edu/~blaucha/c2d2/Structured%20

Design%20Using%20Flowcharts.pdf

http://www.eod.gvsu.edu/~blaucha/c2d2/Structured%20Design%20Using%20Flowcharts.pdf

WHILE

Hungry?

- While Hungry
- Eat

Eat

http://www.eod.qgvsu.edu/~blaucha/c2d2/Structured%20

""" Design%20Using%20Flowcharts. pdf

http://www.eod.gvsu.edu/~blaucha/c2d2/Structured%20Design%20Using%20Flowcharts.pdf

example

Double result

while {(x < 10)

{

X = 2%X:

""http://www.eod.gvsu.edu/~blaucha/c2d2/Structured%20

Design%20Using%20Flowcharts.pdf

http://www.eod.gvsu.edu/~blaucha/c2d2/Structured%20Design%20Using%20Flowcharts.pdf

Grade = A
Grade = B
Grade = C
Grade =D
\ 4 CASE structure

IF Mark >= 80? THEN Grade = A
ELSE

IF Mark >= 60? THEN Grade =B
ELSE

IF Mark >= 507 THEN Grade =C
Else

IF Mark >= 40? THEN Grade =D
ELSE

Grade = F

END IF

http://www.eod.qgvsu.edu/~blaucha/c2d2/Structured%20
Design%20Using%20Flowcharts.pdf

http://www.eod.gvsu.edu/~blaucha/c2d2/Structured%20Design%20Using%20Flowcharts.pdf

process :
awitch (mode) {
case 1-:
/* Display process */
Execute break;
control case 2:
process /* Control process */
break;
case 3:
Turn off red light = 0;
lights blue light = 0;
break;
default:
mode = mode + 1;
} break;

http://www.eod.qgvsu.edu/~blaucha/c2d2/Structured%20
4 Design%20Using%20Flowcharts.pdf

http://www.eod.gvsu.edu/~blaucha/c2d2/Structured%20Design%20Using%20Flowcharts.pdf

DO-WHILE

- Do
v - EAT
- While Hungry = TRUE
EAT

http://www.eod.qgvsu.edu/~blaucha/c2d2/Structured%20
Design%20Using%20Flowcharts.pdf

_—— -

http://www.eod.gvsu.edu/~blaucha/c2d2/Structured%20Design%20Using%20Flowcharts.pdf

DO-WHILE

Double result

do

{
}

while (x <« 10) :

X = 2%X:

http://www.eod.qgvsu.edu/~blaucha/c2d2/Structured%20
Design%20Using%20Flowcharts.pdf

http://www.eod.gvsu.edu/~blaucha/c2d2/Structured%20Design%20Using%20Flowcharts.pdf

Algorithm to calculate factorial of a number

1. Start
Read the number n
[Initialize]
=1, fact=1
I=i+1
fact=fact*|
Repeat step 4 through 6 until i=n
Print fact
Stop

w N

© N o 0 A

http://cprogrammingcodes.blogspot.ie/2012/10/factorial-c-programalgorithmflowchart.html

http://cprogrammingcodes.blogspot.ie/2012/10/factorial-c-programalgorithmflowchart.html

Flowchart

Z

False

/Print fact /

fact=fact*i

http://cprogrammingcodes.blogspot.ie/2012/10/factorial-c-programalgorithmflowchart.html

http://cprogrammingcodes.blogspot.ie/2012/10/factorial-c-programalgorithmflowchart.html

PROGRAMMING

CT103
Week 1b

L
Lecture Content

- Last lecture (Week 1a):
- Module overview: Grading, etc.
- Introduction to algorithms.
- Pseudocode and flowcharts.

- Today’s lecture (Week 1b):
- Computer programs.
- Data types.
- Example C program.

COMPUTER PROGRAMS

What Is a Program?

- Definition: A program Is a set of instructions that
are run by the Central Processing Unit (CPU) on

a computer.

- The instructions are designed to accomplish a
specific task and are written in a programming
language like C.

L
What Is a Program?

- C is what is called a high-level language — this has
to be translated into instructions called machine
language that the CPU can execute.

- Distinction between Program and Algorithm:

- A program is a set of instructions that the computer
executes.

- An algorithm is a series of steps to complete a task.
- A program contains the algorithm.
- Algorithm is the logic, program is the implementation.

L
Where our Program Runs

The program
runs here

We can input data here

(e.g. on a screen or
command line)

CPU

Control
Unit

Bl

Instructions
-

Processor

Input

Reqgisters

Combinational
Logic

|

Output can go to the
screen, files, etc.

Qutput

Main
Memory

R - :
CPU and RAM

3~ www.swissbitcom g

26B PC25300U-555 Swissbit®
MEU25664D6BC2EP-30R

601682 / 20037725 0840 <
4500010489 Made in Germany wemm NESCEPREENTS

B° N4 e

. ANRNNRR RN RRRR RO NN ARRRRRARRADNA R RRRRNRRRRRRRARR uhin:uuﬂnannumazmnmmuMuulmmmlmmmmm.0‘

Random Access Memory (RAM)

CPU Runs What?

High

- Each CPU uses a
specific set of
Instructions, called
machine language.
We write our
programs in a higher
level language which
IS then translated into
a machine-specific set
of instructions for
execution by the CPU

Low

If the line is @
not busy, connect
The Human Language io the Internet:
(e.g., English) else, wait...
If (line 1 = busy) @
_ _ connect (Internet);
The High-Level Programming else
Language (e.g., C) wait (5)...
C =
=)
The Machine Language 10001111101100
(i.e., binary code) 01100111011000
C =

Sams Teach Yourself C in 24 Hours ©2000 by Sams Publishing

Compiller

- If the CPU understands machine language (1s and 0s),
how do we convert our C program to machine
language?

- Answer: The compiler will do this for you!

- The compiler will convert your C program source code
(.c file) into binary code for the CPU to understand.

Hi.c?_* " Compiler Hi"*“_:_\~

f 01000100
printf("hi"); _ Y. 00010111

} ! 10101011

Source file Machine code

Programming Software

- Applications used to write software:
- Assist in writing program in high level language (e.g. C)
- Compile it into machine language

- Link various bits of machine code together to create an
application

- Run, test and debug the application

- Typically also called IDE (Integrated Development

Environment), such as MS Visual Studio or
NetBeans

L
Writing Programs

- We use an editor to write the program (the source code),
and then a compiler to compile it.

- A compiler turns the program into machine-language
Instructions that the computer can understand.

L
C Compiler

Source code (.¢) file

Pre-Processor

Compiler

THE COMPILATION PROCESS

Assembler

Object file (.0)

Executable file

Image source: Medium.com

DATA & VARIABLES

Variables

- How we temporarily store data that we are using in our
programs

- They often represent some real-world piece of data, e.qg.
- salary, temperature, interest rate

- In most programming languages, including C, we have to
decide on the type of variable most suitable for the data
we want to store and manipulate

- Variable examples in C:
- float salary;
- float temperate;
- int age;
- char exam_grade;

L
C Number types

- There are actually different kinds of numbers:

- Integers (no decimal point)
-Eg. 10 54 0 -121

- Floating-point or real (with decimal point)
- E.g. 4343.34 0.0 0.123234 -34.223
- The choice of integer or floating-point depends on

what it represents

- Age (integer), No. of people in family (integer), Interest Rate
(floating-point), price of litre of petrol (floating-point)

L
Kinds of Data

- S0 we can see that we need different variable types, or
data types, to hold information

- The basic set of C data types is:

- int - this holds an integer
e.qg.10 21 456 -6899

- float — holds a floating point number
e.g. 125.467

- double — holds a very big floating point number
e.g. up to 1.797e+308

- char — holds a character
eg. A ‘c ‘%

- Also strings — holds multiple characters
e.g. ‘hello’

Modifiers

- Short, I.e. smaller (less memory)
-Long, I.e. larger (more memory)
- Signed, I.e. positive or negative
- Unsigned, I.e. non negative

- The amount of storage used for each data type
(+ modifier) Is not set in stone

- ANSI has the following rules:
short int <= int <= long int
float <= double <= long double

L
Size (bytes)

- Actual space used to store numbers can vary between
machines and operating systems, but in general:

Data Memory Min Max
Type (Bytes) Value Value
short int 2 -32768 32768
unsigned short int 2 0 65,535
unsigned int 4 0 4294967295
int 4 -2147483648 2147483648
unsigned char 1 0 255
float 4
double 8

long double 12

L
Characters

- A character Is any single character that your computer
can represent — usually there are 256 of them

- We usually use the 128 most common (called the
Standard ASCII character set)

Back to Characters

- The following are all characters:
Aa 4 % ~ . Q + =] #

- A group of multiple characters is called a string
e.g.

‘I love Programming!”

Dec HxOct Char Dec Hx Oct Html Chr [Dec Hx Oct Html Chr) Dec Hx Oct Himl Chr
0 0 000 NOL frmuall) 32 20 040 Z; Space| g4 40 100 s#6d; [4 a5 60 140 `
1l 1 00l 30H (start of heading) 33 Z1 041 =#33; ! 65 41 101 A 4 a7 /gl 141 a: a
2 2 002 3T (start of text) 34 22 042 #3534 7 65 42 L0Z &«#667 BE | 95 62 142 «#95; b
3 3 003 ETx (end of text) 35 23 043 # # 67 43 103 C C 99 53 143 «#99; «C
4 4 004 EOT (end of transmission) 36 Z4 044 $ % 68 44 104 ʒ D |100 64 144 &#l00; d
S5 5 005 ENQ (enouiry) 37 Z5 045 &=#37: = 69 45 105 &«#69; E (101 65 145 e e
6 & 006 ACE (acknowledge) 38 26 046 ! & 70 46 106 «#70; F |102 66 146 &#l02; T
77 007 BEL (bell) 39 27 047 =#39; 71 47 107 «#71: G (103 67 147 g O
§ & 0l0 BES (backszpace) A0 28 050 (| 72 48 110 H H (104 63 150 <#104; h
9 9 011l TAE (horizontal tab) 41 Z9 051 l;) 75 49 111 «#73; I |105 62 151 «#l05; 1
10 &4 0l2 LF (NL line feed, new line)| 42 Zi 052 d2; * 74 44 112 J T |106 64 152 j7 7
11 E 013 VT ([wertical tah) 43 ZB 053 + + 75 AF 113 K: K |107 6B 153 k: K
1z C 014 FF (NP form feed, new padge)| 44 ZC 054 &#dd; | 76 4AC 114 «#76; L |10§ 6C 154 «#l08; 1
13 D 015 CER (carriage return) 45 ZD 055 - - 77 4D 115 M: M |109 6D 155 l09: o
14 E 0l 30 (shift out) 45 ZE 056 . . 78 4E 1lle &; I (110 6E 156 n n
15 F 017 31 (shift in) 47 ZF 057 d7: F 79 4F 117 «#79: 0 |111 &F 157 «#lll: o
le 10 020 DLE [(data link escape) 43 30 060 - 0 g0 50 1z0 P P (112 70 la0 «#112; b
17 11 021 DC1 [(dewice control 1) 49 31 0Bl 1 1 81 51 121 =#81; 0 (113 71 lel q:; g4
13 12 022 DCZ2 (dewice control Z2) 50 32 062 2 2 82 B2 12z «#58Z; B |114 72 1Az &#ll4: ©
19 13 0253 DC3 [(dewvice control 3) 51 33 063 3 3 83 53 123 S 3 [115 73 lad l5; =
20 14 024 DC4 [(dewvice control 4) B2 34 0pd 4 4 g4 54 124 =#84; T [(11s 74 1led l6; T
21 15 0Z5 NAE [(negatiwve acknowledoge) 53 35 065 5 5 85 55 125 «#85; T |117 75 165 &«#ll7: u
22 16 026 3¥N [(synchronous idle) 54 36 066 &«#54; 6 ge 56 lZ6 V V (11§ 76 leo v ¥
23 17 027 ETE (end of trans. block) E5 37 067 7: 7 g7 57 127 W: W (119 77 1la7 w: W
24 18 030 CAN (cancel) 56 38 070 8 0 88 58 130 «#583; X |120 78 170 &#l=0; X
25 19 031 EM (end of medium) 57 39 071 «#57; 9 g9 59 131 &«#89; T (121 79 171 :21; ¥
26 1l& 032 SUE [(substitute) 58 34 072 : a0 54 132 Z 2 (122 74 172 &#l24; E
27 1B 033 E3C (escape) 59 3B 073 «#59; ; 91 5B 133 	L1; [|1253 7B 173 «#123; !
20 1C 034 F3 [(f£ile separator) 60 3C 074 < < Az BC 134 \: % (124 7C 174 |
29 1D 035 G5 [group sSeparator) Bl 3D 075 l; = 93 ED 1355 Ω] |125 7D 175 }: |}
30 1E 036 B3 (record separator) Gz 3E 076 &#o0d; = a4 S5E 136 &«#94; ~ [1Z6 7E 176 &«#l26; ~
31 1F 037 IS junit separator) 63 3F 077 ? 7 95 5F 137 _ |127 7F 177 &«#127; DEL

Source: www.LookupTables.com

Functions

- A function is a piece of self-contained code that
performs a task

- For example, to print out the text “Hello”, we can
use the standard C function printf()

- printf ("Hello”);

- To read an integer input from the keyboard, we
could use:

- scanf (“%d”, &age);

- We will learn more about functions later in the
course!

PROGRAM RECAP

Designing your Program

- The most basic way of describing what should happen is
to just write it down

- The easiest way of doing this is to use Structured
English

- This means using keywords like IF, THEN, ELSE, DO, to
express what should happen

- Another common way is to use a Flowchart

L
Sequence

- Actions which take place one after the other

Find a teapot
Put in the tea

Pour in boiling water

R - :
IF-THEN-ELSE

- Used where you need to decide on what action to take

IF condition A

THEN action B
ELSE action C
ENDIF

L
“IF” Example

IF you like tea
THEN drink tea
ELSE drink coffee

ENDIF

L
More Realistic IF Example

IF customer_order_total > €400
THEN
IF days customer_balance is due > 60 days
THEN
hold the customer_order
send reminder letter
ELSE
process the customer order
END-IF
ELSE
process the customer order
END-IF

L
Structured English

Read in salary
IF salary > 35,400 THEN

Excess = salary - 35,400

BASE = 35,400
ELSE

Excess =0

BASE = salary
ENDIF
Base Tax = Base * Standard_Rate
Higher Tax = Excess * Higher_Rate
Gross_Tax = Base Tax + Higher_Tax
Tax_Credits = Single_Person_Tax_Credit + Employee_Tax_Credit
Net Tax = Gross_Tax - Tax_Credits

Flowchart
7

Salary > 35,4007

True False

Excess = salary — 35,400 Excess =0
Base = 35,400 Base = salary

Base Tax = Base * Standard_Rate
Higher Tax = Excess * Higher_Rate
Gross_Tax = Base Tax + Higher_Tax

Tax_Credits = Single_Person_Tax_Credit + Employee Tax_ Credit
Net Tax = Gross_Tax - Tax_Credits

Workflow

Caarnmnent

Lo, | Checkthe | | The WWeather Channel
this in on Cable Channel 61
If yes, faliow this fiow
e
s this Rain Do
ez ° Predicted? " this
no
‘L IF no, Toliow Ehis fiow
Do ;
ths

http://www.pacestar.com

PROGRAM EXAMPLES

L
Worked Through Example

- Problem Description:

- Write a program that reads in an exam mark and outputs “Passed”
if the mark is 60 or more. Otherwise print out “Failed”.

L
Pseudocode

Get exam grade

If grade Is greater than or equal to 60
Print “Passed”

else
Print “Failed”

L
Flowchart

Get Grade

Grade >=60

Print “Failed” Print “Passed”

#include <stdio.h>
void main()

{
Int grade = 0O;

printf ("Enter grade: ");
scanf_s("%d", &grade);

If (grade >= 60)

{

printf ("Passed \n");
}
else
{

printf ("Failed \n");
}

D
Code In Visual Studio

- Here | will go through some C code

Programming

CT103
Week 2a

L
Lecture Content

- Last lecture (Week 1b):
- Computer programs.
- Data types.
- Example C program.

- Today’s lecture (Week 2a):
- C basic variable types and their size in bytes.
- Naming variables.
- Declaring and initialising variables.
- Comments.
- C program.

D
Before We Start

- What did ‘\n’ do in the C code example from week 1b?
- Why won’t my code run?
- Xcode for Mac.

- Access to PCs in the IT Building.

Before We Start

- What did ‘\n’ do in the C code example from week 1b?
- Answer: \n’ starts a new line when printing text to the screen.

. E.g., printf (“1\n 2\n 3");

- Why won’t my code run?

7 #include <stdio.h>
8 Flvoid main() {
9
10 |
11
12 }
13 |

print("Hi!");

61% -

& No issues found

will print “17, “2” and “3” on new lines.

v
Ln:3 Ch:1 TABS CRLF

Entire Solution

* Code Description
! C4013 'print' undefined; assuming extern returning int

8 LNK2019 unresolved external symbol _print referenced in function _main

0 LNK1120 1 unresolved externals

Search Error List P~

Project File Line Suppression State
Project1 hi.c 5
Project1 hi.obj 1
Prajectl Projectl.exe 1

D
Before We Start

- Xcode for Mac.
- If anyone is still having difficulty getting Xcode set up for Mac, there
are plenty of online tutorials that can help you:
- https://www.youtube.com/watch?v=_gwPhmyiuVo
- https://www.youtube.com/watch?v=_cDXKReugEU
- Search ‘Mac Xcode C’ on YouTube and you will find many results.

- Access to PCs in the IT Building.

- You should have received an email instructing you to go to
http://www.it.nuigalway.ie/accounts to get an initial password.

- If you haven't yet, you should go to this link and follow the
Instructions.

https://www.youtube.com/watch?v=_gwPhmyiuVo
https://www.youtube.com/watch?v=_cDXKReugEU
http://www.it.nuigalway.ie/accounts

VARIABLES

D
Variables

- We need to be able hold data in our programs and change it as we do
calculations

- Variables are pieces of memory that C reserves to hold our data
- Data is stored in binary form

- The more memory a variable uses, then the more data (1's and 0’s) it
can hold — hence the bigger numbers need more memory, e.g. (on a
64-bit windows machine):

- char 1 byte

- short int 2 bytes
- int 4 bytes
- float 4 bytes

- double 8 bytes

L
Bits and Bytes

- What is a bit?
- A bit is the most basic unit of information, i.e. 1 or a O.

- What is byte?
- A byte is 8 bits, e.g. 10101100.

- A kilobyte is 1024 bytes, i.e. 1 KB =1024 B (210 = 1024)
- A megabyte is 1024 kilobytes...
- Etc.

- However...

L
Bits and Bytes

- However...
- In International System (SI) Units, kilo means 1000.
- A kilobyte is 1000 bytes, i.e. 1 KB = 1000 B
- A megabyte is 1000 kilobytes... etc.
- These Sl units are used for:
- Data transfer rates

- Hard drive capacities

- Other definition (1KB = 1024B) used for operating systems.

D
Types of C variables

char Holds character data such as X’ and

short int Holds integer data such as 1, 32, -456
Stores data between -32768 and 32767
Or 0 to 65535 if unsigned

int Holds integer between -2,147,483,648 and 2,147,483,647
(double this if unsigned)

long int Same as for int on a 32-bit compiler, but on 64 bit compiler:
-9,223,372,036,854,775,808 to +9,223,372,036,854,775,807

float Holds floating point data such as 0.003, -12.4

double Holds extremely large and small floating point data

(bigger/smaller than +3.4x1038 1)

L
Floating point

- A floating point number is one with a decimal number after
the point.

- Decimal fractions difficult to represent exactly as binary
fractions, so the binary is as close as possible, but there
will be an approximation, but as we usually only display to
a certain number of decimal places, we don’t usually
notice.

- So we are usually seeing the rounded display of the
actual machine value.

L
Rounding

- S0 for example if | execute this:
float £ = 0.1;
printf("%30.28f", f);
- | see this output (printf allows me to specify the number of

decimal places | see)!

- In this case | am telling printf to print the variable f 30 characters
wide, of which 28 are after the decimal point

B Microsoft Visual Studio Debug Console
©.1000000014901161193847656250

L
Float vs double

- The double (64 bits) occupies twice the memory of a float
(32 bits), therefore can store bigger, and more precise,
numbers.

- S0 you can convert from a float to a double, but not
necessarily the other way, without loss of precision.

- Depending on the platform you might use float if you don't
need doubles, to save on memory, performance and
bandwidth.

NAMING VARIABLES

L
Naming variables

- Every variable you want to use needs a different name.
- A variable name can be from 1 to 32 characters long.

- The name must begin with a letter followed by any letter,
number, underscore combination.

- The following are valid examples of variable names:
myData pay94 age_limit amount

- The following are invalid examples of variable names :
95Pay my age rate*pay printf

L
Variable naming conventions

- These are just some of the variable naming conventions (also called
‘cases’ or identifier formats).

- Many companies have their own conventions.

double annualsalary; // flat case
double annualSalary; // camel case
double annual salary; // snake case

double Annual Salary; // camel snake case

L
Declaring and Initialising variables

- We usually declare variables at the start of the program and we can
optionally initialise them at the same time

float salary, pension; // variables declared but not initialised
char initial = 'c'; // declared and initalised

int departmentNumber; // not initialised

int age = 0; // declared and initalised

// now assign a value to the variable 'salary'
salary = 35000.00;

- Note how we can put comments at the end of a line.
- We will talk more about these later today!

L
Storing data Iin variables

- We use the assignment operator (=) to put data in
variables

age = 34,
salary = 50000;
pension = salary + age*1000;

In general, we take what is on the right hand side (or what
It evaluates to If it is an equation or a function call), and
put it into the left hand side (usually a variable)

L
Printing out values of variables

- We can use printf() to do the work for us here
- For example:

int age = 25;
float salary

34000.00;
char initial 'D'

D"

printf("age = %d \n", age);
printf("salary = %.2f \n", salary);
printf("initial = %c \n", initial);

printf("you are %d years old, you earn %.2f and your middle
initial is %c \n", age, salary, initial);

L
Using printf

- The printf function takes in a number of inputs

- The first input is always the text you want to print out,
which may include placeholders (actually called
conversion characters) for 1 or more pieces of data

- The data is supplied in the inputs following the formatted
text input, with inputs separated by commas, for example:

int age = 35;
float salary = 35000.00;

printf("you are %d years old and earn %.2f per year", age, salary);

L
Conversion Characters

- Remember that we have to tell C exactly how to print
numbers and characters
- We have to use conversion characters (also called format

specifiers)

%d Integer

%f Floating point
%cC Character

%s String

%lIf Double

%X Hexadecimal

Example

printf ("%d %f %c\n", 15, -9.54, 'K');

= C:\WINDOWS\system32\cmd.exe M= 3

15 —7.5408800 K
Preszss any key to continue .

Note: if we don’t specify the number of decimal places, C
automatically puts in 6!

Example

printf ("%f %.3f %.2f %.1f\n", 4.56789, 4.56789, 4.56789, 4.56789);

= C:\WINDOWS\system32\cmd.exe (=l 3

4. 567898 4.568 4.57 4.6
Prezs any key to continue . -

Note: C rounds to the number of decimal places specified

e E
Escape Sequences

- C uses Escape Sequences a lot to represent characters that can’t
easily be represented in text. They are converted into the correct
character for example when output to screen.

- They are just special characters — we already used \n which gives
us a new line.

- Some other ones are:

\t tab

\\ just a backslash
\’ double quote

\ single quote

\a beep or alarm

L
Sample Program

- Try out this program yourself

#include <stdio.h>
void main()

{
float gradel, grade2, grade3;

float average = 0.0;

printf("Enter 3 grades separated by spaces: ");
scanf("%f %t %f", &gradel, &grade2, &grade3);

average = (gradel + grade2 + grade3) / 3.0;

printf("average grade = %.2f", average);

L
How scanf Is used

- The first input in scanf is the format text which tells scanf what the text
the user inputs will contain, and how to parse it.

- In this example we are telling scanf that the input text will contain 3
floating point numbers, separated by spaces.

- After you enter the text via the keyboard and press enter, scanf
parses the input to find the 3 floating point numbers.

- It then stores them in the variables which you provide to it.

- Putting the & in front of the variable name gives scanf access to the
address of the variable, so it knows where to put the value it parses
from the input text.

scanf("%f %t %f", &gradel, &grade2, &grade3);

&var gives you the address of var !

- So this code prints out the value of mylInt and also the
memory address where it is stored

int myInt = 44;

printf("myInt contains the value %d, which is stored at
location %X \n", myInt, &myInt);

‘myInt contains the value 44, which is stored at location C4FD70

- See what happens when | run it again — different memory
location used when program is ‘reloaded’

myInt contains the value 44, which is stored at location 6FF7AC

L
So....

- To repeat...when | run this command, | am giving scanf
the addresses of the three variables (gradel, gradeZ2,
grade3) so that it can store values there when it reads
from the input (keyboard)

scanf ("%t %t %f", &gradel, &grade2, &grade3);

COMMENTS

L
What are Comments?

- Comments are non-code text that you can add into your program.
- They are generally used to make the code more readable.

- You should use these to explain what your code is doing.

L
Using Comments

- In C, you can write a comment using //
- Anything that comes after // will be ignored by the compiler.

- E.Q.

int age = 55; // This 1s a variable to store age

L
Comment Blocks

- In C, you can comment multiple lines of code using /**/

- Anything that comes in between /* and */ will be ignored by the
compiler.

- E.Q.

int age = 55;

/* I have created a variable to store age.
Next I will create a variable for salary.
*/

float salary = 35000.00;

L
Comments Example

- You can see how comments make the following code easier to
understand:
}'*
* Name: Karl
* Date: 1 October
*/
#include <stdio.h>
void main() A

int age = 55; // variable for age
float salary = 35000.00; // variable for salary

// next I will print out the age and salary to the screen
printf("print age %d, salary %f \n",age, salary);

CODE EXAMPLES

L
C Program Example

- Lets now look at a C program.

Programming

CT103
Week 2b

L
Lecture Content

- Last lecture (Week 2a):
- C basic variable types and their size in bytes.
- Naming variables.
- Declaring and initialising variables.
- Comments.

- Today’s lecture (Week 2b):
- Basic maths operators.
- Modulus.
- Else if statements.
- Nested if statements.

MATH OPERATORS

Math Operators

- Addition: +

- Subtraction: -

- Multiplication: *
- Division: /

- Modulus (same as ‘remainder’ in maths): %
- This one is very useful!

Modulus

- Why is modulus % useful?

- The modulus operator allows us to get the remainder
when doing integer division.

- What is the remainder?

- When dividing two numbers that don’t divide evenly, the remainder
is what is left over.

- E.g. 9/4 = 2 with a remainder of 1.
- In C: 9%4 = 1.

Modulus

- | still don’t understand why is modulus % useful?

- Lets say | want you to write a program that tells me if a
number is even or odd.

- How would you do it?

Odd or Even?

- Lets say | want you to write a program that tells me if a
number is even or odd. How would you do it?
- Answer: Use Modulus!

#include <stdio.h>
void main() A
int num;
printf("Enter a number:");
scanf _s("%d", &num);
if (num%2==0) {
printf("Even");

}

else {
printf("0dd");

}

Odd or Even C Program

#include <stdio.h>

void main() { Enter a number:1

int num;
) 9
printf("Enter a number:"); dg

scanf_s("%d", &num);
if (num%2==0) {
printf("Even");

} Enter a number:4

else {. Even
printf("0odd");

}

ORDER OF OPERATORS

Order of operators

- C doesn’t always compute maths operations in the order
you might expect

- For example, i1s ans =21 or 117
ans =5+ 2*3;

- C always does the multiplication before the addition

To be sure to be sure

avg=i+)+k+1/4;
- C computes the division first, which means that

avg =10+ 2 + 4 + 8/4;

Would be equal to 18.... Not what we want

- Always use parentheses, like:
avg = (10 + 2 + 4 + 8)/4;
Equal to 6

- In effect you are dictating explicitly the order you want operations

evaluated in — much safer!

CHECKING IF NUMBERS
ARE EQUAL

111l .;-te-
= Or ==

- You might have noticed in the previous example of
modulus that we used == in our |IF statement.

- Why did you do this? Was this a typo?

\

if (num%2==0) {

- Assigning value: A single equals sign (=) assigns a value
to something (e.g. inti=5;)

- Used when initializing or setting variables.

- Checking equality: Two equals signs together (==) is a
relational operator to check what is on either side of the
operator is the same
- Often used in IF statements and While loops.

- The result is either true or false
- InC, trueis 1, and false is 0

L
Equality Example

- Checking equality:

if (num==1) {
printf("number is 1 \n");
¥
else {
printf("number is NOT 1 \n");
¥

Enter a number:1 Enter a number:55
humber 1is 1 number 1is NOT 1

L
Testing Data

- The if statement works like:
- If something is true then do A, otherwise do B

- C’s Relational Operators:

== Equal to

> Greater than

< Less than

>= Greater than or equal to
<= Less than or equal to

= Not equal to

L
Examples

Int 1= 5;
int] = 10;
Int kK = 15;
Intl =5;

- The following are true
| == j <k k > | j 1=k

- The following are false
| > J k< J k ==

L
True vs False

- In standard C there is no Boolean data type, so we
usually use an integer to store a true / false value

- It is very easy, because in C
- True is represented by 1
- False is represented by O

L
Example — try It out yourself

inti=4, j=7;

int x = (i < j);

printf("the value of x is %d \n", x);

if (x)
{

printf("i is less than j \n");
}
if (1 < J)
{

printf("i is less than j \n");
}

B Microsoft Visual Studio Debug Console

the value of x is 1
i is less than j
i is less than j

L
So...

- Whatis in a and b after these lines are executed?:

int a,b;
a=(4<10);
b=(8==9);

- Put them in a program and see for yourself if you are not
sure

IF, ELSE IF, ELSE

More than one Decision

- Up until now, we have only considered a simple if — else

statement,
- 1.e. If (True){// do something} else{//do something different}

- What do we do if we have multiple conditions?
- If the grade > 85, A. If grade > 70, B. If grade > 55, C... efc.

- Will simply using multiple if statements work?

L
Grade Example

int grade = 81;
- Will the following code work as we if (grade>85) {
want? printf("A \n");
}
if (grade > 70){
printf("B \n");
}
if (grade > 55) {
printf("C \n");
}
if (grade > 40) {
printf("D \n");
}
else {
printf("F \n");
}

L
Grade Example

int grade = 81;
- Will the following code work as we if (grade>85) {

want? printf("A \n");
}
B if (grade > 70){
- Output: printf("B \n");
C }
D if (grade > 55) {
printf("C \n");
}

if (grade > 40) {

- The student got a B. Why Is the orintf("D \n");

program also printing C and D? }
else {
printf("F \n");
}

Else If

int grade = 81;

- We need to use ‘Else if’ 1f (grade>85) {

/

else if (grade >

printf("D \n"

}

else {

printf("F \n'

}

printf("A \n'

statements!
else if (grade >
' rintf("B \n"
- Will the new code now wor P ("B \
want? else if (grade >
printf("C \n"
}

)

70){
);

55) {
)3

40) {
)s

s

D
Else If

int grade = 81;
if (grade>85) {

- Will the new code now work as we Drintf("A \n");

want? }
else if (grade > 70){
intf("B \n");
- Output: prant g
out: }
else if (grade > 55) {
- Success! printf("C \n");
}
else if (grade > 40) {
- ‘Else if’ will not check subsequent printf("D \n");
‘If’ statements after a condition is }
True. else {

printf("F \n");
}

CHECKING TWO
CONDITIONS

L
Two Conditions In an If Statement

- Up until now, we have only considered a single condition
In our If statement.

- What if we want to check if two conditions are true?

- For example:
- If there is no rain and it is warm, bring suncream.

- How would we write a program to do this?

L
Two Conditions In an If Statement

- There are two ways of doing this.

- The first method Is to use one If statement within another
If statement. These are called ‘nested’ if statements.

int temp = 35; // deg C
int rain = ©0; // © = no rain, 1 = railn
if (temp > 18) {
if (!rain) {
printf("bring suncream \n");

}
}

else {
printf("don't bring suncream \n");

}

L
Two Conditions In an If Statement

- The second way to do this is to use Boolean logic.

- This involves using AND, represented by && in C.

- This makes our code shorter.

- We will discuss Boolean logic hext Monday in more detail.

int temp = 35; // deg C
int rain = 0; // © = no rain, 1 = rain
if (temp > 18 && !rain) {

printf("bring suncream \n"); bring suncream
}

else {
printf("don't bring suncream \n");

¥

PROGRAMMING

CT103
Week 3a

L
Sign in on Blackboard

- Please sign in on blackboard for CT103.

- | will leave the sign in option open for an hour after the
lecture.

L
Lecture Content

- Last lecture (Week 2b):

- Basic maths operators.
- Modulus.

- Else if statements.

- Nested if statements.

- Today’s lecture (Week 3a):
- Boolean Logic.
- Switch Statements.
- Characters.

BOOLEAN ALGEBRA

L
Boolean Algebra

- We introduced Boolean logic last week.
- We saw AND which is && in C.
- We also saw NOT which is !'in C.

int temp = 35; // deg C
int rain = ©@; // © = no rain, 1 = rain
if (temp > 18 && !rain) {
printf("bring suncream \n");
}
else {
printf("don't bring suncream \n");

¥

L
Boolean Algebra

- What is Boolean Algebra?

- Definition: Boolean Algebra is a form of algebra in which
all variables are either True or False.

- Boolean operators can then applied to these variables.

L
George Boole

- Boolean algebra is named after George Boole who first
iIntroduced it.

- George Boole was a Professor in UCC, Cork Ireland.

Z

George Boole
Image from: Wikipedia

L
Boolean Operators

- The primary Boolean operators are:

- AND (In C: &&)
-OR(InC:|)
- NOT (InC: 1)

- XOR (In C: 1=)

L
Truth Tables

- The following truth table shows how each of these
operators work.

- In C: 1 =True, 0 = False

NOT AND OR XOR
x | x' X y|xy X y | Xx+ty X y x®y
TT 0O 0] 0 o 0| 0 0 0 0
1|0 o 1|0 o0 1| 1 0 1 1
1 0|0 1 0| 1 1 0 1
1 1|1 1 1| 1 1 1 0

Source: https://introcs.cs.princeton.edu/java/7 1boolean/

L
Boolean Operators in C

- AND
- What will the following code output?

int a 1;
int b = 1;
if (a&&b) {
printf("True \n");
}
else {
printf("False \n");

}

L
Boolean Operators in C

- OR
- What will the following code output?

int a = 0;

int b = 0;

if (al[b) {
printf("True \n");

}

else {
printf("False \n");

}

L
Boolean Operators in C

- XOR
- What will the following code output?

int a = 1;
int b = 1;
if (al=b) {
printf("True \n");
}
else {
printf("False \n");

¥

L
Boolean Operators in C

- NOT
- What will the following code output?

int a = 9;
int b = 1;
if ('a) {
printf("True \n");
}
else {
printf("False \n");

}

SWITCH STATEMENTS

L
Switch statement

- Switch statements test the value of a variable and
compares it with multiple cases.

- |f case match is not found, default statement is executed.

- Benefits of switch statements:
- Switch can be tidier.
- Can be executed faster.

Switch Template

Note : not ;
switch (expression)

{

« Expression is evaluated.

« EXxpression must return
an int.

case value2: « EXxpression can be an int.
/l'do something else , y/aye of expression

case valuel:
/[do something
break:

break; compared to each case.

- Break important to avoid
default: _ _

break: running on and executing the

} next case (if you leave it out,
it will!)

Switch Example in C

- Switch statement that checks if a numberis O or 1.

// switch statement

int num = 11;

switch (num) {

case @:
printf("You have selected ©\n");
break;

case 1:
printf("You have selected 1\n");
break;

default:
printf("You can only select © or 1\n");
break;

L
Sample Output

- If we run the following statement with num =11, we get the
default response.

// switch statement

int num = 11;

switch (num) {

case O:
printf("You have selected 0\n");
break; B Microsoft Visual Studio Debug Console

case 1: You can only select 0 or 1
printf("You have selected 1\n");
break;

default:
printf("You can only select © or 1\n");
break;

L
Equivalent Program using IF Else

- Below we can compare both programs side by side using
If Else and using Switch.

// equivalent program using if else // switch statement
int num = 11; int num = 11;
if (num==0) { switch (num) {

printf("You have selected @\n"); case @:
} printf("You have selected @\n");
else if (num==1) { caseb;?ak’

printf("You have selected 1\n"); printf("You have selected 1\n");
} break;
else { default:

printf("You can only select @ or 1\n"); printf("You can only select @ or 1\n");
} break;

CHARACTERS

Characters in C

- What are they really?
- How are they stored?
- How do read them in.

- Hanging newline characters in the input
- And how to get rid of them

How are variable values stored

- 1’'s and O’'s — everything is stored in binary format.

- That includes characters also. Each character has a
different binary value.

- char c =’a’;

- Note: Singe quotations for characters. We learnt this last
week...

- Other languages, e.g. python, are less strict with
guotations.

What are the values behind the
characters?

- This is where having a standard character table comes in.

- Enough people in industry got together and decided what the value of
each character should be.

- So for example:
- ‘a’is stored as the number 97 (binary 1100001)
- ‘A’ is stored as the number 65 (binary 1000001)
- “?"is stored as the number 63 (binary 111111)

- ‘# is stored as the number 35 (binary 100011)
- ...and soon

- The full set is called a character set, such as the original ASCII (American
Standard Code for Information Interchange) table

- Since superseded by UTF, but UTF includes the basic ASCII English
character set

How to see the value of a character

- The following will show you the value of a character:

char myChar = "1°;
printf("character \'%c\' represented by value %d \n",myChar, myChar);

character '!' represented by value 33

EXAMPLE C PROBLEM

L
Quality Control Program

- You are writing a computer program for a manufacturer to
check if the quality of a product. Write a C program:
1. Begin with the width and height of the product in meters.
2. Convert the width and height to millimetres.

3. Check if the product width is outside of the acceptable region.
Min width = 200mm. Max width = 230mm.

4. Do step 3. twice, first using AND, then using OR.
Categorize the height as short, medium, or tall based on the

table below:
Min Max
Category Height (mm) Height (mm)
Short - 100
Medium 100 120

Tall 120

PROGRAMMING

CT103
Week 3b

L
Sign in on Blackboard

- Please sign in on blackboard for CT103.

- | will leave the sign in option open for an hour after the
lecture.

Note on Lab Assignments

- Please make sure to bring your laptop if you can.
- Submit your .c file and .doc file in a zipped up folder.

- Make sure your code in your .c file matches your code in your .doc
file.

- Make sure you do the assignments yourself. It is fine to ask each
other questions or use C code | provide in lectures/tutorials.

- Do not copy another students assignment. Plagiarism is taken
seriously by the university.

- If instances of plagiarism are detected, all students involved will
receive a grade of zero for the assignment and may be subject to
further disciplinary proceedings.

L
Lecture Content

- Last lecture (Week 3a):
- Boolean Logic.
- Switch Statements.
- Characters.

- Today’s lecture (Week 3b):

- Loops.

- While loops.

- Do while loops.

- Example C program.

WHY DO WE NEED
LOOPS?

L
Loops

- Up until now we have not actually looked at any C
programs that use loops.

- Loops are useful if we want to do the same task more
than once.

- If we did not have loops, we would have to rewrite the

same code over and over.
- This would be time consuming, unreadable and difficult to change.

L
Motivating Loops Example

- How would I write a program that would do the following
3 times without using loops.
- Read in two numbers.
- Add them together.
- Print the result.

L
Motivating Loops Example

- You could do the following:

#include <stdio.h> printf("Enter number 1:");

void main() A scanf_s("%d", &numl);
int numi; printf("Enter number 2:");
int num?2: scanf_s("%d", &num2);
] ? total = numl + num2;
int total; printf("The sum is %d\n", total);
printf("Enter number 1:"); printf("Enter number 1:");
scanf_s("%d", &numl); scanf_s("%d", &numl);
printf("Enter number 2:"); printf("Enter number 2:");

scanf_s("%d", &num2);
total = numl + num2;
printf("The sum is %d\n", total);

scanf_s("%d", &num2);
total = numl + num2;

printf("The sum is %d\n", total); }

Motivating Loops Example

When you run the code, it works and gives the following
output:

#include <stdio.h>
void main() {

int numi;
int num2;
int total;

printf("Enter number 1:");
scanf_s("%d", &numl);
printf("Enter number 2:");
scanf_s("%d", &num2);
total = numl + num2;

printf("The sum is %d\n", total);

printf("Enter number 1:");
scanf_s("%d", &numl);
printf("Enter number 2:");
scanf_s("%d", &num2);
total = numl + num2;

printf("The sum is %d\n", total);

printf("Enter number 1:");
scanf_s("%d", &numl);
printf("Enter number 2:");
scanf_s("%d", &num2);
total = numl + num2;

printf("The sum is %d\n", total);

Enter number
Enter number
The sum is 8
Enter number
Enter number

The sum is 5
Enter number
Enter number
The sum is 14

L
Motivating Loops Example

- There are plenty of problems with this:
- The code is longer than it needs to

void main() {

t) int numil;
e . int num2;
int total;

- What if we want to change it so that orint(“Enter number 1:);

scanf_s("%d", &numl);

we are subtracting numbers instead of rincFCenten mmber 2:°);

scanf_s("%d", &num2);
total = numl + num2;

addlng numberS? printf("The sum is %d\n", total);

printf("Enter number 1:");

- This is doable for repeating this task 3 e < {R, eriml)

printf("Enter number 2:");
scanf_s("%d", &num2);

times, what if we want to do it 100 total « s+ e |
. . printf("The sum is %d\n", total);
times? Or 10000 times?

printf("Enter number 1:");
scanf_s("%d", &numl);
printf("Enter number 2:");
scanf_s("%d", &num2);
total = numl + num2;

- Loops are a way of solving these i s i, e
ISsues!

WHILE LOOPS

L
While Loops

- The first type of loop we will cover is called the while
loop.

- The while loop will repeat a block of code over and over
while some condition is true.

L
While Loops Template

- While loops have the following structure:

while (condition) {
// Do something

¥

- We have some condition, e.g. number<10.

- While this condition is True, whatever is inside the curly
brackets {} gets executed.

- This is useful for doing something more than once!

L
While Loops Example

- Lets look at the following simple while loop.

int j = 0;

while (j<4) {
printf("Hello\n");
J++;

}

- This code will print “Hello” to the screen 4 times.

L
While Loops Example

- See the output of this code:

i N t j = e ; B Microsoft Visual Studio Debug Console
while (j<4) {

printf("Hello\n");
J++;

- Of course don't forget # include and void main!

L
Loops Example

- Remember the problem from eatrlier:

- How would I write a program that would do the following
3 times without using loops.
- Read in two numbers.
- Add them together.
- Print the result.

- How would | now do this using a while loop?

L
While Loops Example

#include <stdio.h>

- You would do void main() {
the following: Lt numi;
int num2;

int total;

int 1 = ©;

while (i<3){
printf("i = %d\n",1i);
printf("Enter number 1:");
scanf_s("%d", &numl);
printf("Enter number 2:");
scanf _s("%d", &num2);
total = numl + num2;
printf("The sum is %d\n", total);
14+

While Loops Example

Running the program will give you the following output:

#include <stdio.h>
void main() {

int numil;

int num2;

int total;

int i = ©;

while (i<3){
printf("i = %d\n",1i);
printf("Enter number 1:");
scanf_s("%d", &numl);
printf("Enter number 2:");
scanf_s("%d", &num2);
total = numl + num2;
printf("The sum is %d\n", total);
i++;

Microsoft Visual Studio Debug Console
i=20

Enter number 1:56
Enter number 2:52
The sum is 108
i=1

Enter number 1:42

Enter number 2:2
The sum is 44

i= 2

Enter number 1:33
Enter number 2:2
The sum is 35

While Loops Example

This program gives the same output as the previous
example (except | am printing an extra line that shows 1).

B8 Microsoft Visual Studio Debug Console
#include <stdio.h>

void main() { l - @
int numl; Enter number 1:
int num2;
int total; Enter number 2:
int i = ; The sum is 108

while (i<3){
printf("i = %d\n",1); c
printf("Enter number 1:"); Enter number‘ 1:
scanf_s("%d", &numl); Enter number 2:

printf("Enter number 2:"); .
scanf_s("%d", &num2); The sum 1is 44

total = numl + num2;
printf("The sum is %d\n", total);
i++;

Enter number 1:
} Enter number 2:
The sum is 35

L
Solution Comparison

- The solution on the left uses while loops. The solution on
the right does not.

#include <stdio.h>
void main() {

int numi;

int num2;

#include <stdio.h> int total;

void main() {
int numi; printf("Enter number 1:");
int num2: scanf_s("%d", &numl);
b
. . printf("Enter number 2:");
:!‘nt -I_:Otal’ scanf_s("%d", &num2);
int 1 = 9; total = numl + num2;
printf("The sum is %d\n", total);

while (i<3){

printf("Enter number 1:");

printf("i = %d\n",1i); scanf_s("%d", &numl);
printf("Enter number 1:"); printf("Enter number 2:");
scanf_s("%d", &numl); scanf_s("%d", &num2);

total = numl + num2;

printf(“Enter number 2:"); printf("The sum is %d\n", total);

scanf_s("%d", &num2);

total = numl + num2; printf("Enter number 1:");
printf("The sum is %d\n", total); scanf_s("%d", &numl);
I printf("Enter number 2:");
’ scanf_s("%d", &num2);
} total = numl + num2;
} printf("The sum is %d\n", total);

L
Advantages of While Loops

- Using while loops gives us the
fO”OWing advantages: #include <stdio.h>

void main() {
int numil;
int num2;
int total;

- The code Is easier to read. int i =

while (i<3){
printf("i = %d\n",1);
- If I want to run the same block of code printf("Enter number 1:");

scanf_s("%d", &numl);

10000 times, all | need to do is change printf("Enter nunber 2:");
the condition to (i<10000). scanf_s("xd", &nun2);

total = numl + num2;
printf("The sum is %d\n", total);
i++;
. ¥
- If I want to make a change to multiply }

numbers together instead of adding them,
| only need to do it once!

L
Avoid infinite loops!

- An infinite loop Is a loop that can never end.
- Therefore be careful with your while condition.

- You must change a variable inside the while loops body
that is used in the condition — otherwise you could end up
In an infinite loop.

- Below are both examples of infinite loops:

B8 C\Users\Karl

int 1 = ©;
while (i < 3) {
printf("hello\n");

while (2 < 3) {
printf("hello\n");

) }

DO WHILE LOOPS

L
Do While Loops

- Do While Loops are a variant of while loops.
- They work in much the same way as while loops.
- Do While Loops have the following structure.

do A
// do something
} while (condition);

L
Do While Loops Example

- Print “"Hello” 4 times using a do while loop.

int j = 0;

do {
printf("Hello\n");
J++;

} while (j<4);

B8 Microsoft Visual Stu

L
Why Use Do While Loops?

- You can use a do while loop if you want to ensure that you
execute a block of code at least once.

“Hello” will be printed at a
minimum of once, irrespective

int j = 0; of what value j has.

printf("Hello\n");
J++;
} while (j<4);

L
Do While Comparison with While

- Both of the following programs with print “Hello” 4 times.
- The program on the left uses a do while loop.
- The program on the right uses a while loop.

int j = 0; int j = 0;

do { while (j<4) {
printf("Hello\n"); printf(“Hello\n");
J++; J++;

} while (j<4); }

EXAMPLE PROBLEM

L
Example Problem

- Write a program that reads in the users weight in kg and
height in meters.

- Calculate their BMI as: BMI = weight / height?.

- Your program should then give the user an option to go
again or to end the program.

- The user should be able to do as many BMI calculations
as possible.

L
Example Problem

- Go to C program solution.

L
BMI C Program

- The following will code will work:

#include <stdio.h>
void main() {
float height;
float weight;
float bmi;
int again = 1;
do
{
printf("Enter your weight in kilos: ");
scanf _s("%f", &weight);

printf("Enter your height in metres: ");
scanf_s("%f", &height);

bmi = (weight) / (height * height);
printf("Your BMI is: %f. \n Enter 1 to do again or @ to exit.\n", bmi);

scanf_s("%d", &again);
} while (again == 1);

BMI C Program Output

The code will produce the following output:

Microsoft Visual Studio Debug Console

Enter your weight in kilos: 200
Enter your height in metres: 1.95
our BMI is: 52.596973.

Enter 1 to do again or @ to exit.
1

Enter your weight in kilos: 200
Enter your height in metres: 1.72
our BMI is: 67.604111.

Enter 1 to do again or © to exit.

0

PROGRAMMING

CT103
Week 4a

L
Sign in on Blackboard

- Please sign in on blackboard for CT103.

- | will leave the sign in option open for an hour after the
lecture.

L
Lecture Content

- Last lecture (Week 3b):
- Loops.
- While loops.
- Do while loops.

- Today’s lecture (Week 4a):
- Recap on while loops.
- For loops.
- Example C program.

WHILE LOOPS RECAP

L
While Loops

- Last week we learned about while and do while loops.

- The while loop will repeat a block of code over and over
while some condition is true.

.- i
While Loops

- See the output of this code:

i N t j = e ; B Microsoft Visual Studio Debug Console
while (j<4) {

printf("Hello\n");
J++;

L
Do While Loops

- Print “"Hello” 4 times using a do while loop.

int J = 0, B Microsoft Visual Stu
do {

printf("Hello\n");

J++;

} while (j<4);

L
Another Do While Example

- Write a program that:

- Asks the user if they want to convert a temperature from Celsius to
Fahrenheit or the other way around.

- The program should convert temperature from one unit to the other,
e.g. Fahrenheit to Celsius.

- The user should be able to do as many temperature conversions as
they like.

L
Another Do While Example

#include <stdio.h>

void main()

{
double templ;
double temp2;
int choice = 1;

printf("enter choice\nl-Fahrenheit to Celsius\n2-Celsius to Fahrenheit\n3-Exit\n");
scanf_s("%d", &choice);
do {

printf("Enter temp: ");

scanf_s("%1f", &templ);

if (choice == 1)

{

temp2 = (templ - 32.0) * 5.0 / 9.0;

printf("%.21f degrees F = %.21f degrees C\n\n", templ, temp2);
b
else
{

temp2 = 32.9 + (templ * 9.0 / 5.9);

printf("%.21f degrees C = %.21f degrees F\n\n", templ, temp2);
}

printf("enter choice\nl-Fahrenheit to Celsius\n2-Celsius to Fahrenheit\n3-Exit\n");
scanf_s("%d", &choice);

} while (choice!=3);

Another Do While Example

le <stdio.h>

void main()

{

}

double templ;
double temp2;
int choice = 1;

printf(“enter choice\nl-Fahrenheit to Celsius\n2-Celsius to Fahrenheit\n3-Exit\n");
scanf_s("%d", &choice);
do {

printf("Enter temp: ");

scanf_s("%1f", &templ);

if (choice == 1)

{

temp2 = (templ - 32.0) * 5.0 / 9.0;

printf("%.21f degrees F = %.21f degrees C ", templ, temp2);
}
else
{

temp2 = 32.0 + (templ * 9.0 / 5.0);

printf("%.21f degrees C = %.21f degrees F ", templ, temp2);
}

printf("enter choice\nl-Fahrenheit to Celsius\n2-Celsius to Fahrenheit\n3-Exit\n");

scanf_s("%d", &choice);

} while (choice!=3);

Microsoft Visual Studio Debug Console

enter choice
1-Fahrenheit to Celsius
2-Celsius to Fahrenheit
3-Exit

2
Enter temp: 18.3

18.30 degrees C = 64.94 degrees F

enter choice
1-Fahrenheit to Celsius
2-Celsius to Fahrenheit
3-Exit

3

Points to Remember

- Loops allow us to repeat a piece of code.

- While loops allow us to keep repeating as long as the
condition is true.

- Avoid infinite loops. Do this by changing “something” in
the body of the loop.

L
Points to Remember

- Do while loops are similar to while loops except that they
ensure what is in body of loop is executed at least once.

- Loops allow us to have shorter and more readable code.

FOR LOOPS

For Loops

- For loops are useful if we want to repeat some code a
predetermined number of times.

- We saw how we do this with while loops. We use:

- A variable.
- A condition.
- An increment of the variable.

- For loops are a shorter way of doing this!

For Loop Template

- So what does a for loop look like?
- Afor loop will look something like the following:

Declare variable initialize variable test variable increment variable

S

for (i = 0; i < 4;i++) {
printf("Hello\n");
}

L
For Loop Template

- Afor loop can also look as follows:

int i; . . ' .

for (i = @; i < 4;i++) { for (1?t i ? 0, 1 <"4;1++) {
orintf("Hello\n"); } printf("Hello\n");

}

- We can declare and initialize the variable in the for loop.

L
For Loop Example

- When we run the program, it outputs “Hello” 4 times:

B3 C\Users\Karl\so

int 1i;

for (i = 0; i < 4;i++) {
printf("Hello\n");

}

L
For Loop vs While Loop

- Lets compare the structure of for loops and while loops.

int j = 9;
for (int i = @; 1 < 4;i++) { while (j<4) {
printf("Hello\n"); printf("Hello\n");

J++;

}

For Loop While Loop

L
For Loop vs While Loop

- Lets compare the structure of for loops and while loops.

Declare variable initialize variable test variable increment variable

int j = 0;
for (int i = @; i < 4;i++) { while (j<4) {

printf("Hello\n"); printf("Hello\n");
J++; <

}

For Loop While Loop

L
Which Loop Should | Use?

- Your choice of loop depends on what you want to do and
how you want to end the loop.

- If you want to repeat a task “x” number of times, you can
use either a for loop or a while loop.
- E.g. If want to do a calculation 5 times, use a for loop.

- When | want to end the loop is determined by the number of
calculations.

- If you do not know how many cycles the loop will run for,
use a while loop.

- E.g. If my program does BMI calculations, | don’t know how many
calculations the user will want to do.

EXAMPLE PROBLEMS

D
ATM Problem

- You are working for a bank.

- You must write a program that:
- Create a new bank account with a balance of €100.
- Use a for loop to make 3 ATM withdrawals.
- Update the bank account balance for each withdrawal.

D
ATM Problem

- Go to C program solution.

D
ATM Problem

- The following code will work:

#include <stdio.h>
void main()
{
float balance = 100.0;
float withdraw = 0.0;
for (int 1 = 0; 1 < 3;i++) {
printf("\nEnter withdrawl amount %d: ",i+1);
scanf_s("%f",&withdraw);
balance = balance - withdraw;

¥
printf("\nYour final balance is: %0.2f",balance);

ATM C Program Output

The code will produce the following output:

Microsoft Visual Studio Debug Console

Enter withdrawl amount 1:

Enter withdrawl amount 2:

Enter withdrawl amount 3:

our final balance is: 67.

L
Airlines Problem

- You are working for a major airline “Brianair”.

- You must write a program that:

- Reads in the number of bags to be checked in as input from the
user.

- Use a for loop to read in the weight of each individual bag.
- Sum up the total weight of the bags and print it to the screen.

- Rewrite the same program as outlined above, now using a while
loop.

L
Airlines Problem

- Go to C program solution.

Airlines Problem

- The following code will work:

#include <stdio.h>
void main()
{
int numBags = 9;
int counter;
float bagWeight;
float totalWeight = @;
printf("Enter the number of bags: ");
scanf_s("%d",&numBags);
for (counter = @; counter < numBags;counter++) {
printf("Enter the weight of bag %d: ",counter+l);
scanf_s("%f",&bagWeight);
totalWeight = totalWeight + bagWeight;

}
printf("Total weight = %0.2f ",totalWeight);

L
Airlines Problem

- The following code will also work, now with a while loop:
#include <stdio.h>
void main()
{
int numBags = 0;
int counter = 0;
float bagWeight;
float totalWeight = ©;
printf("Enter the number of bags: ");
scanf_s("%d",&numBags);
while (counter < numBags) {
printf("Enter the weight of bag %d: ",counter+l);
scanf_s("%f",&baghWeight);
totalWeight = totalWeight + bagWeight;
counter++;

}
printf("Total weight = %0.2f ",totalWeight);

Alirline C Program Output

The code will produce the following output:

Enter the number of bags: 2
Enter the weight of bag 1: 12.3

Enter the weight of bag 2: 22.1
Total weight = 34.40

PROGRAMMING

CT103
Week 4b

L
Sign in on Blackboard

- Please sign in on blackboard for CT103.

- | will leave the sign in option open for an hour after the
lecture.

L
Lecture Content

- Last lecture (Week 4a):
- Recap on while loops.
- For loops.
- Example C program.

- Today’s lecture (Week 4b):
- Arrays
- Arrays and loops
- Arrays example C program

ARRAY S

L
Array Definition

- What is an array?

- Definition: An array is a data structure consisting of a
collection of elements. Each element can be identified by
an index.

L
Array Definition

- What are arrays used for?
- An array is used to store a collection of data.

- You can think of an array as a collection of variables of
the same type.

Arrays in C

- You can define arrays of any type as follows:
- E.g. intvals [3];
- E.g. char initials[3];

- You can initialise like this if you want to:
- intvals[3] = {14,5,7},

vals|[O]

vals[1]

vals|[2]

Arrays in C

- If we have the following array called vals.

- The size of vals is 3.

- The 1st element is at position O of the array.
- The 2" element is at position 1 of the array.
- The 3 element is at position 2 of the array.

vals|O]
vals[1]

vals|[2]

L
Array Terminology

- Array — a collection of data.
- Element — one of the “items” in the array.
- Index — the position of the element in the array.

- Array size — how many elements in the array.

L
Initializing an Array

- float prices[3] = {65.56, 45.63, 7.90};
- double salary[2] = {45000.00, 33500.00};

- Int grades|5] = {44, 55, 66, 33, 88},

L
Initializing an Array

* Int ages[5] ={6,8,9,11,14}; /* Correct */

* Int agesl]; /* Incorrect */

* Int ages[] ={6,8,9,11,14},; /* Correct */

 Remember, you must initialise you array properly.

L
Simple Array Problem Example

- Write a program that does the following:

- Store all of the possible letter grades that a student can
get in an array.

- Print the grade at index 2 to the screen.

L
Simple Array Problem Example

- The following program creates at array for grade letters.

#include <stdio.h>
void main()

{
char gradeletters[] = {'A','B",'C','D","'F'};
printf("Grade at index %d is %c.\n",2, gradelLetters[2]);

B8 Microsoft Visual Studio Debug Console

Grade at index 2 is C.

L
Common Array Mistakes

« Accessing an index that is equal to or larger than the

size of the array.

e Don’t do this.

#include <stdio.h>
void main()
{
char gradelLetters[] = {'A",'B','C','D',"F'};

rintf("Grade at index %d is %c.\n",8, gradelLetters[8]);
)

B Microsoft Visual Studio Debug Console

Grade at index 8 1is

L
Common Array Mistakes

« Setting the value of an array element who's index is

equal to or larger than the size of the array.

 Don’t do this either.

char gradelLetters[] = {'A','B','C','D","F'};

gradeLetters!Q“ = 'X";

pr'\int-F(n Gr\ @ (local variable) char gradeletters[5] gr“adeLe‘tter‘s [2]) ;

Search Online

C6201: Index 9" is out of valid index range '0" to 4" for possibly stack allocated
buffer ‘gradeletters”.

C6386: Buffer overrun while writing to 'gradeletters’; the writable size is '5"
bytes, but "10° bytes might be written.

L
Common Array Mistakes

* | would need to create a larger array.

#include <stdio.h>

void main()

{
char gradelLetters[10] = {'A','B','C"','D"','F'};
gradelLetters[9] = 'X';
printf("Grade at index %d is %c.\n",9, gradelLetters[9]);

} BY Microsoft Visual Studio Debug Console

Grade at index 9 is X.

ARRAYS AND LOOPS

L
Remember

- The index of the array members always starts with O, for
example:
- grades]0];

- For an array of length/size n (called myArray):
- The indices range from O to n-1.
- The elements range from myArray[0] to myArray[n-1].

L
Accessing array members

[0] [1] [2] [3] [4]
int grades[5] = { 44, 55, 66, 33, 88 };

grades[0@] = 48; // easy to access/change any member of an array
printf("second grade is %d\n", grades[1]);
for (int 1 = 0;1 < 5;i++)

{
printf("%d ",grades[i]);

¥ B Microsoft Visual Studio Debug Console —

second grade is 55

48 55 66 33 88
C:\Users\©063190s\source\repos\tutorial:
riall2.exe (process 17672) exited with «
Press any key to close this window . .

EXAMPLE PROBLEMS

L
Exercise Tracker App

- You are designing an fithess app. The app allows the user
to track their 5km running times.

- You must write a program that:
- Reads in the number of 5km running times as input from the user.
- Use loop to read in each 5km running time from the user.

- Store these times in an array.
- Print the running times out to the user so they can view them.

L
Exercise Tracker App

- Go to C program solution.

L
Exercise Tracker App

- The following code will work:

#include <stdio.h>
void main()

{
float runTimes[1000];

int num;

printf("Enter the number of 5k times to store: ");
scanf_s("%d",&num);

for (int 1 = 0; 1 < num;i++) {
printf("Enter 5k time number %d: ",i+1);
scanf_s("%f",&runTimes[i]);

}

printf("Your running times are: \n");
for (int i = 0; i < num; i++) {

printf(“Time %d is: %@.2f\n", i+l1, runTimes[i]);
}

Exercise Tracker App

The code will produce the following output:

B Microsoft Visual Studio Debug Conscle

the number of 5k times to store: 5
5k time number 1: 29.87

5k time number 2: 28.53
5k time number 3: 28.24
5k time number 4: 25.16
5k time number 5: 31.65

running times are:
is: 29.87
is: 28.53
is: 28.24
is: 25.16
is: 31.65

L
Cinema Problem

- You are designing software for a cinema. The cinema
wants to record the daily visitors to the cinema over 7
days.

- You must write a program that:

- Reads the number daily cinema goers as input from the user for 7
days.

- Stores the cinema visitor numbers in an array.
- Calculate and print the average number of daily cinema goers.
- Prints out the daily visitor numbers that are below average.

D
Cinema Problem

- Go to C program solution.

D
Cinema Problem

- The following code will work:

#include <stdio.h>
void main()

{
int visitors[7];
int sumVisit = 0;
int avgVisit = 0;

for (int i =0; 1 < 7;i++) {
printf("Enter visitors for day %d: ",i+l);
scanf_s("%d",&visitors[i]);
sumVisit = sumVisit + visitors[i];

}

avgVisit = sumVisit / 7;

printf(”Average daily cinema visitors is %d. \n", avgVisit);

for (int 1 =0; 1 < 7; i++) {
if(visitors[i]< avgVisit){
printf("Day %d visitors = %d\n", i+1, visitors[i]);

}

Cinema Problem

The code will produce the following output:

Note: Be careful of rounding. We use integers when
calculating the average here.

Microsoft Visual Studio Debug Console

visitors for day

visitors for day

visitors for day
visitors for day
visitors for day
visitors for day

visitors for day 7:
Average daily cinema visitors is 897.

Day 1 visitors
Day 2 visitors
Day 3 visitors
Day 4 visitors

512
523
854
596

: 512
2: 523
: 854
: 596
: 1287
: 1377

1130

PROGRAMMING

CT103
Week 5b

L
Sign in on Blackboard

- Please sign in on blackboard for CT103.

- | will leave the sign in option open for an hour after the
lecture.

L
Lecture Content

- Last lecture (Week 4b):
- Arrays
- Arrays and loops
- Arrays example C program

- Today’s lecture (Week 5b):

- Arrays recap

- Arrays in memory

- 2D Arrays

- Example 2D arrays C program

ARRAYS RECAP

L
Definitions

- Definition: An array Is a data structure consisting of a
collection of elements. Each element can be identified by
an index.

- Element — one of the “items” in the array.

- Index — the position of the element in the array.

Arrays in C

- You can initialise like this:
- Int vals[3] = {14,5,7};

vals|[O]

vals[1]

vals|[2]

L
Declaring an Array

- Very straightforward — you just need to specify variable
(array) type, name and size, e.g.:
- int grades[5];

- To initialise, you can do like so:
- int grades[5] = { 44, 55, 66, 33, 88 };

- You can implicitly dictate the size of the array:
- int grades[] = { 44, 55, 66, 33, 88 }; // size =5

L
Simple Array Problem Example

- The following program creates at array for grade letters.

#include <stdio.h>
void main()

{
char gradeletters[] = {'A','B",'C','D","'F'};
printf("Grade at index %d is %c.\n",2, gradelLetters[2]);

B8 Microsoft Visual Studio Debug Console

Grade at index 2 is C.

Cinema Problem

This code from last week will read in daily cinema visitors,
calculate the average and return the days < average.

#include <stdio.h>
void main()

{

. P B8 Microsoft Visual Studio Debug Console
int visitors[7];

int sumvisit = o; visitors for day 1: 512

. .. visitors for day 2: 523

Int avgVisit = 0; visitors for day 3: 854
visitors for day 4: 596

for (int 1 = 0; i < 7;i++) { visitors for day 5: 1287

printf("Enter visitors for day %d: ",i+l); visitors for day 6: 1377
scanf_s("%d",&visitors[i]);
sumVisit = sumVisit + visitors[i];

visitors for day 7: 113@
Average daily cinema visitors is 897.

512
523
854
596

1 visitors
2 visitors
3 visitors
4 visitors

}
avgVisit = sumVisit / 7;
printf("Average daily cinema visitors is %d.

, avgVisit);

for (int 1 =0; 1 < 7; i++) {
if(visitors[i]< avgVisit){
printf("Day %d visitors = %d\n", i+l1, visitors[i]);

}

ARRAYS IN MEMORY

Where/how are arrays stored?

- An array is normally stored in sequential blocks of
memory, i.e. RAM.

- Block size depends on the number of bytes required to
store that type of variable.

- For example, an integer usually requires 4 bytes.

Where/how are arrays stored?

- An array is normally stored in sequential blocks of

memaory.
grades[0] grades[1] grades[2] grades[3] grades[4]
44 55 66 33 88
address: 75F7CC 75F7D0 75F7D4 75F7D8 75F7DC

(this will change every time you run it) == 4bytes == == 4byles == = 4dbytes == == dbytes == == 4 bytes ==

- Functions like scanf() need the address of a variable so that it can store new
values there

- This is why you put & in front of the variable name, which gives scanf() the
variable address rather than the variable’s current value

L
Try this out

void main()

{
int grades[5] = { 44, 55, 66, 33, 88 };

for (int 1 =0; i < 5; i++){
printf("%d stored at address: %X \n", grades[i], &grades[i]);

}
printf("\n\n");

}
B Select Microsoft Visual Studio Debug Ce B Microsoft Visual Studio Debug Cons
44 stored at address: 75F7CC 44 stored at address: 26FE28
55 stored at address: 75F7D@ 55 stored at address: 26FE24
66 stored at address: 75F7D4 66 stored at address: 26FE28
33 stored at address: 75F7D8 33 stored at address: 26FE2C
88 stored at address: 75F7DC 88 stored at address: 26FE3@

Copy an array into another

- Easy to do — just use the same index for the source array
and the target array. Try this out:

#include <stdio.h>

void main()

{
int grades[5] = { 44, 55, 66, 33, 88 };
int marks[5];

0; 1 < 5; i++){
grades[i];

for (int 1
marks[1i]

}

Create an array based on another array

- Easy to run through an array with a for loop and also set
the values of another array of the same size

#include <stdio.h>
B Microsoft Visual Studio Debug Cor

void main() square of 1.30 = 1.69
{ square of 4.50 = 20.25
double nums[4] = { 1.3, 4.5, 5.123, 6.7002 }; square of 5.12 = 26.25
double squares[4]; square of 6.70 = 44.89

for (int 1 = 0; i < 4; i++){
squares[i] = nums[i] * nums[i];
printf("“square of %.21f = %.21f \n", nums[i], squares[i]);
}
}

2D ARRAYS

L
2 Dimensional Arrays

- Up until now, we have only considered a 1 dimensional
(1D) array.
- E.g. int vals[3] = {14,5,7};

- What if we have 2 dimensional (2D) data that we need to
use in our program?

- We use 2D arrays!

L
2 Dimensional Arrays

- What do 2D arrays look like?
- The following will create a 2-dimensional array of integers:
- Int var[2][2]; var[0][0] var[O][1]

var[1][0] var[1][1]

- The first index is the row number, the second index iIs
the column number.

Initialise 2D array

- Each row is an individual 1D array
- Int var[2][2] = {{11,12},{21,22}};

11 12

21 22

Change element

- How do | change an element in a 2D array?
- var[1][0] = 55;

11 12

55 22

Loop over elements In 2D array

- How do | loop over elements in a 2D array?

- You need 2 loops:
- Outer loop for the rows

- Inner loop for the columns

- In the first part of this example, we use two loops to set the values in a 4x4
array. We use a separate variable (val) for the values in the array.

int x[4][4];
int r, ¢, val = 0;

// set array values
for (r =0; r < 4; r++){
for (c = 0; c < 4; c++){
x[r][c] = val;
val++;
}
}

L
Output the 2D array

- In the second part of the example we use the same
approach to print out the array, using tabs (\t) to space out
the values better

// output array
for (r = 0; r < 4; r++){
for (c = 0; c < 4; c++){
printf("%d\t", x[r][c]);

}
printf("\n"); B Microsoft Visual Studio Debug Console
} e 1 2 3
4 5 & 7
8 S 1e 11
12 13 14 15

Cevlleare\QAE22T1A0c cemlIme~,a A mamss Vi rmmd aT1190T

Input an array

int x[3][3]; B Microsoft Visual Studio Debug (
int r, c; Enter x[©][0]: 11
Enter x[©][1]: 12
Enter x[©][2]: 13
// set array values Enter x[1][0]: 21
for (r = 0; r < 3; r++){ Enter x[1][1]: 22
for (c = @; c < 3; c++){ Enter x[1][2]: 23
printf("Enter x[%d][%d]: ", r, c); E":E" "E;%Eﬂ 2:
y scanf("%d", &[r][c]); Enter i[z][z]; 33

}

L
And then output the array

printf("\n\nThe Array:\n");

// output array
for (r = 0; r < 3; r++){ The Array:
for (c = 0; c < 3; c++){ 11 12 13
printf("%d\t", x[r][c]); 21 22 23
} 31 32 33

printf("\n");
}

EXAMPLE PROBLEMS

L
Grades Processing Problem

- You are writing software to process student grades for a
small class with 5 students. Write a program that:

- Reads and stores the semester 1 grades of a subject for 2019 and
2020 classes. Use a 2D array to store these grades. It should look

like the following: Students
1 2 3 4 5

2019 64 81 57 92 41
2020 52 76 42 90 61

- Create a similar 2D array to store the grades for semester 2. Read
in the grades from the user.

- Create a 3 2D array to store the final grade calculated as
(semester 1 + semester 2)/2. Print this final 2D array to the screen.

L
Grades Processing Problem

- Go to C program solution.

L
Grades Processing Problem

- The following code will work:

...continue

#include <stdio.h>

void main()

{ for (int i = @; 1 < 2; i++) {
float sem1[2][5]; for (int j = @; J < 5; j++) {
float sem2[2][5]; finalMark[i][]j] = (sem1[i][]j] + sem2[i][j])/2;
float finalMark[2][5]; }
printf("Semester 1:\n");
for (int i = @; 1 < 2;i++) { }

for (int j = 0; j < 5; j++) {
printf("Enter semester 1 mark for student %d in year %d: ",j+1,i+2019); printf("Final marks:\n");
scanf_s("%f", &sem1[i][3]1); for (int i = @; i < 2; i++) {
} printf("\n%d\t",i+2019);
} for (int j = @; j < 5; j++) {

printf("Semester 2:\n"); printf("%@.2f\t", finalMark[i][j]);

for (int 1 = 0; i < 2; i++) { }
for (int j = 9; j < 5; j++) { }
printf("Enter semester 2 mark for student %d in year %d: ", j+1, i + 2019);
scanf_s("%f", &sem2[i][]j]); }
}
}

...continue

Grades Processing Problem

C Program Output:

Semester 1:

semester
semester
semester
semester
semester
semester
semester
semester
semester
semester

Semester 2:

semester
semester
semester
semester
semester
semester
semester
semester
semester
semester
marks:

R R RPRRRRRRRPR

N NNNNNNNNN

student
student
student
student
student
student
student
student
student
student

student
student
student
student
student
student
student
student
student
student

Ui A WINERE U WNBR

U A WNERLR UTE WK

65.50
65.00

89.50
73.00

70.50
75.00

65.50
/6.50

80.50
80.00

L
Grades Processing Problem

#include <stdio.h>

- The previous void nain()

{
float sem1[2][5];

solution had 4 for Float sonzl2](2],

float finalMark[2][5];

IOOpS’ Can We make printf("Semester 1:\n");

for (int 1 = @; 1 < 2;i++) {

for (int j = @; j < 5; j++) {
Our program printf("Enter semester 1 mark for student %d in year %d: ",j+1,i+2019);
shorter? }

scanf_s("%f", &sem1[i][i]);
}

printf("Semester 2:\n");
for (int 1 = @; i < 2; i++) {
° Yesl for (int j = @; j < 5; j++) {
" printf("Enter semester 2 mark for student %d in year %d: ", j+1, i + 2019);
scanf_s("%f", &sem2[i][i]);

° ThiS Wi” prOduce the finalMark[i][j] = (sem1[i][3] + sem2[i]l[F]1) / 2;
same output. :

printf("Final marks:\n");

for (int 1 = @; i < 2; i++) {
printf("\n%d\t",i+2019);
for (int j = @; j < 5; j++) {

° COUId We make Our } printf("%e.2f\t", finalMark[i][]]);
code shorter again? , ’

PROGRAMMING

CT103
Week 6a

L
Sign in on Blackboard

- Please sign in on blackboard for CT103.

- | will leave the sign in option open for an hour after the
lecture.

L
Lecture Content

- Last lecture (Week 5b):
- Arrays recap
- Arrays in memory
- 2D Arrays
- Example 2D arrays C program

- Today’s lecture (Week 6a):
- Whatis a string in C
- How to initialise a string
- Printing strings
- Scanning strings
- Example C program

STRINGS

L
String Definition

- A string is a collection of characters, i.e. text.
- Specifically, in C strings are defined as an array of characters.

- Examples of strings include:
- “It's a nice day!”
- “My name is Fred”
- “The temperature outside is 24 degrees”

L
Strings

- Creating a string:

- If you wanted to create a string in C, you would do
something like this:

char name[] = "Alex";

L
Why Use Strings?

- Up until now we have only considered numeric, Boolean
and single character data.

- Strings are necessary because you will often be
manipulating data that consists of text, e.g. names,
addresses, etc.

L
Start with character arrays

- In C there is no variable type “String”.
- This is the case for many other higher level languages.
- We therefore use an array of characters to store a string.

- char string1[100] = "Hello";

string1[0] string1[1] | stringl[2] | stringl[3] | string1[4]
string1[100] 3 © | | °
address:; 75F7CC 75F7D0 75F7D4 75F7D8 75F7DC

PRINTING STRINGS

L
Printing Strings

- You could print strings using a for loop as shown below:

#include <stdio.h>
void main()
{
char myString[] = "Hello";
for (int i = @; i < 5; i++)
{
printf("%c", myString[i]);

}
printf("\n\n");

L
Printing Strings

- This will work but it is not recommended.

#include <stdio.h>
void main()

{
char myString[] = "Hello";

. . . . ¢ [ft Visui
for (int 1 = @; i < 5; i++) B

{

printf("%c", myString[i]);
}

printf("\n\n");

L
Strings and Character Arrays

- What is the difference between strings and character
arrays?

- A string is terminated with a special character \O'.

- When you create a string, the character \Q’ is
automatically put at the end.

L
Strings In Memory

- char string1[100] = "Hello";

- Actually results iIn:

string1[0] string1[1] string1[2] string1[3] | stringl[4] |stringl[5]
string1[100] H € I i o \0'
address:| 75F7CC 75F7D0 75F7D4 75F7D8 75F7DC | 75F7E1

So string[5] will contain \O' — used to stop processing by
any function that processes this string

L
Printing Strings

- Since all strings end with \0’, you could also print the
string using:

int 1 = 9;

while (myString[i] != "\@")

{
printf("%c", myString[i]);
1++;

Printing Strings

- You should simply use %s to print strings.

#include <stdio.h>
void main()

{ B8 i ft Visu;
char myString[] = "Hello";
printf("%s",myString);

printf("\n\n");

SCANNING STRINGS

Scanning Strings

- Up until now, you needed to use ‘& when scanning in
data.

- For example, you would type something like the following
for characters (chars):

char c;
scanf("%c", &c);

Scanning Strings

- This is not the case with strings.
- You do not need to use ‘& when scanning in strings.

- The reason for this is a bit technical:
- Char array names decay to pointers in C.

- The string name already points to the address of the first element in
the string.

- Therefore we don’t need &.

Scanning Strings

- S0 how do we scan in strings in C?

No & symbol!
- Use the following:

char myString[10];
scanf_s("%s",myString, 10);

S

- Note how you need to specify the character array length!

Scanning Strings
- Lets look at the following example:

#include <stdio.h>

void main()

{
char myString[10]= "hello";
printf("%s\n", myString);
printf("Enter a new string: ");
scanf_s("%s",myString, 10);
printf("%s\n", myString);

Scanning Strings

This outputs the following:

#include <stdio.h>
void main()
{ B8 Microsoft Visual Studio Debug Consaole

char myString[10]= "hello"; hello

printf("%s\n", mystring); Enter a new string: Hey
printf("Enter a new string: ");
scanf_s("%s",myString, 10);
printf("%s\n", myString);

Hey

Scanning Strings

Scanf_s is limited to one single word by default.
If you enter a space, it will stop scanning.

#include <stdio.h>

void main()
{ B8 Microsoft Visual Studio Debug Console

char myString[10]= "hello"; hello
Enter a new string: Hi there!

printf("%s\n", myString);
printf("Enter a new string: ");
scanf_s("%s",myString, 10); H1
printf("%s\n", myString);

Scanning Two Words

- You will can do the following if you want to scan two
words.

char firstName[10];
char surname[10];

printf("Enter first name: ");
scanf_s("%s", firstName, 10);
printf("Enter last name: ");
scanf_s("%s", surname, 10);

B8 C\Users\Karl\source\repos\CT103_C_Programminc

Enter first name: Bob

Enter last name: Smith

L
Strings with Two Words

- This does not mean that you cannot have a string with
spaces in it.

char myName[10] = "Bob Smith";
printf(“"My name is %s.\n",myName);

B C\Users\Karl\source\repos\CT103_C_P amming\D NCTI03_CP am

My name 1s Bob Smith.

Scanning Two Words

- If you do want to scan two words into one string, you can
do the following:

scanf_s("%[~\n]%*c",myString, 10);

- The [*\n] tells scanf to keep reading characters until a
new line is entered (\n).

- The %*c remove the new line from the input buffer.

Scanning Two Words

- Lets see this work in a C program:

char myString[10]= "hello";
printf("%s\n", myString);
printf("Enter a new string: ");
scanf _s("%[~\n]%*c",myString, 10);
printf("%s\n", myString);

B8 Microsoft Visual Studio Debug Console

hello

Enter a new string: Hi there!
Hi there!

EXAMPLE PROBLEMS

L
Employee Name Scanner

- You are writing software to read in employee names.
Write a program that:

- Reads in employee names as strings.

- The program should stop reading names if the character ‘!’ is
entered.

- Count how many employees have names beginning with ‘b’ or ‘B’.

- Print the answer to the screen.

L
Employee Name Scanner

- Go to C program solution.

L
Employee Name Scanner

- The following code will work:

#include <stdio.h>
void main()

{
int count = ©;
char newName[10] = "Alex";
while (newName[@]!="!") {

printf("Enter a name: ");
scanf_s("%[*\n]%*c", newName, 10);
if (newName[@]=='b'|| newName[@] == 'B') {
count++;
}
¥

printf("%s is not a name.\n", newName);
printf("There are %d names beginning with b/B.", count)

Employee Name Scanner

C Program Output:

Microsoft Visual Studio Debug Console

Enter name: Alex
Enter name: Brian
Enter name: Breda
Enter name: brenda
Enter name: beth

Enter name: Bert

Enter name: Conor

Enter name: Clair

Enter name: !

I is not a name.

There are 5 names beginning with b/B.

PROGRAMMING

CT103
Week 6b

L
Sign in on Blackboard

- Please sign in on blackboard for CT103.

- | will leave the sign in option open for an hour after the
lecture.

L
Lecture Content

- Last lecture (Week 6a):
- Whatis a string in C
- How to initialise a string
- Printing strings
- Scanning strings
- Example C program

- Today’s lecture (Week 6b):
- Length of a string
- Insert data in a string
- String functions
- Example C program

STRING LENGTH

L
String Recap

- A string is a collection of characters, i.e. text.

- Specifically, in C strings are defined as an array of
characters.

- You can create a string in C as follows:

char name[] = "Alex";

L
String Length

- The length of a string Is always the number of characters
up to, but not including, the string terminator.

- By string length we really mean the number of characters
actually used.

- The length of the following string is 9:
- “August 10\0”

L
Size of String

- Any string should be big enough to hold the text you need
to put into it PLUS 1 more for the null character

// can hold up to 3 characters + null character
// size determined by [4]
char strl[4] = "One";

// can hold up to 3 characters + null character
// size determined when it is initialised with “Two”
char str2[] = "Two";

// can hold up to 99 characters + null character
// even though we only use 6 at initialisation
char str3[100] = "Three";

L
Get Length of String

- We could count the length of the string ourselves:

char stringl[100] = "This is some random text";

int len = ©;

while (stringl[len] != "\@")
{

len++;
}

printf("Length of string = %d \n", len);

- Try out this code yourself!

L
Get Length of String

- It is much faster if we use the strlen() function to get the
length of the string.

- strlen() does what the previous example does.

- In order to use strlen(), we need to include the “string.h”
library at the beginning of the program.

- This is a library of string functions.

L
Get Length of String using strlen()

#include <stdio.h>
#include "string.h" <«

Don’t forget this!
void main()

{

char stringl[100] = "This is some random text";
int len = strlen(stringl);

printf("Length of string = %d \n", len);

L
Get Length of String using strlen()

#include <stdio.h>
#include "string.h" <«

Don’t forget this!
void main()
{ char stringl[100] = "This is some random text";
int len = strlen(stringl);
printf("Length of string = %d \n", len);
}

B8 Microsoft Visual Studio Debug Console

Length of string = 24

L
Length of a String Summary

- A string Is just an array of characters.

- To use a string it must be terminated properly — this means the last
character in the array must be the null character \0'.

- Functions that return the length of a string don’t count the null
character (even though they return it), so you always have to
allocate an array of size 1 more than the number of characters you
want to store.

- The length of the following string is 9:

- “August 10”

- However, you would need to allocate an array of characters of
size 10 to hold it!

- Usually you just allocate plenty !

DATAINTO STRINGS

L
Putting Data into Strings

- In lecture 6a, we talked about setting strings using
scanf_s, e.g.

scanf_s("%[~\n]%*c",myString, 10);
- How would we set a string without scanning in text?

- Can | simply write the following?

myString = "hi";

L
Putting Data into Strings

. Can | simply write the following? ~ myString = "hi";
- No, this won’t work. myString = "hi";

- You need to use strcpy_s() from the string.h library that
we mentioned before.

L
Strepy s()

- See the following example that uses strcpy s()

#include <stdio.h>

#include <string.h>

void main()

{
char newName[50] = "Bobbb Smith";
printf("My name was %s.\n", newName);
strcpy _s(newName,50,"Bob Smith");
printf("My name is %s.\n", newName);

L
Strepy s()

- Produces the following output:

#include <stdio.h>
#include <string.h>
void main()

{

B8 Microsoft Visual Studio Debug Console
_ My name was Bobbb Smith.
char newName[50] = "Bobbb Smith"; . .
printf("My name was %s.\n", newName); My name is Bob Smith.
strcpy_s(newName, 50, "Bob Smith");
printf("My name is %s.\n", newName);

STRING FUNCTIONS

L
Common String functions

- Strcpy_s() Copy one string to another (seen already)

- Strncpy_s() Copy n characters from one string to another

- Strcat_s() Link together (concatenate) two strings

- Strncat_s() concatenate n characters from two strings

- strcmp() Compare two strings

- strncmp() Compare n characters from two strings

L
Strncpy_s()

- Strncpy_s()

- Copy n characters from one string to another.

char tName[] = "Tommy";

char newName[50] = "Bobbb Smith";

printf("My name is %s.\n", newName); KI\VARIETUCEEEIN:Telols]o B ksl s
strcpy s(newName, 50, "Bob Smith"); My name is Bob Smith.
printf("My name is %s.\n", newName); N\VANEINISESREeTiR
strncpy_s(newName, 50, tName,3);

printf("My name is %s.\n", newName);

L
Strcat_s O ¥ concatenate

/ken katinert/

verb FORMAL » TECHNICAL

link (things) together in a chain or series.

. Strcat S () "some words may be concatenated, such that certain sounds are omitted"
- Strcat_s() Link together (concatenate) two strings

char myName[50] = "Tommy";
printf("\n\nMy name is %s.\n", myName);
strcat_s(myName,50," Smith");
printf("My name is %s.\n", myName);

My name is Tommy.
My name is Tommy Smith.

Strncat_s()

Strncat_s()

Strncat_s() concatenate n characters from two strings

char myName[50] = "Tommy";

printf(" My name is %s.\n", myName);
strcat_s(myName,50," Smith");
printf("My name is %s.\n", myName);
strncat _s(myName, 50, " Smithyyyy",7);
printf("My name is %s.\n", myName);

My name is Tommy.
My name is Tommy Smith.

My name is Tommy Smith Smithy.

L
Stremp()

- Compare two strings

- Strcmp() will return O If both strings are the same.

char fNamel[] = "Tom";
char fName2[] = "Tim"; B Microsoft Visual Studio Debug Console
if (strcmp(fNamel, "Tom") == @) {
printf("\n\nYou found Tom.\n");
}
else {
printf("\n\nKeep looking.\n");

}

L
Stremp()

- Compare two strings

- Strcmp() will return O If both strings are the same.

char fNamell] "Tom";

char fName2[] "Tim";

if (strcmp(fName2, "Tom") == Q) {
printf("\n\nYou found Tom.\n");

B Microsoft Visual Studio Debug Console

¥

else { Keep looking.
printf("\n\nKeep looking.\n");
}

L
Strncmp()

- Compare n characters from two strings

- Strncmp() will return O If first n chars of both strings are

the same.
char fNamel[] = "Tom";
char fName2[] = "Tim";

B8 Microsoft Visual Studio Debug Console

if (strncmp(fNamel, fName2,1) == @) {
printf("\n\nSame first letter.\n");

}
else {

printf("\n\nDifferent first letter.\n");

Same first letter.

}

L
Strncmp()

- Compare n characters from two strings

- Strncmp() will return O If first n chars of both strings are

the same.
char fNamel[] = "Tom";
Char .FNamez[] = "Tim"; B Microsoft Visual Studio Debug Censole

if (strncmp(fNamel, fName2,2) == 0) {
printf("\n\nSame first 2 letter.\n");

ilse{ Different first 2 letter.

printf("\n\nDifferent first 2 letter.\n");

}

L
Note on last weeks example

- We used newName[0]!=*V"
- We could also use strncmp()

#include <stdio.h>
void main()

{
int count = 9;
char newName[10] = "Alex";
while (newName[@]!='!") {

printf("Enter a name: ");
scanf_s("%[~\n]%*c", newName, 10);
if (newName[@]=='b'|| newName[@] == 'B"') {
count++;
¥
}

printf("%s is not a name.\n", newName);
printf("There are %d names beginning with b/B.", count)

L
Note on last weeks example

- See strncmp()

#include <stdio.h>
#include <string.h>

#include <stdio.h>
void main()

{ void main()
int count = ©;
char newName[10] = "Alex"; int count = 0;
while (newName[@]!="!") { newName[10] = "Alex";
printf("Enter a name: "); while (!strncmp(newName, "!", 1) == @) {
scanf_s("%["\n]%*c", newName, 10); printf("Enter a name: ");
if (newName[@]=='b'|| newName[@] == 'B') { scanf_s("%[*\n]%*c", newName, 10);
count++; if (newName[@]=='b'|| newName[@] == 'B') {
} count++;
} }
printf("%s is not a name.\n", newName); }
printf("There are %d names beginning with b/B.", count) printf("%s is not a name.\n", newName);
} printf("There are %d names beginning with b/B.", count);

EXAMPLE PROBLEMS

L
Employee Name Comparison

- You are writing more software to read in employee
names. Write a program that:

- Reads in 3 employee names as strings.
- Check the first letter against the target name “Bobby”.

- If the name also begins with the letter ‘B’, check and see if the full
names are the same.

L
Employee Name Comparison

- Go to C program solution.

L
Employee Name Comparison

#include <stdio.h>
#include <string.h>

- The following void nainQ
code will work: int count = o;

char targetName[18] = "Bobby";
char newName[10] = "Alex";

for (int 1 = @; 1 < 3;i++) {
printf("Enter a name: ");
scanf_s("%[~\n]%*c", newName, 10);

if (strncmp(newName, targetName, 1) == @) {
printf("Same first letter, checking full name\n");

if (strcmp(newName, targetName)==8) {
printf(“"We have a match!\n");

}
else {
printf("Not a match!\n");

}
}
else {

printf(“Definetly not a match\n");
}

Employee Name Comparison

C Program Output:

B Microsoft Visual Studio Debug Conscle

Enter a name: Clair

Definetly not a match

Enter a name: Brenda

Same first letter, checking full name

Not a match!
Enter a name: Bobby
Same first letter, checking full name

We have a match!

PROGRAMMING

CT103
Week 7a

L
Sign in on Blackboard

- Please sign in on blackboard for CT103.

- | will leave the sign in option open for an hour after the
lecture.

L
New Lab Groups

- Please note the change in lab groups for weeks 7-12:

- 2pm-4pm lab session: Students with surnames L to Z.
- 4pm-6pm lab session: Students with surnames A to K.

- Please make sure you attend the correct lab session.

L
Lecture Content

- Last lecture (Week 6b):

- Length of a string

- Insert data in a string
- String functions

- Example C program

- Today’s lecture (Week 7a):
- Constants
- Puts
- Gets
- Sscanf_s
- Example C program

CONSTANTS

L
Constants

- We talked a lot about variables already and know what
they are.

-E.g. 1nt age = 62;
- We can also create constants.

- Constants refer to fixed values that the program cannot
change during its execution. These are also often called
literals.

L
Constants

- You would create a constant in C as follows:

const float gravity = 9.81;
printf("Acceleration due to gravity = %0.2f.\n\n", gravity);

B8 C\Users\Karl\sourcehreposiCT103_C_Programming!DebughCT103_C_Programming.exe

Acceleration due to gravity = 9.81.

Constants

- As the name suggests, you cannot change the value of a
constant.

const float gravity = 9.81;
printf("Acceleration due to gravity = %0.2f.\n\n", gravity);

gravity = gravity + 1;

T

Can’t do this!

D
#Define In C

- You can also declare constants using #define.
- These need to be created outside of main.

- Using #define creates what is called a macro.

R - :
Macro

- Whatis a macro?

- Amacro is a fragment of code which has been given a
name. Whenever the name is used it is replaced by the
contents of the macro.

- There are two types of macros:
- Object like macros.
- Function like macros (we will ignore these for now).

D
#Define In C

- What does #define look like in C?

- You can create an object like macro in C using the
following:

#define PI 3.14

L
#Define in C Example

#include <stdio.h>
#include "string.h"

#define g 9.81
void main() {
float mass = 10;
float F;
F = mass * g;
printf("Force = %0.2f N.\n",F);

#Define iIn C Example

#include <stdio.h>
#include "string.h"

B Microsoft Visual Studio Debug Console

Force = 98.10 N.

#define g 9.81

void main() {
float mass = 10;
float F;
F = mass * g;
printf("Force = %0.2f N.\n",F);

PUTS

L
Puts

- What Is puts?
- Puts is a function for printing strings to the screen.

- You need to include the <stdio.h> library to call puts.

L
Why Puts Over Printf?

- Puts is simple.
- Puts is less expensive than printf.

- Puts Is more secure.

D
Puts in C

- You would use Puts as follows in C:

#include <stdio.h>

void main()

{
char myString[] = "Here is my string.";
puts(myString);

D
Puts in C

- This gives the following output:

#include <stdio.h>
void main()

{
char myString[] = "Here is my string."”;
puts(myString);

B Microsoft Visual Studio Debug Console

Here 1is my string.

GETS

L
Gets

- What Is gets”?
- Gets is a function for reading input from the keyboard.

- You also need to include the <stdio.h> library to call gets.

L
Gets vs Scanf?

- Gets is only used for strings.

- Gets will not stop reading characters, even with
whitespace, until it reaches a newline.

- Gets Is easy to use.

D
GetsIin C

- You would use Gets as follows in C:

#include <stdio.h>
void main()

{
char myString[10] = "Temp";
puts("Enter your name:");
gets(myString);

puts(myString);

GetsIin C

This gives the following output:

#include <stdio.h>
void main()

{ ’
char myString[10] = "Temp"; Enter‘ your name:

puts("Enter your name:"); Bob
gets(myString); Bob
puts(mystring);

USING PUTS AND GETS

D
Puts and Gets

#include <stdio.h>
#include "string.h"

void main()

{
char firstName[15], secondName[15];
char fullName[35] = "";

puts("what is your first name?: ");
gets(firstName);

puts("What is your surname?: ");
gets(secondName);

strcat_s(fullName, 35 , firstName);

strcat_s(fullName, 35, " ");

strcat s(fullName, 35, secondName);

puts("\nYour full name is:");
puts(fullName);

Puts and Gets

#include <stdio.h>
#include "string.h"

void main()

{
char firstName[15], secondName[15];
char fullName[35] = "";

puts("what is your first name?: ");
gets(firstName);

puts("What is your surname?: ");
gets(secondName);

strcat s(fullName, 35 firstName);

strcat_s(fullName, 35, " ");

strcat _s(fullName, 35, secondName);

puts("\nYour full name is:");
puts(fullName);

hat is your first name?:

Bobby
hat is your surname?:

Axelrod

our full name is:
Bobby Axelrod

SSCANF S

Sscanf s

- You may get strings from anywhere, such as files or
databases.

- These may then need to be parsed to extract data.

- What does parse mean?
- Transforming a steam of text into some other form of information.

Sscanf s

- Sscanf_s is useful for scanning formatted data from a
string.

- IF you know the exact format of the string (and it won’t be
changed), you can read it the same way as you would
read the console input using scanf.

Sscanf_s Example

#include <stdio.h>
#include "string.h"

void main()

{
char string[lee]="hi";
char firstName[20], surname[20];
char fullName[48];

int dd, mm, yyyy;
puts("Enter 'firstName' 'Surname' 'dd/mm/yyyy'");
gets(string);

sscanf_s(string, "%s %s %d/%d/%d", firstName, 20, surname, 20, &dd, &mm, &yyyy);

strcpy sgfullName! 40, firstNamez;

strcat_s(fullName, 40, " ");

strcat s!fullName, 40, surnamea;

printf("\n%s was born on %d-%d-%d\n\n", fullName, dd, mm, yyyy);

Sscanf_s Example

#include <stdio.h>

include "string.h"

void main()

{

char string[1ee]="hi";

char firstName[28], surname[20];

char fullName[48];

int dd, mm, yyyy;

puts("Enter 'firstName' 'Surname' 'dd/mm/yyyy'");

gets(string);

sscanf_s(gEcip , "%s %s %d/%d/%d", firstName, 20, surname, 20, &dd, &mm, &yyyy);

strcpy _s(fullName, 40 FirsthmEQ;

strcat_s(fullName, 48, " ");

strcat _s(fullName, 46, surname);

printf("\n%s was born on %d-%d-%d ", fullName, dd, mm, yyyy);
}

Enter 'firstName' 'Surname’ 'dd/mm/yyyy’
Bobby Axelrod 1/1/1960

Bobby Axelrod was born on 1-1-19660

EXAMPLE PROBLEMS

L
Physics Energy Calculator

- You are writing software to calculate physics equations.
Write a program that:
- Defines acceleration due to gravity as a constant.
- Reads in 4 measurements of the following:
- Mass (m), velocity (v) and height (h).
- Calculate the kinetic (KE) and potential (PE) energy of the 4
objects.

- Note:
- KE=0.5mVv?
- PE=mgh
- g =9.81m/s?

L
Physics Energy Calculator

- Go to C program solution.

L
Physics Energy Calculator

#include <stdio.h>
#include "string.h"

#define g 9.81
void main() {
float mass;
float v;
float h;
float F;
float kEnergy;
float pEnergy;
char dataIn[1@0] = "temp”;

for (int 1 = 0; i < 4; i++) {
puts("Enter the mass, velocity and height as: 'mass' ‘'vel' ‘'height'");
gets(dataln);
sscanf_s(dataln, "%f %f %f", &mass, &v, &h);
kEnergy = 0.5 * mass * v * v;
pEnergy = mass * g * h;
printf(“Kinetic Energy = %0.2f J.\n", kEnergy);
printf("Potential Energy = %0.2f J.\n", pEnergy);

Physics Energy Calculator

C Program Output:

B Microsoft Visual Studic Debug Console

Enter the mass, velocity and height
10 20 30

Kinetic Energy = 2000.00 J.
Potential Energy = 2943.00 J.

Enter the mass, velocity and height
123

Kinetic Energy = 2.00 J.

Potential Energy = 29.43 1J.

Enter the mass, velocity and height
81 30 25

Kinetic Energy = 36450.00 J.
Potential Energy = 19865.25 J.
Enter the mass, velocity and height
33 55 7777

Kinetic Energy = 49912.50 J.
Potential Energy = 2517648.25 1J.

PROGRAMMING

CT103
Week 7b

L
Sign in on Blackboard

- Please sign in on blackboard for CT103.

- | will leave the sign in option open for an hour after the
lecture.

Lab Solution Submissions

- Internet access on Eduroam is available again.

- From week 8 lab onwards, you will have to submit your
lab assignments by the end of the lab.
- i.e. 6pm Tuesday.

- You will not have until midnight to finish your assignment.

- If it Is submitted after 6pm, it will be marked as late and
you may receive a penalty.

L
Lecture Content

- Last lecture (Week 7a):
- Constants
- Puts
- Gets
- Sscanf_s
- Example C program

- Today’s lecture (Week 7b):

- Testing characters

- Character mapping
- Arrays of strings

- Example C program

TESTING CHARACTERS

L
Character Tests

- There are a number of character tests that we can use
that are useful for analyzing characters.

- We already saw that upper and lower case letters are
different in C.

- There are tests that we can do to check for upper/lower
case letters.

L
Ctype.h Library

- We will first need to use the ctype.h library.

- This is a library with functions that are useful for testing
and mapping characters.

#include <ctype.h>

L
Character Tests

- Some useful character testing functions:
- isalpha
- isdigit
- Isupper
- islower
- iIsspace

L
Isalpha

- The isalpha function is useful for checking if the
character is alphabetic.

#include <stdio.h>
#include <string.h>
#include <ctype.h>

void main() {
char myChar = " ';
puts("Enter a character:");
scanf_s("%c",&myChar,1);

if (isalpha(myChar)) {
printf("%c is a letter!\n",myChar);

}
else {

printf("%c is not a letter.\n", myChar);
}

L
Isalpha

- The isalpha function is useful for checking if the
character is alphabetic.

#include <stdio.h>
#include <string.h>

#i nc 1 u d e < Ctype . h > B8 Microsoft Visual Studio Debug Console
Enter a character:
void main() { a
char myChar = ' '; a 1s a letter!

puts("Enter a character:");
scanf_s("%c",&myChar,1);

B8 Microsoft Visual Studio Debug Console

if (isalpha(myChar)) { Enter a character:
printf("%c is a letter!\n",myChar); ?
} ? 1s not a letter.
else {
printf("%c is not a letter.\n", myChar);
}

L
Isdigit

- The isdigit function is useful for checking if the character
IS a digit.

#include <stdio.h>
#include <string.h>
#include <ctype.h>

void main() {
char myChar = " ';
puts("Enter a character:");
scanf_s("%c", &myChar, 1);

if (isdigit(myChar)) {
printf("%c is a digit!\n", myChar);

}
else {

printf("%c is not a digit.\n", myChar);
}

Isdigit

The isdigt function is useful for checking if the character

IS a digit.
#include <stdio.h>
#include <string.h>

B Microsoft Visual Studio Debug Console

#include <ctype.h> Enter a character:
5
void main() { . . i
char myChar = ' ' 5 1s a digit!
puts("Enter a character:");
SCE]I"I'F_S("%C", &myChaP, 1)3 B8 Microsoft Visual Studio Debug Conscole
Enter a character:
if (isdigit(myChar)) { G
printf("%c is a digit!\n", myChar); . o
} G 1s not a digit.
else {

printf("%c is not a digit.\n", myChar);
}

L
Isupper

- The isupper function is useful for checking if the

character is an uppercase letter.

#include <stdio.h>
#include <string.h>
#include <ctype.h>

void main() {
char myChar = " ';
puts("Enter a character:");
scanf_s("%c",&myChar,1);

if (isupper(myChar)) {
printf("%c is an uppercase letter!\n",myChar);

}
else {

printf("%c is not an uppercase letter.\n", myChar);
}

Isupper

The isupper function is useful for checking if the
character is an uppercase letter.

#include <stdio.h> i

#include <string.h> K
#include <ctype.h> .
P K is an uppercase letter!

void main() {

Chap mychaP - ! |-; B3 Microsoft Visual Studio Debug Console
puts("Enter a character:"); Enter a character:
scanf_s("%c",&myChar,1); m

m 1s not an uppercase letter.

if (isupper(myChar)) {

printf("%c is an uppercase letter!\n",myChar);
}
else {

printf("%c is not an uppercase letter.\n", myChar);
}

L
ISlower

- The islower function is useful for checking if the
character is a lowercase letter.

#include <stdio.h>
#include <string.h>
#include <ctype.h>

void main() {
char myChar = " ';
puts("Enter a character:");
scanf_s("%c",&myChar,1);

if (islower(myChar)) {
printf("%c is a lowercase letter!\n",myChar);

}
else {

printf("%c is not a lowercase letter.\n", myChar);
}

Islower

The islower function is useful for checking if the
character is a lowercase letter.

#tinclude <stdio.h> IS0 Microsofe Visu! Sucio Debug Cansoe
#include <string.h> Enter a character:
#include <ctype.h>

is not a lowercase letter.
Vol d malin () { B8 Microsoft Visual Studie Debug Console

char myChar = " '; Enter a character:
puts("Enter a character:");

scanf_s("%c",&myChar,1);

u
u is a lowercase letter!

if (islower(myChar)) {

printf("%c is a lowercase letter!\n",myChar);
}
else {

printf("%c is not a lowercase letter.\n", myChar);
}

L
ISspace

- The isspace function is useful for checking if the
character is whitespace.

#include <stdio.h>
#include <string.h>
#include <ctype.h>

void main() {
char myChar = ' ';
puts("Enter a character:");
scanf_s("%c",&myChar,1);

if (isspace(myChar)) {
printf("%c is whitespace!\n",myChar);

}
else {

printf("%c is not whitespace.\n", myChar);
}

ISspace

The isspace function is useful for checking if the
character is whitespace.

B3 Microsoft Visual Studio Debug Console

Enter a character:

#include <stdio.h>
#include <string.h>
#include <ctype.h> a

a 1s not whitespace.

void main() {
C ha r myCha r = ' I ; BS Microsoft Visual Studio Debug Console

puts("Enter a character:"); Enter a character:
scanf_s("%c",&myChar,1);

if (isspace(myChar)) { is WhitESpaCE!
printf("%c is whitespace!\n",myChar);

}

else {
printf("%c is not whitespace.\n", myChar);

}

CHARACTER MAPPING

L
Character Mapping

- We have looked at useful character testing functions:
- isalpha
- isdigit
- Isupper
- Islower
- Isspace

- Very useful functions to convert character case:
- toupper
- tolower

L
toupper

- The toupper function is very useful as it allows us to
convert letter to uppercase.

#include <stdio.h>
#include <string.h>
#include <ctype.h>

void main() {
char myChar = " °;
puts("Enter a character:");
scanf_s("%c",&myChar,1);
printf("myChar was: %c.\n", myChar);
myChar = toupper(myChar);
printf("myChar is now: %c.\n", myChar);

toupper

The toupper function is very useful as it allows us to
convert letter to uppercase.

B3 Microsoft Visual Studio Debug Console B3 Microsoft Visual Studio Debug Console
Enter a character:

#include <stdio.h> Enter a character:

#include <string.h>
#include <ctype.h> myChar was: a.
myChar is now: A.

d

myChar was: B.
myChar is now: B.

void main() {

char myChar = " ',

puts("Enter a character:"); B Microsoft Visual Studio Debug Console
scanf_s("%c",&myChar,1); Enter a character:
printf(“myChar was: %c.\n", myChar); ?

myChar = toupper(myChar); myChar‘ was: °».

printf("myChar is now: %c. , myChar); myChar‘ is now: ?

tolower

The tolower function is very useful as it allows us to
convert letter to lowercase.

B8 Microsoft Visual Studio Debug Console

Enter a character:

#include <stdio.h>
#include <string.h>
#include <ctype.h>

void main () { B Microsoft Visual Studio Debug Console
char myChar = " '; Enter a character:
puts("Enter a character:"); %
scanf_s("%c",&myChar,1);
printf("myChar was: %c.\n", myChar);
myChar = tolower(myChar);
printf("myChar is now: %c.\n", myChar);

myChar was: $.
myChar is now: $.

USING CHARACTER
MAPPING

L
Example C Program

- See C program using character testing and mapping:

#include <stdio.h>
#include <string.h>
#include <ctype.h>

void main() {
char myString[20] = "HeRe Is My StRiNg..";
puts(myString);
int len = strlen(myString);
for (int i = 0; i < len;i++) {
if (isupper(myString[i])) {
myString[i] = tolower(myString[i]);

}
else {
myString[i] = toupper(myString[i]);
}
}
puts(myString);

L
Example C Program

- We can swap upper and lower case characters:

B Microsoft Visual Studio Debug Console

#include <stdio.h>

#include <string.h> HERe IS My StRiNg. o

#include <ctype.h>

hErE 1S mY sTrInG..

void main() {
char myString[20] = "HeRe Is My StRiNg..";
puts(myString);
int len = strlen(myString);
for (int i = 0; i < len;i++) {
if (isupper(myString[i])) {
myString[i] = tolower(myString[i]);

}
else {
myString[i] = toupper(myString[i]);
}
}
puts(myString);

L
Example C Program

- See C program using character testing and mapping:

#include <stdio.h>
#include <string.h>
#include <ctype.h>

void main() {
char myString[20] = "HeRe Is My StRiNg..";
puts(myString);
int len = strlen(myString);
for (int i = 9; 1 < len;i++) {
myString[i] = tolower(myString[i]);
}
puts(myString);

L
Example C Program

- Convert all characters to lower case:

B8 Microsoft Visual Studic Debug Console

#include <stdio.h> HeRe IS My StRiNg. .
#include <string.h> her‘e lS my S'tl"ing

#include <ctype.h>

void main() {
char myString[20] = "HeRe Is My StRiNg..";
puts(myString);
int len = strlen(myString);
for (int 1 = @; i < len;i++) {
myString[i] = tolower(myString[i]);
}
puts(myString);

L
Try it yourself

- Try change the program below to convert all characters
to uppercase.

#include <stdio.h>
#include <string.h>
#include <ctype.h>

void main() {
char myString[20] = "HeRe Is My StRiNg..";
puts(myString);
int len = strlen(myString);
for (int i = 9; 1 < len;i++) {
myString[i] = tolower(myString[i]);
}
puts(myString);

Name Scanner Program

Remember our name scanner program from a few

We e kS ag 0 ? B8 Microsoft Visual Studio Debug Console

#include <stdio.h> namef E?El

#include <string.h> Egmz: Tim

void main() name: |

{ _ I is not a name.

int count = @; There are 2 names beginning with b/B.
char newName[10] = "Alex”;
while (!strncmp(newName, "!", 1) == @) {

printf("Enter a name: ");
scanf_s("%[~\n]%*c", newName, 10);
if (newName[@]=='b'|| newName[®] == 'B') {
count++;
}
}

printf("%s is not a name. , newName);
printf(“"There are %d names beginning with b/B.", count);

L
Name Scanner Program

- Could have used tolower when checking for the letter b.

Using ctype.h

#include <stdio.h>
#include <stdio.h> #include <string.h>
#include <string.h> #include <ctype.h>
void main() oid main()

{

int count = ©; int count = @;

char newName[1@] = "Alex"; har newName[1@0] = "Alex";
while (!strncmp(newName, "!", 1) == @) { ile (!strncmp(newName, "!", 1) == 8) {

printf("Enter a name: ");
scanf_s("%[~\n]%*c", newName, 1@);

printf("Enter a name: ");
scanf_s("%[*\n]%*c", newName, 10);

if (newName[@]=='b'|| newName[®] == 'B") { if (tolower(newName[@])=='b") {
count++; count++;
} }
} }
printf("%s is not a name.\n", newName); printf("%s is not a name.\n", newName);
printf("There are %d names beginning with b/B.", count); printf("There are %d names beginning with b/B.", count);

ARRAYS OF STRINGS

L
Arrays of Strings

- We have talked about arrays already.
- In C, Strings are arrays of characters.
- We also covered 2D arrays!

- Next we will discuss arrays of strings.

L
Arrays of Strings

- Often we need to process lists of strings, such as names.

- As with the other 2D arrays we have seen, we can
create a 2D array of characters.

- Each row (the first index) Is a different string.

- Each column is a character.

L
char namesJ|[20]

- In the following example we create a list of names, called
“names”!

- We can refer to each string using the first index
- So for example names[2] is “Geary”

names[i][0] namesJi][1] names][i][2] names[i][3] names|i][4] names]i][5] names]i][6] names]i][7]

names[0] = O m i t h \O
names[l] B u r k = \O
namesi2] G e a r y \O
names[3] N e \Y; i | | e \O

L
Arrays of Strings Example

- Array of Strings in C:

#include <stdio.h>
#include <string.h>
#include <ctype.h>

void main() {

char names[10][20] = { "Smith", "Burke", "Geary", "Neville" };
int 1i;

puts(“Names\n “);
for (1 = 0; i < 4; i++){
puts(names[i]);

}

puts("\nFirst Letters\n ")
for (i =0; i < 4; i++){
printf("%c ", names[i][@]);

}

Arrays of Strings Example

Array of Strings in C:

B Microsoft Visual Studio Debug Console

#include <stdio.h>
#include <string.h>
#include <ctype.h>

void main() {
char names[10][20] = { "Smith"™, "Burke", "Geary", "Neville"
int 1;

puts("Names “);
for (1 =0; 1 < 4; i++){
puts(names[i]);

}

puts("\nFirst Letters ");
for (1 = 0; i < 4; i++){
printf("%c ", names[i][@]);

}

EXAMPLE PROBLEMS

L
Names Processor

- You are writing software to process a list of names:
- You have an array of names (Strings): "Bob","TIM" ,"SARAH"

SAIEX" "SAMMY"
- Loop through these names and convert all characters to lower
case.

- Display the new array of strings to the screen. Separate each
character by a tab when printing each string.

L
Names Processor

- Go to C program solution.

Names Processor

#include <stdio.h>
#include <string.h>
#include <ctype.h>

void main() {
char names[5][1@] = {"Bob","TIM" ,"SARAH" ,"ALEx" ,"SAMMY"};

int 1;
for (int i = 0; i < 5;i++) {

int k = ©;
1 = strlen(names[i]);
while (k<1) {
names[i][k] = tolower(names[i][k]);
k++;
}
}

puts("First Names:");
for (int i = @; 1 < 5; i++) {
1 = strlen(names[i]);
for (int j = 0; j < 1;j++) {
printf("%c\t",names[i]1[j]);

}
printf("\n");

Names Processor

C Program Output:

PROGRAMMING

CT103
Week 8a

L
Sign in on Blackboard

- Please sign in on blackboard for CT103.

- | will leave the sign in option open for an hour after the
lecture.

L
Lecture Content

- Last lecture (Week 7Db):

- Testing characters

- Character mapping
- Arrays of strings

- Example C program

- Today’s lecture (Week 8a):
- Functions
- Writing functions
- Functions in C
- Example C program

FUNCTIONS

L
Functions

- What is a function?

- Definition: A function is a piece of code that can be
called whenever we need to execute that code.

L
Functions

- What functions have we seen so far?

- We have seen many functions in C:
- strlen()
- isalpha()
- isdigit()
- isupper()
- islower()
- isspace()

- These are all examples of pieces of code that we can
call in our program to achieve some task.

L
Functions

- What is the point of functions?

- Benefits:

Functions allow us to reuse code, therefore avoid repetition.
More readable programs.

Enables us to divide complex problems into simpler ones.
Easier to make changes to program.

WRITING FUNCTIONS

L
Function Template

- All functions have the following template:
type name (parameters){
return;

- Type = data type returned by the function (can be void).
- Name = function name.

- Parameters = data we are giving to the function (can be
empty).

- Return = what data is returned by the function (can also
return nothing).

L
Function Type

- Like a variable, a function must have a type

- It can be one of the standard variable types (char,
double, float, int) or it can be void

- The type tells the compiler what type of variable the
function returns
- For example
- getchar() returns a char
- strcmp() returns an int

L
Why return anything?

- Functions can return a value or answer to some
calculation or query
- E.g. int getEmployeeAge(int employeelD);

- When we have the answer to the calculation or query, we
will likely want to use this somewhere else in our program.

- In order to do this, we need to return that value from the
function.

L
Naming functions

- Function names can’t contain spaces.

- You should give your function a helpful name that
reflects what it does.

- Each functions is declared with parentheses “()” after the
function name (even if it doesn’t don't take any
parameters), e.g. void main().

- You can’'t name your function using a “reserved word”.

D
Reserved Words

- You can’t name your function using a “reserved word”.

- What is a reserved word?

- There are 32 reserved words that have predefined meaning in C.
You therefore can’t use these as variable names.

auto double int struct
break else long switch
case enum register typedef
char extern return union
continue for signed void
do if static while
default goto sizeof Volatile
const float short Unsigned

L
Function Prototypes

- Before your compiler will let you use a function, you have
to give it a prototype.

- We have to do this before we call it, normally before the
main() function, and after any #include or #define
directive.

- The .h files (header files) contain the prototypes for C
library functions we call.

L
Writing a Function

- We have already actually written a function:

void main() {

¥

- Every time we wrote our C programs, we wrote our code
Inside of a function main().

main()
- main() Is the first function called when a program is
executed

- When is finished the program exits
- Main() can return nothing or an integer

int main()

{

return 0;

}

void main()

{

return;

}
0... the “type” of a function specifies what it returns (void

If nothing)

FUNCTIONS IN C

C Program without Function EG1

Simple C program that reads in an age and prints it to
the screen.

void main() {
int age;
puts("Enter your age:");
scanf_s("%d", &age);
printf("My age is %d.\n", age);

Enter your age:

68
My age is 68.

C Program with Function EG1

C program that creates a
function to read in an
age.

Notice how this function
does not read in any
parameters.

B8 Microsoft Visual Studio Debug Console

Enter your age:
63

My age is 68.

#include <string.h>
#include <ctype.h>
#include <stdio.h> _
Function prototype

int readAge();
ge() Main (we should be

void main() { familiar with this one)

int myAge = readAge();
printf("My age is %d.\n", myAge);

}

int readAge() { Function itself

int age;

puts("Enter your age:");
scanf_s("%d",&age);
return age;

C Program EG1 Comparison

These programs do the same thing.

No Function

void main() {
int age;
puts("Enter your age:");
scanf_s("%d", &age);
printf("My age is %d.\n", age);

B8 Microsoft Visual Studio Debug Console

Enter your age:
63

My age is 68.

Using a Function

#include <string.h>
#include <ctype.h>
#include <stdio.h>

int readAge();

void main() {
int myAge = readAge();
printf("My age is %d.
}

int readAge() {
int age;
puts("Enter your age:");
scanf_s("%d",&age);
return age;

", myAge);

L
C Program without Function EG2

- Get the max number out of 2 numbers:

#tinclude <stdio.h>

B Microsoft Visual Studio Debug Console

void main() { 6 1s the bigg@P number.

int nl1 = 1;

int n2 = 6;

int maxNum;

if (n1 > n2) {
maxNum = nl;

¥
else {

maxNum = n2;
¥

printf("%d is the bigger number.\n",maxNum);

L
C Program with Function EG2

- Get the max number out of 2 numbers:

int maxNums(int numl, int num2); - Function prototype

void main() {
int maxNum;‘ Main (We should be

int nl = 5; familiar with this one)
int n2 = 6;
maxNum = maxNums(nl, n2);

printf("%d is the bigger number.\n",maxNum);

int maxNums(int numl, int num2) { <~\~\§\§\§\§\§\§\‘
if (numl>num2) { Function itself

return numl;
}
else {

return numz" B8 Microsoft Visual Studio Debug Console

} } 6 1s the bigger number.

L
C Program EG2 Comparison

- If these programs do the same thing, why would you use
functions? This program is much longer...

No Function Using a Function

#include <stdio.h> int maxNums(int numl, int num2);

void main() A

void main() { int maxNum;
J

int nl = 1;

int nl = 5;
int n2 = 6; int n2 = 6;
int maxNum; maxNum = maxNums(nl, n2);
if (n1 > n2) { printf("%d is the bigger number.\n",maxNum);
maxNum = nl; }
} int maxNums(int numl, int num2) {
else { if (numl>num2) {
maxNum = n2; return numil;
} }
printf("%d is the bigger number.\n",maxNum); else {
} return num2;

}

L
C Program with Function Cont.

int maxNums(int numl, int num2);

- Well what if | wanted to do ~ vetd rainO €
more than 1 comparison?

maxNum = maxNums(5, 6);
printf("%d is the bigger number.\n",maxNum);
maxNum = maxNums(2, 20);
printf("%d is the bigger number.\n", maxNum);

- If I use a function, | can i e, i
f;irT]F)I)/ (:Eill tr]ea fljr](:tic)r] printf("%d is the bigger number.\n", maxNum);

maxNum = maxNums (56, 89);
Eig;eair]_ printf("%d is the bigger number.\n", maxNum);
maxNum = maxNums(3, 2);
printf("%d is the bigger number.\n", maxNum);
maxNum = maxNums(-5, -6);
printf("%d is the bigger number.\n", maxNum);

- This is much more scalable
than not using a function.

int maxNums(int numl, int num2) {
if (numl>num2) {

6 is the bigger number. return numl;
20 is the bigger number. }

88 is the bigger number. else {

89 is the bigger number. return num2;
3 is the bigger number. }

-5 is the bigger number. }

B Microsoft Visual Studio Debug Console

EXAMPLE PROBLEM

L
Salary Tax Function Problem

- You are writing software to process employees salaries:
- Write a function called “readSalary”.
- readSalary does not return anything.
- This function should read in a tax threshold in Euro as a parameter.
- The function should ask the user to enter the employee salary.

- The function should then check if the salary is >, <, or = the tax
threshold.

- You should print a message to the console saying which of these is
the situation.

- Test your function by passing in the value of €44,000 as a tax
threshold when you call the readSalary function in main.

L
Salary Tax Function Problem

- Go to C program solution.

L
Salary Tax Function Problem

#include <string.h>
#include <ctype.h>
#include <stdio.h>

void readSalary(float taxT);

void main() {
readSalary(44000);

¥

void readSalary(float taxT) {
float salary;
puts("Enter employee salary:");
scanf_s("%f",&salary);

if (salary> taxT) {
printf("Salary %0.2f greater than %@.2f.\n",salary, taxT);

}
else if (salary< taxT) {

printf("Salary %0.2f less than %@.2f.\n", salary, taxT);

}
else {

printf("Salary %@.2f = %0.2f.\n", salary, taxT);
}

Salary Tax Function Problem

C Program Output:

B Microsoft Visual Studic Debug Censole

Enter employee salary:
98000

Salary 98000.00 greater than 44000.00.

PROGRAMMING

CT103
Week 8b

L
Sign in on Blackboard

- Please sign in on blackboard for CT103.

- | will leave the sign in option open for an hour after the
lecture.

L
Lecture Content

- Last lecture (Week 8a):
- Functions
- Writing functions
- Functions in C
- Example C program

- Today’s lecture (Week 8b):

- Functions recap

- Local variables

- Global variables

- Functions and strings
- Example C program

FUNCTIONS RECAP

L
Functions

- A function is a piece of code that can be called whenever
we need to execute that code.

- We have seen many functions in C, e.g. strlen().

- Benefits:
- Functions allow us to reuse code, therefore avoid repetition.
- More readable programs.
- Enables us to divide complex problems into simpler ones.
- Easier to make changes to program.

L
Function Template

- All functions have the following template:
type name (parameters){
return;

- Type = data type returned by the function (can be void).
- Name = function name.

- Parameters = data we are giving to the function (can be
empty).

- Return = what data is returned by the function (can also
return nothing).

L
C Program with Functions

- Example from Monday: Get max of 2 numbers:

int maxNums(int numl, int num2); - Function prototype

void main() {
int maxNum;‘ Main (We should be

int nl = 5; familiar with this one)
int n2 = 6;
maxNum = maxNums(nl, n2);

printf("%d is the bigger number.\n",maxNum);

int maxNums(int numl, int num2) { <~\~\§\§\§\§\§\§\‘
if (numl>num2) { Function itself

return numl;
}
else {

return numz" B8 Microsoft Visual Studio Debug Console

} } 6 1s the bigger number.

LOCAL VARIABLES

L
Variable Scope

- What do we mean by variable scope?

- Definition: The scope of the variable defines the region
of the program where the variable is visible.

- A variables scope can be either local or global.

Local Variables

- Local variables are variables that are declared inside a
function or code block.

- We will see in the coming slides how the visibility of a
variable is important!

Local Variables

- Here the variable “myInt” is local to the for loop.

- “myInt” is not visible outside of the for loop as this is
outside of its scope.

void main() {
for (int i = 0; 1 < 5;i++) {
int myInt = 9;

Local Variables

- Similarily, the variable “I” is also local to the for loop.

- “I” is not visible outside of the for loop as this is outside of
Its scope.

void main() A
for (int 1 = 0; i < 5;i++) {
int myInt = 9;

Local Variables

(1L

- We can change the scope of “I" and “myInt” by declaring
these variables outside of the for loop.

void main() {
int 1=0;
int myInt=0;
for (1 = 0; 1 < 5;i++) {

myInt = 9;
1++; No problems accessing
“ these variables outside for loop
myInt++; ow

Local Variables

- What will the following code output?

void main() A
int 1=0;
int myInt=0;
printf("myInt = %d\n",myInt);
for (1 = 0; 1 < 5;i++) {
int myInt = 9;
printf("myInt = %d\n", myInt);

}

i++;

myInt++;

printf("myInt = %d\n", myInt);

Local Variables

Why does the code output the following?

void main () { Microsoft Visual Studio Debug Console
int 1=0;
int myInt=0;
printf("myInt
for (1 = 0; 1 5;i++) {
int myInt = 9;
printf("myInt = %d\n", myInt);

%d\n",myInt);

n A

}

i++;

myInt++;

printf("myInt = %d\n", myInt);

Local Variables

Why does the code output the following?
Two variables called “myInt” are being created.
One is local to the main function, the other is local to the for loop.
This is bad practice.
Any time you are creating variables, give them a unique name.

void main () { B8 Microsoft Visual Studio Debug Console
int i=0;
int myInt=0;
printf("myInt
for (i = 0; 1 < 5;i++) {
int myInt = 9;
printf("myInt = %d\n", myInt);

%d\n",myInt);

n A 1

}

i++;

myInt++;

printf("myInt = %d\n", myInt);

Local Variables

We can see the both “myInt” variables are stored
separately in memory.

%p is for pointers.
You can simply use %X if you wish.
We will not discuss pointers yet.

void main() {

int 1=0;
i n t my I nt =@ ; B Microsoft Visual Studio Debug Console
printf("myInt address %p\n",&myInt); address ©077FE3C

address ©077FE30

for (i = @; i < 5;i++) { address ©077FE30

int myInt = 9;

address ©077FE30

printf("myInt address %p\n", &myInt); address ©077EE30
} address ©077FE30
i++; address ©077FE3C
myInt++;

printf("myInt address %p\n", &myInt);

Local Variables

- Similarly we can create variables local to specific
functions.

- "mylnt” is visible in testFunct() but not in main().
void testFunct();

void main() {
testFunct();
myInt=1;

}

void testFunct() {
int myInt = 9,
}

Local Variables

- Similar to before, we see in the example below the
different addresses for both “myInt” variables in
testFunct() and main().

void testFunct();

void main() {

testFunct();

int myInt:l; B Microsoft Visual Studio Debug Console

printf("myInt address %p\n", &myInt); myI nt address 0O0OCFF620
; myInt address QOCFF704

void testFunct() {
int myInt = 0;
printf("myInt address %p\n", &myInt);

GLOBAL VARIABLES

D
Global Variables

- Global variables are variables that are created outside of
a function.

- These variables can be used anywhere in the program
after it is declared.

- To set up a global variable, simply declare it outside of
any function. It can then be accessed by any function.
We normally declare it before main().

D
Global Variables

- Lets look at the following example where we declare a
global variable:

void playGame();
void displayGames();
int gamesPlayed = 9;

void main() {
displayGames();
playGame();
playGame();
playGame();
gamesPlayed--;
displayGames();

}

void playGame() {
gamesPlayed++;

}

void displayGames() {
printf("%d games have been played.\n", gamesPlayed);

}

Global Variables

This code outputs the following:

void playGame();
void displayGames();
int gamesPlayed = 0; B8 Microsoft Visual Studic Debug Console

© games have been played.

J

void main() {
displayGames();
playane(); 2 games have been played.
playGame();
playGame();
gamesPlayed--;
displayGames();

}

void playGame() {
gamesPlayed++;

}

void displayGames() {
printf("%d games have been played.\n", gamesPlayed);

}

L
Global Scope

- We have already seen macros that have global scope in
previous lectures (week 7a):

#include <stdio.h>
#include "string.h”

#define g 9.81
void main() {
float mass = 10;
float F;
F = mass * g;
printf("Force = %0.2f N.\n",F);

FUNCTIONS AND
STRINGS

L
Strings and Functions

- We have not yet talked about how to pass a string to and
from a function.

- Unfortunately, it is not as straightforward with strings
since they are arrays of characters...

L
Returning Strings

- If we want to return a string from a function, we need to
declare the return type as “const char*”:

const char* myName() {
return "Bob";

L
Returning Strings

- If we want to return a string from a function, we need to
declare the return type as “const char*”.

- What we are actually doing here is returning a pointer (*)
to the first element of the string.

const char* myName() {
return "Bob";

L
Returning Strings

#include <stdio.h>
#include "string.h"

const char* myName();

B8 Microsoft Visual Studio Debug Console

void main() {

char newName[10];

strcpy_s(newName, 10, myName());
puts(newName) ;

¥

const char* myName() {
return "Bob";

¥

Passing Strings

- If you want to pass a string to a function, you need to
use “char*”.

- Here we are passing a pointer (*) to the first character of
the string.

- Again, don’t worry about pointers yet.

void passName(char* name) {
printf("The name you passed is: %s.\n",name);

¥

L
Passing Strings

#include <stdio.h>
#include "string.h"

B Microsoft Visual Studie Debug Console

Bob

const char* myName();
void passName(char* name);

The name you passed is: Bill.

void main() {
char newName[10];
strcpy s(newName,10, myName());
puts(newName) ;
passName("Bill");

}

void passName(char* name) {
printf(“The name you passed is: %s.\n",name);

}

const char* myName() {
return "Bob";

}

EXAMPLE PROBLEM

L
Bank Account Problem

- You are writing software to process bank accounts:
- Create a global variable that represents the bank account balance.
- Write a function that initializes the balance to €50.

- Write a function that allows the user to make a withdrawal and
update the bank balance.

- Write a function that allows the user to make a deposit and update
the bank balance.

- Write a function that displays the bank balance.
- Test the software by:

- Creating a bank acc.

- Withdraw €10.

- Deposit €60.

« Withdraw €30.

- Display the balance between each transaction.

D
Bank Account Problem

- Go to C program solution.

D
Bank Account Problem

#include <string.h>
#include <ctype.h>

#include <stdio.h>
void initBankAC() {

bankBalance = 56.0;
puts("Bank account created.");

void initBankAC();)

void withdrawal(float amnt); void withdrawal(float amnt) {
void deposit(float amnt); bankBalance -= amnt;
void displayBal(); printf("Withdrawl of %0.2f euro made.\n",amnt);

}
float bankBalance;
void deposit(float amnt){

bankBalance += amnt;

void main
O 1 printf("Deposit of %@.2f euro made.\n", amnt);

initBankAC();
displayBal();
withdrawal(10.0);
displayBal();
deposit(60.0); }
displayBal();
withdrawal(30.0);
displayBal();

}

void displayBal() {
printf("Your balance is: %0.2f euro.\n", bankBalance);

Bank Account Problem

C Program Output:

B Microsot Viual St Debg Consale
Bank account created.
our balance is: 50.00 euro.
Withdrawl of 10.00 euro made.
our balance is: 40.00 euro.

Deposit of 60.00 euro made.
our balance is: 100.00 euro.

Withdrawl of 30.00 euro made.
our balance is: 70.00 euro.

PROGRAMMING

CT103
Week 9a

L
Sign in on Blackboard

- Please sign in on blackboard for CT103.

- | will leave the sign in option open for an hour after the
lecture.

L
Lecture Content

- Last lecture (Week 8b):

- Functions recap

- Local variables

- Global variables

- Functions and strings
- Example C program

- Today’s lecture (Week 9a):
- Conditional operator
- Maths functions
- Example C program

CONDITIONAL OPERATOR

L
Conditions

- Up until now, if we wanted to check if a condition is true,
we would use an if else statement like this:

void main() {

int a = 1;

int b = 10;

if (a>b) {
printf("Something.\n");

}

else {
printf("Something else.\n");

}

B8 Microsoft Visual Studio Debug Console

Something else.

L
Conditional Operator

- Today we will introduce the conditional operator in C!
- This involves using two symbols: ‘?" and *’

- It Is a compact way of representing decision making
statements.

L
Conditional Operator

- The conditional operator looks like:

Variable = (test) ? ‘value if true’ : ‘value if false’ ;

- The test will yield a value of true or false which
determines the value which will be put into the variable
on the LHS of the =’

- The RHS evaluates to either value, depending on
whether the condition is true or false

L
Conditional Operator

- The conditional operator in C looks like this:

Resultant value

False

-

var‘irable = expression1 ? expressionZ2 : expression3 Image from:
A Pres ¢ exXp - ©Xp Javapoint.com

L J
L True

Resultant value

- Expression 1 is a Boolean condition.
- Expression 2 will execute if expression 1 is true.
- Expression 3 will execute if expression 1 is false.

L
Conditional Operator Example

- Conditional operator in C example:

int age = 45;
(age >= 18) ? (printf("eligible for voting”)) : (printf("not eligible for voting"));

B8 Microsoft Visual Studio Debug Console

eligible for voting

L
Tax Rate Calculator

- Take the following example:

void main()

{
double taxThreshold = 30000.00;

int lowRate = 25, highRate = 45;
double salary;
int rate;

printf("Enter salary: ");
scanf_s("%1f", &salary);

if (salary »>= taxThreshold){
rate = highRate;

}
else{

rate = lowRate;
}

printf("your tax rate is %d%% \n", rate);

Tax Rate Calculator

void main()

{
double taxThreshold = 30000.00;

int lowRate = 25, highRate = 45;
double salary;

int r‘ate,‘ [Microsoft Visual Studio Debug Console
printf("Enter salary: "); Enter\ Salar‘y° 88@660
scanf_s("%1f", &salary); your tax rate is 45%

if (salary >= taxThreshold){
rate = highRate;

}
else{

rate = lowRate;
}

printf("your tax rate is %d%% , rate);

L
Tax Rate with Conditional Operator

- Take the following example:

void main()

{
double taxThreshold = 30000.00;

int lowRate = 25, highRate = 45;
double salary;
int rate;

printf("Enter salary: ");
scanf_s("%1f", &salary);

rate = (salary >= taxThreshold) ? highRate : lowRate;

printf("your tax rate is %d%% \n", rate);

Tax Rate with Conditional Operator

void main()

{
double taxThreshold = 30000.00;

int lowRate = 253 hlghRate = 45; B3 Microsoft Visual Studio Debug Console

double salary; Enter Salary: 22000

int rate;

your tax rate is 25%

printf("Enter salary: ");
scanf_s("%1f", &salary);

rate = (salary >= taxThreshold) ? highRate : lowRate;

printf("your tax rate is %d%% \n", rate);

L
Tax Rate with Conditional Operator

- We are replacing this:

if (salary >= taxThreshold) {
rate = highRate;

}
else {

rate = lowRate;
}

- With this:

rate = (salary >= taxThreshold) ? highRate : lowRate;

- Much shorter!

L
Another example

void main()

{
int age;
float gift;
printf("how old are you?:");
scanf_s("%d", &age);

if (age < 18)

{

gift = 5.0;
}
else
{

gift = 10.0;
}

printf("your gift is %.2f\n", gift);

Can be written ..

Microsoft Visual Studio Debug Console

szmmﬁO your gi{t is 10.00

int age;
float gift;
printf("how old are you?:");
scanf_s("%d", &age);

gift = (age < 18) ? 5.0 : 10.0;

printf("your gift is %.2f\n", gift);

L
Nice example

void main() B Microsoft Visual Studio Debug Console
{

int num; ipu :ave iaappli

char s; ou have apples

num = 1;

s = (num == 1) ? " ' 's’;

printf("You have %d apple%c \n", num, s);

num = 10;
s = (num == 1) ? ' 's’,
printf("You have %d apple%c \n", num, s);

Going too far ?

- This is even shorter, but perhaps a bit too hard to read!

- This works because C evaluates the_BEFORE

sending the result to printf

void main()

{

int num;

num = 1;
printf("You have %d apple%c \n", num,

num = 10;
printf("You have %d apple%c \n", num,

.
J
.
J

MATHS

Maths in C

- We have done plenty of maths in C until now.
- We have done:

- Addition: ‘+’

- Subtraction: ‘-’

- Multiplication: ™

- Division: /

- Also modulus (remainder): ‘%’

Modulus Recap

- A quick reminder about modulus (%).

- This allows us to get the remainder when dividing a
number by another number.

- See example:

void main()

{ B3 Microsoft Visual Studio Debug Console

int num = 12%5; modulus = 2.
printf("modulus = %d.\n",num);

D
Maths in C

- There is also the maths library in C that contains lots of
very useful functions for doing mathematical operations!

- You will need to import math.h to use these:

#include <math.h>

D
Maths in C

- Math.h has many useful functions:

- A small selection of these that we will talk about today
iInclude:

- floor() — returns the next lowest whole number
- cell() — returns the next highest whole number
- fabs() — returns the absolute value

L
Sample Program

#include <stdio.h>
#tinclude <math.h>

void main()
{
float change, amtPaid = 34.56, cost = 17.85, euro;

change = amtPaid - cost; /* 34.56 - 17.85 = 16.71 */

euro = floor(change); /* returns the next lowest integer */
printf(“"the change includes %.2f euro \n", euro);

euro = ceil(change);
printf("Next highest euro amount is %.2f \n", euro);

float diff = cost - amtPaid; // difference between cost and amtPaid
printf("absolute value of %.2f is %.2f \n", diff, fabs(diff));

Output

Microsoft Visual Studio Debug Console

the change includes 16.00 euro
#include <stdio.h> Next highest euro amount is 17.00
#include <math.h> absolute value of -16.71 is 16.71

void main()

{
float change, amtPaid = 34.56, cost = 17.85, euro;

change = amtPaid - cost; /* 34.56 - 17.85 = 16.71 */

euro = floor(change); /* returns the next lowest integer */
printf("the change includes %.2f euro ", euro);

euro = ceil(change);
printf("Next highest euro amount is %.2f ", euro);

float diff = cost - amtPaid; // difference between cost and amtPaid
printf("absolute value of %.2f is %.2f \n", diff, fabs(diff));

EXAMPLE PROBLEM

Payment Processing Problem

- You are writing software to process online shop

payments:
- Read in:
- The number of past customer purchases from the user.
- The current purchase amount in euro.
- The customer payment amount in euro.
- If the customer has made more that 5 previous purchases, round
their bill down to the nearest euro.

- Write a function to check if the customer has over/under paid. Print
the absolute value of the amount to the screen to let the user know.

L
Payment Processing Problem

- Go to C program solution.

Payment Processing Problem

#include <stdio.h>
#include <math.h>

void checkOverUnderPay(float payment, float bill);

void main()

{

int numCustPurchases;
float curPurchaseAmnt, custBill, custPayment;

printf("Number of past customer purchases:");
scanf_s("%d",&numCustPurchases);

printf("Current purchase amount:");
scanf_s("%f", &curPurchaseAmnt);

custBill = (numCustPurchases>5)?floor(curPurchaseAmnt):curPurchaseAmnt;
printf("Customer bill is: %@.2f euro.\n",custBill);

printf("Customer payment:");
scanf_s("%f", &custPayment);

}

checkOverUnderPay(custPayment, custBill);

void checkOverUnderPay(float payment, float bill) {

float diff = payment - bill;
if (payment > bill) {
printf("Customer over paid by %©.2f euro.\n", fabs(diff));
b
else if (payment <bill) {
printf("Customer still needs to pay extra of %0.2f euro.\n", fabs(diff));

}
else {

printf("Payment processed.\n");
}

Payment Processing Problem

C Program Output:

Number of past customer purchases:2
Current purchase amount:32.20

Customer bill is: 32.20 euro.
Customer payment:50.00
Customer over paid by 17.80 euro.

PROGRAMMING

CT103
Week 9b

L
Sign in on Blackboard

- Please sign in on blackboard for CT103.

- | will leave the sign in option open for an hour after the
lecture.

L
Lecture Content

- Last lecture (Week 9a):
- Conditional operator
- Maths functions
- Example C program

- Today’s lecture (Week 9b):

- More maths functions
- Macros
- Example C program

MATHS

L
Maths in C Recap

- We can use the maths library in C to do mathematical
operations using their functions!

#include <math.h>

- On Monday we explored:
- floor() — returns the next lowest whole number
- cell() — returns the next highest whole number
- fabs() — returns the absolute value

Maths in C Recap

Microsoft Visual Studio Debug Console

#include <stdio.h> the change includes 16.00 euro
#include <math.h> Next highest euro amount is 17.00

absolute value of -16.71 is 16.71

void main()

{
float change, amtPaid = 34.56, cost = 17.85, euro;

change = amtPaid - cost; /* 34.56 - 17.85 = 16.71 */

euro = floor(change); /* returns the next lowest integer */
printf("the change includes %.2f euro ", euro);

euro = ceil(change);
printf("Next highest euro amount is %.2f ", euro);

float diff = cost - amtPaid; // difference between cost and amtPaid
printf("absolute value of %.2f is %.2f \n", diff, fabs(diff));

MORE MATHS FUNCTIONS

D
Maths in C

- Math.h has many other use functions other than the
ones we just created:

- Pow() — raise one number to the power of another.
- Sgrt() — Square root of a number.

- Sin() — returns the sine of an angle in radians.

- Cos() — returns the cosine of an angle in radians.

- Tan() — returns the tangent of an angle in radians.
- Exp() — returns the exponent on a value.

- Log() — returns the natural log of a value.

L
Pow()

- Pow() — raise one number to the power of another.
-E.g.2°=32

- We say here that we are raising the number 2 to the
power of 5.

L
Pow()

- Pow() — raise one number to the power of another.

#include <stdio.h>
#include <math.h>

void main() {
int n = pow(2,5);
printf("%d to the power of %d = %d.\n",2,5,n);

B8 Microsoft Visual Studio Debug Console

2 to the power of 5 = 32.

L
Not using Pow()

- The alternative would be to do this...

int n = 2%2%2%2%2;
printf("%d| to the power of %d = %d.\n", 2, 5, n);

B8 Microsoft Visual Studio Debug Console

2| to the power of 5

- Much easier to just use pow() instead of this.

L
Sart()

- Sgrt() — Square root of a number.

- E.g. Square root of 9 = 3.

#tinclude <stdio.h>
#include <math.h>

void main() {
float n = sqrt(9);
printf("Square root of %d = %0.1f.\n",9,n);

B Microsoft Visual Studio Debug Console

Square root of 9 = 3.0.

L
Trigonometry

- Quick refresher on trigonometry:

Adjacent

Opposite
Opposite Adjacent
sin B = cos B =
Hypotenuse Hypotenuse
Opposite

tan 6 =

Adjacent

Sin()
- Sin() — returns the sine of an angle in radians.
- What are radians?

- Radians are another way of measuring an angle.

- To convert angle D from degrees to radians R, you use
the following equation:
-R=D*m/180

L
Sin()

- Sin() — returns the sine of an angle in radians.

##tinclude <stdio.h>
##tinclude <math.h>

void main() {
float n = sin(1); // approx 57 degrees
printf("Sin of %d = %0.2f.\n", 57, n);

B8 Microsoft Visual Studio Debug Console

Sin of 57 = 0.84.

L
Cos() and Tan ()

- Cos() — returns the cosine of an angle in radians.
- Tan() — returns the tangent of an angle in radians.

B8 Microsoft Visual Studio Debug Console

#include <stdio.h>
#include <math.h>

void main() A

float n = cos(1); // approx 57 degrees
printf("Cos of %d = %0.2f.\n", 57, n);

n = tan(1); // approx 57 degrees
printf("Tan of %d = %0.2f.\n", 57, n);

L
Exp()

- Exp() — returns the exponent on a value.
- E.g. exp(10) = el0 = 22026.

- Where e = 2.71828 (Euler’s number).

#include <stdio.h>

#i nc l ud e <m a.t h . h S B8 Microsoft Visual Studio Debug Console
exponent of 10 = 22026.46.

void main() {
float n = exp(10);
printf("exponent of %d = %0.2f.\n", 10, n);

L
Log()

- Log() — returns the natural log of a value.
- E.g. log(10) = log,10 = 2.303.
- Natural log of x is the power that e is raised to equal x.

- |.e.e2303 =10

L
Log()

- Log() — returns the natural log of a value.

#include <stdio.h>
#include <math.h>

void main() {

float n = log(1l0);
printf(“natural log of %d = %0.2f.\n", 10, n);

B8 Microsoft Visual Studio Debug Console

natural log of 10 = 2.30.

MACROS

L
Macros

- We introduced macros in lecture 7a.

- A macro is a fragment of code which has been given a
name. Whenever the name is used it is replaced by the
contents of the macro.

- There are two types of macros:
- Object like macros.
- Function like macros (we skipped over these).

Object Like Macros in C

#include <stdio.h>
#include "string.h"

B Microsoft Visual Studio Debug Console

Force = 98.10 N.

#define g 9.81

void main() {
float mass = 10;
float F;
F = mass * g;
printf("Force = %0.2f N.\n",F);

L
Function like Macros

- Today we will cover function like macros.

- Function like macros are pieces of code that are given a
name.

- Unlike object like macros, function like macros contain a
function.

L
Function like Macros in C

- Function like macro in C:

#include <stdio.h>
#include <math.h>

#define MAX(X,y) (x>y?Xx:y)
void main() {

int num = MAX(12,27);
printf("Max of %d and %d is %d.\n", 12, 27,num);

B Microsoft Visual Studio Debug Console

Max of 12 and 27 is 27.

EXAMPLE PROBLEM

D
Cost Guard Problem

- You are writing software for the coast guard to track ships in the
ocean:

- There are 2 ships in locations.
- Shipl-location: x =0,y =0. velocity: v, = 0.5 km/hr, v, = 0.5 km/hr.
* Ship2 - location: x =5,y = 0. velocity: v, = -0.5 km/hr, v, = 0.5 km/hr.

Cost Guard Problem

- You are writing software for the coast guard to track ships in the
ocean:

- There are 2 ships in locations.

- Shipl-location: x =0,y =0. velocity: v, = 0.5 km/hr, v, = 0.5 km/hr.
- Ship2 - location: x =5,y =0. velocity: v, = -0.5 km/hr, v, = 0.5 km/hr.

- Write a C program that tracks their movements over 10 hours.
- Write a function to return the Euclidean distance between each ship.
- Write a function to update and return the location of a ship.
- Write a function to display the location of each ship.
- If the ships are within 1.5 km of one another, display a warning.

- If the ships are within 200 meters of one another, the ships have collided. End the
program.

- Will the ships collide? If so, after how many hours?

D
Cost Guard Problem

- Go to C program solution.

D
Cost Guard Problem

#include <stdio.h>
#include <math.h>

float getDist(float x1, float yl, float x2, float y2);
float updateShipLoc(float pos, float vel, float time);
void dispShiploc(float x, float y, int num);

if (curDist < 0.2) {
printf(“"Collision has occured!\n");
printf(“curdist = %0.2f.\n", curDist);

}

else if (curDist < 1.5) {
printf(“Collision warning!\n");
printf("Distance < 1.5 km.\n");
printf(“"curdist = %0.2f.\n", curDist);

void main() {
int hours=10;
float shipl[2] = {@,@};
float ship2[2] = {5,90};
float curDist = getDist(shipl[@], shipl[1l], ship2[@], ship2[1]);

}

. . . else {
1nF * __1’ . printf(“"curdist = %@.2f.\n", curDist);
while (i < hours && curDist > 0.2) { }

printf("-------------------- \nHour %d.\n", 1i); it

shipl[@] = updateShipLoc(shipl[@], ©.5, 1); } ’

shipl[1] = updateShipLoc(shipl[1], 0.5, 1); }

ship2[@] = updateShipLoc(ship2[@], -©.5, 1);

ship2[1] = updateShiplLoc(ship2[1], .5, 1); float getDist(float x1, float yl, float x2, float y2) {

float dist = sqrt(pow((x2 - x1), 2) + pow((y2 - y1), 2));

dispShipLoc(shipl[@], shipl[1], 1); return dist;

dispShipLoc(ship2[@], ship2[1], 2); }
curDist = getDist(shipl[@], shipl[1], ship2[@], ship2[1]); float updateShiplLoc(float pos, float vel, float time) {
return (pos + (vel*time));
}

void dispShipLoc(float x, float y, int num) {
printf("Ship %d is at position: x = %0.2f, y = %0.2f.\n", num, x, vy);

}

Cost Guard Problem

Microsoft Visual Studio Debug Console

C Program Output:

at position:
at position:

Ship 1 is at position:
Ship 2 is at position:
curdist =

at position:
at position:

at position:
Ship 2 is at position:
Collision warning!

Ship 1 is at position:
Ship 2 is at position:
Collision has occured!
curdist = 0.00.

PROGRAMMING

CT103
Week 10a

L
Sign in on Blackboard

- Please sign in on blackboard for CT103.

- | will leave the sign in option open for an hour after the
lecture.

L
Lecture Content

- Last lecture (Week 9Db):
- More maths functions
- Macros
- Example C program

- Today’s lecture (Week 10a):
- Passing arrays to functions
- Generating random numbers
- Breakpoints
- Example C program

PASSING ARRAYS TO
FUNCTIONS

Passing Arrays to Functions

- We already mentioned how we can use pointers to pass
In strings, I.e. character arrays.

- We will see in the coming slides how to pass arrays of
other variable types, e.g. ints and floats, to functions.

- We will also see how to pass strings to functions without
using pointers.

Passing Arrays to Functions

- In order to accept arrays as function parameters, we have to specify
its parameters as: type of array variables, an and square
brackets []. E.qQ:

void procedure (int 2rg[])

accepts a parameter of type "array of int" called arg. In order to pass
to this function an array declared as:

int myarray [40];
it would be enough to write a call like this:

procedure (myarray);

Example — pass int array

#include <stdio.h>
#include <stdlib.h>

void printarray(int arg[], int length);

void main()

{ B8 Microsoft Visual Studio Debug Console
int firstarray[] = { 5, 10, 15 }; 5 10 15
printarray(firstarray, 3);

}

void printarray(int arg[], int length)

{
for (int n = 0; n < length; n++){
printf("%d ", arg[n]);

}

Formatting int display

We can format the output of ints using %xd, where X’ is
the number of characters to print out with the int.

If int requires 2 characters, e.g. ‘“10’, then %3d will print 1
space before 10, i.e. “ 10’.

This works for floats too!

printf("%d", arg[n]);
printf("%4d", arg[n]); _'M ““““““ ''''''''' """"" =
printf("%15d", arg[n]); 5 10

Pass char array

#include <stdio.h>
#include <stdlib.h>

void printarray(char arg[], int length);

Void ma i n () B Microsoft Visual Studio Debug Console

{ a b C

char firstarray[] = { 'a','b','c' };

printarray(firstarray, 3);

}

void printarray(char arg[], int length)

{
for (int n = 0; n < length; n++){
printf("%4c", arg[n]);

}

L
Passing Array Example

#include <stdio.h>
##include <math.h>
#tinclude <stdlib.h>

double printBalance(double bals[], int ids[], int len, int custID);

void main()
{
int custID[10] = { 313,453,502,101,892 };
double custBal[1@] = { ©.00, 56.56, 34.56, 123.45, 9.05 };
int numCust = 5;
double balance;
int ID;

printf("Enter customer ID: ");
scanf_s("%d", &ID);

balance = printBalance(custBal, custID, numCust, ID);
if (balance == -10000000.00){
printf("Error - Customer not found \n");

}

L
Passing Array Example (continued)

double printBalance(double bals[], int ids[], int numCust, int idSearch){
for (int ctr = @; ctr < numCust; ctr++){
if (ids[ctr] == idSearch){
printf("“Customer %4d has a balance of %9.2f \n", idSearch, bals[ctr]);
return bals[ctr];

}

}
return -10000000.00;

Passing Array Example - Output

B Microsoft Visual Studio Debug Console

Enter customer ID: 101

Customer 101 has a balance of 123.45

B8 Microsoft Visual Studio Debug Console

Enter customer ID: 5
Error - Customer not found

Pass string as parameter

- Astring in C Is just a char array
- Here we pass a string to the function puts()

#include <stdio.h>
void main()
{
char stringl[] = "My string";

puts(stringl);

B Microsoft Visual Studio Debug Console
My string

C:\Users\8063198s\source\repos\ConsolelAppli

Pass String Using Pointers

- We saw already how we can pass a string using pointers
from week 8b.

void passName(char* name) {
printf("The name you passed is: %s.\n",name);

}

- Here char* is a pointer to the first character in the string

name.
- This is the accepted convention for passing strings to
functions in C.
- You can do it without pointers as we will see next..

L
Passing Strings Without Pointers

#include <stdio.h>
#include <math.h>

#include <stdlib.h>

void printString(char s[]);

void mai n() { B3 Microsoft Visual Studio Debug Console
char stringl[] = "My string”; My StPing
printString(stringl);

void printString(char str[])
{

}

printf("%s\n",str);
}

Passing Strings Example

#include <stdio.h>
void printStringBackwards(char s[]);

void main(){
char stringl[] = "My string";

printStringBackwards(stringl); R
} gnirts yM

void printStringBackwards(char str[]){
int len = 0, i = 0;

B Microsoft Visual Studio Debug Console

len = strlen(str);
i=1len - 1;

while (i >= 0)

{
printf("%c", str[i]);
i--5

}

printf("\n");

Passing Arrays with Pointers

- Also, you can use pointers with arrays of ints too...

void printIntArrPoint(int* myIntArray, int len);

void main(){
int tempInts[3] = { 1, 2, 3 };

} prlntIntAr*r‘Polnt <tempIntS g 3) ; B8 Microsoft Visual Studio Debug Console

FHII%IIE!IIIIIIIIIIIIIII
void printIntArrPoint(int* myIntArray, int len) {

for (int i = ©; i < len;i++) {
printf("%d ",myIntArray[i]);

}
printf("\n");
}

- Don’t worry about this for now.

- We have not yet covered pointers so this won't make
much sense until we do.

RANDOM NUMBERS

L
Random numbers

- Sometime we need to generate random numbers, e.g. for
games.

- To do this we can use the rand() function, which returns a
random number from 0 to 32767 (this upper limit will vary
depending on the system and implementation of the rand
function)

- You will need to include the stdlib.h header file

#include <stdlib.h>

Rand() Function

#include <stdio.h>
#include <stdlib.h>

Microsoft Visual Studio Debug Console

void main()

{

int randNum;
int 1i;

for (1 = 0; 1 < 10; i++)

{
randNum = rand();
printf("%d - %d\n", i,
randNum) ;

}

Dice — random numbers from 1 to 6

B8 Microsoft Visual Studio Debug Console

6
6
#include <stdio.h> 5
#include <stdlib.h> 5
: : 6
void main() -
{
int randNum; 1
int 1i; 1
5
for (i = 0; 1 < 10; i++) 3
{
// %6 gives numbers from @ to 5, so add 1 to get
// numbers from 1 to 6
randNum = rand() % 6 + 1;
printf("%d - %d\n", i, randNum);
}

Trouble is...every time you run it —
you get the same numbers!

Microsoft Visual Studio Debug Console

6

8 Microsoft Visual Studio Debug Console

I
(0))

8 Microsoft Visual Studio Debug Console

I
(0))

8 Microsoft Visual Studio Debug Console

w ul = = U1 Oy U1 U1 OY
DoOONOUVT B WNEO
w ul = = U1 Oy U1 U1 OY
DoLONOUVT B WNEO
w ul = = U1 Oy U1 U1 OY
DoONOUVT B WNEO
(0))

6
5
5
6
5
1
1
5
3

Increasing randomness

- rand() will repeat the same set of random numbers if
repeated
- Basically it's an algorithm (has a starting point)

- Programmers often use srand() to generate numbers
that are more random
- Giving the algorithm a different starting point!
- This is called seeding the algorithm
- The trick is to use a different seed every time

- This is usually accomplished by using the current time as the
seed

Increasing randomness

- Programmers often use srand() to generate numbers
that are more random

- Generating truly random numbers is actually non-trivial
and Is an active research area.

- Some researchers use physical phenomena, e.g. radioactive
decay to generate truly random numbers.

 Philosophical debate as to whether or not anything is random...
* This is outside of the scope of this course ©

- The algorithms used in computer programs are called
pseudorandom number generators.
- Not truly random but good enough for what they are needed for.

Microsoft Visual Studin Dehin Con
Microsoft Visual Studio Debug Console

Microsoft Visual Studio Debug Console

i

#include <stdio.h>
#include <stdlib.h>
#include <time.h>

[EEY

void main()

{

int randNum;

N R NONDUE O
viuuioyuvi vl N

// this converts a time structure (special C type) to

// a long integer

// 1t will contain the number of seconds since 1 Jan 1970, ©00:00:00
long 1t = time(NULL);

// srand is the seeding function - gives rand() a starting point
srand(1lt);

for (int i = 0; i < 100; i++){
randNum = rand() % 6 + 1;
printf("%d - %d\n", i, randNum);

L
Breakpoints

- Breakpoints are a useful way of seeing what is happening
In your code:

13 long 1t = tipefnuiiiid.

- Quick Actions and Refactorings... Ctrl+.
14
15
16
17

. 4 Find All References Shift+F12
18 = for (i = 0@; :
View Call Hierarchy Ctrl+K, Ctrl+T
!

<> View Code F7

// Sr‘and 1s 1 Peek Definition Alt+F12 Pand() a st

srand(1lt); Go To Definition F12
Go To Declaration Ctrl+F12

19 randNum 3 oo eader/ Code File Ctri+K, Ctrl+)
20 p rintf (" Toggle Header / Code File Cirl+K, Ctrl+0O

21
22
23
24
25
26
27
28
29

@ Insert Breakpoint Breakpoint L
} Insert Tracepoint k Run To Cursor Ctrl+F10

Snippet »
Cut Ctrl+X

Copy Ctrl+C
Paste Ctrl+V

h &

Annotation 4
Qutlining B

Rescan r

Breakpoints
- The breakpoint will then look like this:

12 // 1t will contain the number of seconds since 1 Jan 1970, ©0:00:00
® 13 I long 1t = time(NULL);

14

15 // srand is the seeding function - gives rand() a starting point

16 srand(1t);

17

L
Use the debugger to check it out

- Use the debugger to stop the code

w File Edit View Git Project Builld Debug Test Analyze Tools Extensions Window Help Search (Ctrl+Q) P CT103_C Programming

0v0|?ﬂv,‘ﬁ“d‘|'9v(’-‘ Debug ~ x86 - P Local Windows Debugger ~ &,|ﬂ|@;hfi|i"_=|l b I B

g‘ CT103 Week10.c + X [ARDER s
;—“r-| [%]CT103_C_Programming v| (Global Scope) v| '\'I'
T_% 1 IEl#include <stdio.h> -
: 2 I #include <math.h> I._
s 3 | |#include <stdlib.h>
4 I

5 =lvoid main()

6 {

7 int randNum;

8 int i;

9

10 = // this converts a time structure (special C type) to

11 I // a long integer

12 I // 1t will contain the number of seconds since 1 Jan 1970, ©0:00:00

® 13 | long 1t = time(NULL);

14 |

15 I // srand is the seeding function - gives rand() a starting point

16 I srand(1t);

17 |

18 = for (i =@; 1 < 1@88; i++){

19 randNum = rand() % 6 + 1;

20 printf("%d - %d\n", i, randNum);

21 }

22 N -

- Use 10 to step over line 13
- YOou can see the value of It from the watch window

CT103_Week10c + X
[%]CT103_C_Programming

v| (Global S

pe) - I © main()

10
11
12
® 13
14
15
D 16
17
18
19
20
21
22

Name
@ |
@ |t
@ randNum

|
=l

]

}

// this converts a tiTe structure (special C type) to

// a long integer

// 1t will contain theé number of seconds since 1 Jan 1970, ©0:00:00

long 1t = time(NULL);

// srand is the seedi
srand(1t); <1imselapsed

for (i = @; i < 100; &++){

randNum = rand()
printf("%d - %d\n
}

g function - gives rand() a starting point

6 + 1;
, 1, randNum);

-
169% - & Mo issues found 4 » Ln: 16 Ch
Search (Ctrl+E) P~ & SearchDepth: 3 ~

Value
—858993460‘
1637944642
-858993460

Type
int
long
int

EXAMPLE PROBLEM

L
Coin Toss Problem

- Write software to do 10 games of “coin toss”.

- This game consists of tossing a coin and seeing if it came
up heads or tails.

- Each game should toss the coin 1000 times.
- Record the number of heads and tails in each game.

- What percentage of tosses were heads and what were
tails for each game?

- Is this what you expect?

D
Coin Toss Problem

- Go to C program solution.

OINn 10SS Fropiem

#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#tdefine NUMTOSSES 1000

void main()

{

int coin, i, j;
int totalHeads;
double headsPercent, tailsPercent;

printf("%5s %10s %10s\n \n", "Run", "Heads %", "Tails
%)

for (i = 1; i <= 10; i++){
srand(i * time(NULL));
totalHeads = 0;
for (j = 1; j <= NUMTOSSES; j++){
/* coin: 1 is heads, © is tails */
coin = rand() % 2;
totalHeads += coin;

}

headsPercent (double)totalHeads * 100.0 / NUMTOSSES;
tailsPercent = 100.0 - headsPercent;
printf("%5d %10.21f %10.21f\n", i, headsPercent, tailsPercent);

Coin Toss Problem

C Program Output:

Microsoft Visual Studio Debug Console

Run Heads % Tails %

1
2
3
4
5
6
7
8
S
0

=

Notice anything ?

- What about this line:
-srand(i * time(NULL));

- Because the time take to do 1000 tosses might be less
than 1 second, the time value would not change, so we
multiple it by 1 to be sure that each round has a different

seed!

Random numbers In a range

- This function will generate a random number between
some lower and upper range (inclusive)

int randomRange(int lower, int upper){
int num;
int range = upper - lower + 1;
num = (rand() % range) + lower;
return num;

L
Using It

for (int i = @; i < 25; i++){
printf("%d ", randomRange(-10, 10));

B8 Microsoft Visual Studio Debug Console

16 -2 39762 -1095104 -53 -4 -3 -23488-1-17-42°9

// © to 100
for (int i = @; i < 25; i++){
printf("%d ", randomRange(©, 100));

B8 Microsoft Visual Studio Debug Console

41 85 72 38 80 69 65 68 96 22 49 67 51 61 63 87 66 24 80 83 71 60 64 52 90

// 101 to 201
for (int 1 = 0; i < 25; i++){
printf("%d ", randomRange(101, 201));

B Microsoft Visual Studio Debug Console

142 186 173 139 181 170 166 169 197 123 150 168 152 162 164 188 167 125 181 184 172 161 165 153 191

PROGRAMMING

CT103
Week 10b

L
Sign in on Blackboard

- Please sign in on blackboard for CT103.

- | will leave the sign in option open for an hour after the
lecture.

L
CT103 Lab Update

- There will be no more graded assignments in semester 1
for CT103 after the week 10 lab (30/11/21).

- The labs will continue running until and including week 12
(Tuesday 14/12/21). Attendance is optional at week 11
and 12 labs.

- These sessions will be a mix of:

- Q&A where you can ask the instructors about anything you are
unsure of.

- A worksheet (not graded) so you can get more practice.

L
Lecture Content

- Last lecture (Week 9Db):
- Passing arrays to functions
- Generating random numbers
- Breakpoints
- Example C program — We will go through this today.

- Today’s lecture (Week 10a):
- Structures
- Arrays of structures
- Functions and structures
- Example C program

STRUCTURES

L
Structures

- We can use arrays to hold multiple data items of the
same type, e.g. ints, chars, etc.

int myArrayInt[] = {1,2,3};

- What if we want to hold multiple data items that are of
different types?

- We can use structures!

Structures

- Let’s say you keep several pieces of information about
customers, for example:

- Name
- Account number
- Balance
Sheila
Address St

Account #
46587698

No. 5 Balance
Spencer +34599.46
Street

L
Storing Related Data

- If we only had a bank customer balance to record, we
could use an array:

float bankCustBal[] = { 100.20,502.34,20.0 };

- We could also create a separate array to store bank
customer IDs:

int bankCustID[] = { 33, 25, 98};

- This would work fine, we would just need to ensure that
all arrays are ordered in the same way.

L
Week 10a Example

#include <stdio.h>
#include <math.h>
#include <stdlib.h>

- The example from
Monday dld double printBalance(double bals[], int ids[], int len, int custID);

void main()

exactly this. ¢

int custID[10] = { 313,453,502,101,892 };
double custBal[1@] = { ©.00, 56.56, 34.56, 123.45, 9.05 };
___,————””———’—' int numCust = 5;
- We have 2 arrays g e
ESt()rIr]QJ r€3I61t63(j printf("Enter customer ID: ");
Information about seant s (A%, &10);

balance = printBalance(custBal, custID, numCust, ID);
(:lJE;t()rT]Eerss' if (balance == -10000000.00){

printf("Error - Customer not found \n");

}
}

double printBalance(double bals[], int ids[], int numCust, int idSearch){
for (int ctr = @; ctr < numCust; ctr++){
if (ids[ctr] == idSearch){
printf("Customer %4d has a balance of %9.2f \n", idSearch, bals[ctr]);
return bals[ctr];

}

}
return -10000000.00;

L
Structures

- We can use structures to store this information in a
more organised manner.

- We declare a structure using the keyword struct, as
follows:

struct customer

{
char name[20];
int accountNumber;
float balance;
char address[20];

}s

L
Creating a struct variable

struct customer customerl;

* You reference the members of a struct using the . notation:

strcpy(customerl.name, "Richie Rich");

customerl.accountNumber = 101;

L
Structure Example

#include <stdio.h>
#include <string.h>

struct customer{
char name[20];
int accountNumber;
float balance;
char address[20];

s

void main(){
struct customer customerl;

strcpy s(customerl.name,20, "Richie Rich");
customerl.accountNumber = 101;

customerl.balance = 9875234.00;

Strcpy _s(customerl.address,20, "Millionaire Drive");

L
typedef

- This is a bit long-winded:

- struct customer customerl;
- We can use typedef to shorten this.

- typedef is used to create user-defined types.

L
Structures using typedef

#include <stdio.h>
#include <string.h>
struct customer{
char name[20];
int accountNumber;
float balance;
char address[20];

}s
typedef struct customer customer; // creating new type - customer

void main(){
//struct customer customerl;
customer customerl; // creating variable of type customer

strcpy s(customerl.name,20, "Richie Rich");
customerl.accountNumber = 101;

customerl.balance = 9875234.00;

strcpy s(customerl.address,20, "Millionaire Drive");

D
This also works

#include <stdio.h>
#include <string.h>

typedef struct customer
{
char name[20];
int accountNumber;
float balance;
char address[20];
} customer;

void main()

{

customer customerl;

strcpy s(customerl.name,20, "Richie Rich");
customerl.accountNumber = 101;

customerl.balance = 9875234.00;

strcpy _s(customerl.address,20, "Millionaire Drive");

D
As does this

#include <stdio.h>
#include <string.h>

typedef struct
{
char name[20];
int accountNumber;
float balance;
char address[20];
} customer;

void main()

{

customer customerl;

strcpy s(customerl.name,20, "Richie Rich");
customerl.accountNumber = 101;

customerl.balance = 9875234.00;

strcpy _s(customerl.address,20, "Millionaire Drive");

L
Passing Data into Structures

#include <stdio.h>
#include <string.h>

typedef struct {
char name[20];
int accountNumber;
float balance;
char address[20];
} customer;

void main(){
customer customerl; // creating variable of type customer

printf("Enter customer name: ");
gets(customerl.name);

printf("Enter customer address: ");
gets(customerl.address);

printf("Enter customer account number: ");
scanf_s("%d", &customerl.accountNumber);

printf("Enter customer balance: ");
scanf_s("%f", &customerl.balance);

printf("\n\n%20s\n%20d\n%20.21f\n%20s\n", customerl.name,
customerl.accountNumber,
customerl.balance, customerl.address);

Passing Data Iinto Structures

Microsoft Visual Studio Debug Console

#include <stdio.h>

#include <string.h> Enter customer name: Billy
typedef struct { Enter customer address: Smith
char name[20]; Enter customer account number: 123456

int accountNumber;

float balance;

char address[20];
} customer;

Enter customer balance: 1200.50

void main(){ Bl]_]_y
customer customerl; // creating variable of
¢ 123456

printf("Enter customer name: "); 1200.50
gets(customerl.name); -
Smith

printf("Enter customer address: ");
gets(customerl.address);

printf("Enter customer account number: ");
scanf_s("%d", &customerl.accountNumber);

printf("Enter customer balance: ");
scanf_s("%f", &customerl.balance);

printf("\n\n%20s\n%20d\n%20.21f\n%20s\n", customerl.name,
customerl.accountNumber,
customerl.balance, customerl.address);

ARRAYS OF STRUCTS

Arrays of Structs

- Just like we can create arrays of integers, we can also
create arrays of structs.

- Lets have a look at how we might do this using the
example from before.

Arrays of Structs

#include <stdio.h>
#include <string.h>

typedef struct {
char name[20];
int accountNumber;
float balance;
char address[20];
} customer;

void main(){
customer customers[10]; // creating variable of type customer

strcpy_s(customers[@].name, 20, "Bobby Smith");
customers[@].accountNumber = 101;

customers[@].balance = 1234.00;

strcpy s(customers[@].address, 20, "The White House");

strcpy s(customers[1].name, 20, "Eric Smith");
customers[1].accountNumber = 102;
customers[1].balance = 1100.00;

strcpy s(customers[1l].address, 20, "Dublin Castle");

STRUCTS AND
FUNCTIONS

Structs and Functions

- How can | pass structs to functions?

- You can do this similar to how you would pass any other
variable type!

Structs and Functions

#include <stdio.h>
#include <string.h>

typedef struct {
char name[20];
int accountNumber;
float balance;
char address[20];
} customer;

void displayCustomers(customer custList[], int numCust);

Structs and Functions

void main(){
customer customers[10]; // creating variable of type customer

strcpy_s(customers[@].name, 20, "Bobby Smith");
customers[@].accountNumber = 101;

customers[@].balance = 1234.00;
strcpy_s(customers[@].address, 20, "The White House");

strcpy_s(customers[1].name, 20, "Eric Smith");
customers[1].accountNumber = 102;
customers[1l].balance = 1100.00;
strcpy_s(customers[1l].address, 20, "Dublin Castle");

displayCustomers(customers, 2);

void displayCustomers(customer custList[], int numCust) {
for (int 1 = 9; i < numCust;i++) {
printf("\n------ Customer %d ----- Py CAETY) ;
printf("\n%20s\n%20d\n%20.21f\n%20s\n", custList[i].name, custList[i].accountNumber,
custList[i].balance, custList[i].address);

Structs and Functions

Microsoft Visual Studio Debug Console

Customer 1
Bobby Smith
101
1234.00
The White House

Customer 2
Eric Smith
102
1100.00
Dublin Castle

EXAMPLE PROBLEM

L
Library Software

- Write program to store books in a library:

- A book should be represented as a structure with:
- Author.
- Title.
- Yealr.
- Value.

- Create a global array to store each of the books in the
library.

- Create a function to add a book to the library.
- Create another function to display the full library.

L
Library Software

- Go to C program solution.

L
Library Software

#include <stdio.h>
#include <string.h>

typedef struct {
char title[20];
float value;

int year;
char author[20];
} book;

void displayLibrary();
void addBook(char title [], char author [], int year, float value);

book library[10];
int numBooks=0;

void main(){
printf(“Library C Program\n");

addBook ("Harry Potter", "JK Rowling", 1997, 30000);
addBook("Lord of the rings", "JRR Tolkien", 1954, 5000);

displayLibrary();

L
Library Software

void displayLibrary() {
for (int i = @; i < numBooks; i++) {
printf("\n------ Book %d ----- "y, (1i41));
printf("\nTitle: %2@s\nAuthor: %20s\nYear: %20d\nvalue: %20.2f\n", library[i].title, library[i].author,

library[i].year, library[i].value);

void addBook(char title[], char author[], int year, float value) {
if (numBooks<1@) {
strcpy_s(library[numBooks].title, 20, title);
library[numBooks].value = value;
library[numBooks].year = year;
strcpy_s(library[numBooks].author, 20, author);

numBooks++;
}
else {

puts("library full");
}

Library Software

Microsoft Visual Studio Debug Console

Library C Program

C Program Output:

Harry Potter
JK Rowling
1997
30000.00

Lord of the rings
JRR Tolkien

1954

5000.00

PROGRAMMING

CT103
Week 11a

L
Sign in on Blackboard

- Please sign in on blackboard for CT103.

- | will leave the sign in option open for an hour after the
lecture.

L
Lecture Content

- Last lecture (Week 10Db):

- Structures

- Arrays of structures

- Functions and structures
- Example C program

- Today’s lecture (Week 11a):
- Enumeration
- Sorting
- Example C program

ENUMERATION

L
Enumeration

- We often like to use names for common values rather
than numeric values.

- Definition: Enumeration is a user defined datatype in the
C programming language. It is used to assign names to
values. This makes the program more readable.

Enumeration

- For example:

- In an ordering system, status of an order could be:
- Open
+ Closed
- Delivered
- Cancelled

- In an alarm system, the system status could be:
- Read
- Asleep
- Maintenance
- In a traffic system, a light could be:
- Red
- Orange
- Green

Enumeration

- Of course underlying those names would need to be actual values

- For example:

- In an ordering system, status of an order could be:
- Open =101
- Closed = 102
- Delivered = 103
+ Cancelled = 104
- In an alarm system, the system status could be:
- Ready =0
- Asleep=1
+ Maintenance = 2
- In a traffic system, a light could be:
- Red=1
- Orange =2
- Green=3

L
Enumeration

- How do we use enumeration in C?

- We use the keyword: enum

Enumeration

- lllustration of enum:

Enum in C

tate=1 state=6

|

enum days-of-week { Sun, Mon, Tue, Wed, Thu, Fri, Sat };
N \ / / / 7
\, \ ‘ // /,/ ’//

\ \ /
\ \ / / /’ %
\\ \ ,/ / 1 o
AN A
W e

/

\

N\
\ \

r/
/
/
/ /

Wiy

Enumerators
I nstant gparated t

Image from: geeksforgeeks.org

Enumeration Example

- Let’'s say we want to know the status of an important system, and it
can be in one of the following 4 states:

- { IDLE, BUSY, ASLEEP, MAINTENANCE };

- We just define an enumeration that contains those values:
- enum STATUS { IDLE, BUSY, ASLEEP, MAINTENANCE };

- Underneath, the enum values are associated with specific integer
values, by default starting at O

- Soin fact IDLE = 0, BUSY =1, ASLEEP = 2 and MAINTENANCE = 3

- Since they are actually integers we can use them in if statements,
switch statements etc.

Enumeration C Example Part 1

#include <stdio.h>
#include <stdlib.h>
#include <time.h>

int getSystemStatus();
void wait(int delay);

enum STATUS { IDLE, BUSY, ASLEEP, MAINTENANCE };

void main(){

while (1){
switch (getSystemStatus()){
case IDLE:
puts(“"System Idle - can accept input");
break;

case BUSY:
puts(“"System Busy - wait...");
break;
case ASLEEP:
puts(“System Asleep - initate wakeup procedure");
break;
case MAINTENANCE:
puts(”System in Maintenance mode - wait until finished");
break;

¥
wait(1e);

Enumeration C Example Part 2

int getSystemStatus(){
return rand() % 4;

}

void wait(int delay)

{
long t = time(NULL);
long tplus = t + delay;
long tplusone = t + 1;

while (t < tplus){
if (t == tplusone){
printf(".");
tplusone = t + 1;
}
t = time(NULL);

Enumeration C Example Output

#include <stdio.h> int getSystemStatus(){
#include <stdlib.h> return rand() % 4;
#include <time.h> }

int getSystemStatus(); void wait(int delay)
void wait(int delay); {

long t = time(NULL);

enum STATUS { IDLE, BUSY, ASLEEP, MAINTENANCE }; long tplus = t + delay;
long tplusone = t + 1;

void main(){
while (t < tplus){

while (1){ :
switch (getSystemStatus()){ if (t == tplusone){
case IDLE: printf(".");

puts(“System Idle - can accept input"); tplusone =t + 1;

brea k B Ch\Users\Karl\source\repos\Project\Debug\Projectl.exe

case BUSY .

pu“(System Busy - wait...

ey -:-.....5ystem in Maintenance mode - wait until finished
case ASLE . .System Asleep - initate wakeup procedure

puts(c

break . .System Idle - can accept input
case MAIN . .System Busy - wait...

Ei:i . .System Idle - can accept input

} .System Asleep - initate wakeup procedure
wait(1e);

L
Enumeration Part 1 Using Typedef

typedef enum { IDLE, BUSY, ASLEEP, MAINTENANCE } STATUS;

STATUS getSystemStatus();
void wait(int delay);

void main(){

STATUS systemStatus;
systemStatus = getSystemStatus();

while (1){

switch (getSystemStatus()){

case IDLE:
puts("System Idle - can accept input");
break;

case BUSY:
puts("System Busy - wait...");
break;

case ASLEEP:
puts("System Asleep - initate wakeup procedure”);
break;

case MAINTENANCE:
puts("System in Maintenance mode - wait until finished");
break;

}
wait(3);

STATUS getSystemStatus(){
return (STATUS)(rand() % 4);

Enumeration Using Typedef Output

typedef enum { IDLE, BUSY, ASLEEP, MAINTENANCE } STATUS;

STATUS getSystemStatus();
void wait(int delay);

B8 C\Users\Karl\source\repos\Project\Debug\Project].exe

System in Maintenance mode - wait until finished
.System Asleep - initate wakeup procedure

void main(){

STATUS systemStatus; .System Idle - can accept input
systemStatus = getSystemStatus(); SyS'tem Busy _ Wait
while (1){ .System Idle - can accept input
switch (getSystemStatus()){ . .
cace TDLE: .System Asleep - initate wakeup procedure
?“fsﬁ“mﬂﬂe'“”a'.System Asleep - initate wakeup procedure
reak; c o
case BUSY: .System Asleep - 1nitate wakeup procedure
puts("System Busy - wait.|
break;

case ASLEEP:
puts("System Asleep - initorew
break;

case MAINTENANCE:
puts("System in Maintenance mode - wait until finished");
break;

}
wait(3);

}

STATUS getSystemStatus(){
return (STATUS)(rand() % 4);

}

SORTING

Sorting

- Definition: Sorting algorithms are algorithms that put
items In the correct order.

- Most commonly, the order is based on numeric value.

- This can be from smallest to largest, or vice versa.

e E
Sorting

- Why do we need sorting algorithms?

- We need sorting algorithms because data are often not in
any order. Putting the data in correct order is needed for
many applications.

- There are many situations that would require data to be
sorted into the correct order!

Sorting Example

- A customer services department of a business might have
50 customer complaints to deal with on a given day.

- The system stores these complaints alphabetically,
however you want to respond to the complaints that have
been waiting for a response the longest.

3

Sorting Example

- A customer services department of a business might have
50 customer complaints to deal with on a given day.

- Complaint wait times (hours): [50,2,3,64, ..., 14,3,61]

- How do we sort [50,2,3,64, ..., 14,3,61] so that it is in the
correct order?
- [88,85,72,64, ..., 3,3,2,2,1]

- We use a sorting algorithm!

L
Sorting Algorithms

- There are many different sorting algorithms:
- Bubble sort.
- Merge sort.
- Insertion sort.
- Quick sort.
- Selection sort.

D
Bubble Sort

- Straightforward concept — comparing elements to make
the largest move to the right in an array

- Largest elements in array ‘bubble’ to the top (right)

- Not the most efficient sort algorithm, but OK for small
arrays and easy to understand

- Well documented, e.qg.

- https://www.programmingsimplified.com/c/source-code/c-program-
bubble-sort

- https://www.youtube.com/watch?v=nmhjrl-awW5o

- https://www.w3schools.in/data-structures-tutorial/sorting-
techniques/bubble-sort-algorithm/

- https://www.geeksforgeeks.org/bubble-sort/

https://www.programmingsimplified.com/c/source-code/c-program-bubble-sort
https://www.youtube.com/watch?v=nmhjrI-aW5o
https://www.w3schools.in/data-structures-tutorial/sorting-techniques/bubble-sort-algorithm/
https://www.geeksforgeeks.org/bubble-sort/

Bubble Sort lllustration

- On Wednesday, we will implement bubble sort in C.

Bubble sort

Array 6 3 0 ‘ 5 1

Graphic from: programmingsimplified.com

EXAMPLE PROBLEM

L
Employment Software

- Write program to record hours worked for each day of the week.

- Create an enum to represent each day of the week.

- Ask the user how many hours were worked each day of the week.
- Print the total hours worked to the screen.

- Write a function to check if the employee should be paid for over time,
l.e. did they work more than 40 hours? Display a message to the
screen if they should be paid for over time.

L
Employment Software

- Go to C program solution.

L
Employment Software

#finclude <stdio.h>
#include <stdlib.h>
#finclude <time.h>

typedef enum { Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday } DAY;
char days[7][1e] = { "Monday"”, "Tuesday"”, "Wednesday", "Thursday"”, "Friday", "Saturday”, "Sunday" };

void overTimeCheck(int hours);

void main(){
DAY today;
int totalHours = @, todayHours = 9;

for (today = Monday; today <= Sunday; today = (DAY)((int)(today)+1)){
printf("Enter hours for %s: ", days[today]);
scanf_s("%d", &todayHours);
totalHours += todayHours;

printf("\nTotal weekly hours are %d\n", totalHours);
overTimeCheck(totalHours);

L
Employment Software

void overTimeCheck(int hours) {
if (hours>40) {
printf("Pay employee over time.\n");

}
else {

printf("No over time.\n");
}

Employment Software

C Program Output:

hours for Monday: 8
hours for Tuesday: 8
hours for Wednesday: 8
hours for Thursday: 8
hours for Friday: 8

hours for Saturday: 8
hours for Sunday: ©

weekly hours are 48
Pay employee over time.

PROGRAMMING

CT103
Week 12a (11Db)

L
Sign in on Blackboard

- Please sign in on blackboard for CT103.

- | will leave the sign in option open for an hour after the
lecture.

L
Lecture Content

- Last lecture (Week 11a):
- Enumeration
- Sorting
- Example C program

- Today’s lecture (Week 12a):
- Bubble sort
- Sorting
- Example C program

BUBBLE SORT

L
Bubble Sort Recap

- Straightforward concept — comparing elements to make
the largest move to the right in an array

- Largest elements in array ‘bubble’ to the top (right)

- Not the most efficient sort algorithm, but OK for small
arrays and easy to understand

- Well documented, e.g.

- https://www.programmingsimplified.com/c/source-code/c-program-
bubble-sort

- https://www.youtube.com/watch?v=nmhjrl-awW5o

- https://www.w3schools.in/data-structures-tutorial/sorting-
techniques/bubble-sort-algorithm/

- https://www.geeksforgeeks.org/bubble-sort/

https://www.programmingsimplified.com/c/source-code/c-program-bubble-sort
https://www.youtube.com/watch?v=nmhjrI-aW5o
https://www.w3schools.in/data-structures-tutorial/sorting-techniques/bubble-sort-algorithm/
https://www.geeksforgeeks.org/bubble-sort/

Start by comparing first two elements

Finish here
|

I
|
97143526|
I
!

Incorrect order, so need to swap

Finish here
|

I
|
143526|
I
!

L1

Swap them

Finish here

L1

Now compare next two elements

Finish here
|

I
|
79143526|
I
!

L1

Incorrect order

Finish here

L1

So swap them

Finish here

L1

Compare next two elements

Finish here
|

I
|
71943526|
I
!

L1

Incorrect order

Finish here
|

I
|
3/ 5|2 |6 |
I
!

Swap them

Finish here

-

I
I
I
6 |
I
!

Compare next two elements

Finish here
|

I
|
71493526|
I
!

L1

Incorrect order

Finish here
|

I
|
5|2 |6 |
I
!

Swap them

Finish here

I
I
|

26|
I
!

Compare next two elements

Finish here
|

I
|
71439526|
I
!

Incorrect order

Finish here
|

I
|
26|
I
!

Swap them

Finish here

I
I
I
6 |
I
!

Compare next two elements

Finish here
|

I
|
71435926|
I
!

Incorrect order

Finish here
|
|
|

N

Swap them

Finish here

Compare next two elements

Finish here
|

I
|
71435296|
I
!

L1

Incorrect order

Finish here
|
|
|

L1

Swap them

Finish here

Go back and start at first element — don’t need to include last element

Finish here
|

I
|

7143526|9
I
!

L1

Incorrect order

Finish here
|

I
|

43526|9
I
!

L1

swap

Finish here
|

Compare next two elements

Finish here
|

I
|

1743526|9
I
!

L1

End so on until largest bubbles to the end

Finish here
|

I
I

1435267'9
I
!

Now go back and start again at first element, finishing one place earlier

Finish here
|

I
|
143526|79
I
!

Bubble Sort lllustration

- We saw this illustration of bubble sort on Monday.

Bubble sort

Array 6 3 0 ‘ 5 1

Graphic from: programmingsimplified.com

BUBBLE SORT IN C

D
Bubble Sort

- What will our program need?
Initialize array, indices, etc.

Outer loop to set stopping point of each pass.

Inner loop to do each pass. 7/1/4/3|5/2 /69

If statement to compare values

D
Bubble Sort Pseudocode

1. Initialize array, indices, etc.

2. For p =0 up to array length.

3. For i =0 up to array length — p -1

4, If (item at position i > item at position i + 1)

5. Swap items

D
Bubble Sortin C

void main() {
int iarray[5] = { 10,2,9,7,1 };
int temp;
int len = 5, pass, i, Jj;

// loop to control number of passes
for (pass = 0; pass < len; pass++){
//each pass we do one comparison less, as the highest number bubbles to the
// right / top
for (i = 0; 1 < len - pass - 1; i++){
// compare adjacent elements and swap them if first element is greater
// than second element
if (iarray[i] > iarray[i + 1]){
temp = iarray[i];
iarray[i] = iarray[i + 1];
iarray[i + 1] = temp;
}
// print out the array after each comparison
for (j = 0; j < len; j++) {
printf("%3d", iarray[j]);

}
printf("\n");

Bubble Sort in C Output

void main() {
int iarray[5] = { 10,2,9,7,1 };

i nt temp; B Microsoft Visual Studio Debug Conscle

int len = 5, pass, i, j;

N N
=
)

// loop to control number of passes
for (pass = 0; pass < len; pass++){
//each pass we do one comparison less, as the
// right / top
for (i =0; i < len - pass - 1; i++){
// compare adjacent elements and swap the
// than second element
if (iarray[i] > iarray[i + 1]){
temp = iarray[i];
iarray[i] = iarray[i + 1];
iarray[i + 1] = temp;
}
// print out the array after each compari
for (j = 0; j < len; j++) {
printf("%3d", iarray[j]);

N P NN OOV WO

p
p
p
p
p
p
p
1

NNEFEPE RO NN

}
printf("\n");

EXAMPLE PROBLEM

D
Card Deck Simulator

- Write software to simulate a deck of cards.

- Each card should be represented as a structure with a:
- Face value character, e.g. A, 2, 3, 4...
- Suit defined using an enum.
- Integer card number.

- Write the following functions:
- FillDeck() — This should fill up a global array of cards with 52 cards.
- Shuffle() — This should put the cards in a random order.
- printDeck() — This should display the deck of cards to the screen.
- sortDeck() — This should sort the deck of cards into the order:
- H,D,S,C, and within each suit sort A, 2, 3,4..., J, Q, K.
- Test your code by creating a deck of cards, print it, shuffle it, print it,
sort it, then print it again.

D
Card Deck Simulator

- Go to C program solution.

Card Deck Simulator

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <time.h>

typedef enum {hearts, diamonds, spades, clubs} SUITS;
char suitString[4][15] = { "hearts"”, "diamonds"”, "spades"”, "clubs"};

typedef struct {
char face;
SUITS suit;
int card_number;
} card;

card deck[52];

void fillDeck();
void shuffle();

void printDeck();
void sortDeck();

Card Deck Simulator

void main()

{
fillDeck(deck);

puts(“Fresh Deck:");
printDeck(deck);
shuffle(deck);

puts("Shuffled Deck:");
printDeck(deck);

sortDeck(deck);

puts("Sorted Deck:");
printDeck(deck);

Card Deck Simulator

void fillDeck(){
int 1, j;
int icard = 9;

char _Faces[13] = { 'A"'2""3',I4I,ISI’IGI,I7I,I8I,I9I,IXIJIJ'J'Q'J'K' };

for (1 = 0; 1 < 4; i++){
for (j = 0; j < 13; j++){
deck[icard].suit = (SUITS)i;
deck[icard].face = faces[j];
deck[icard].card _number = icard;

icard++;

D
Card Deck Simulator

void shuffle(){

int i // counter
int j; // variable to hold random value between © - 51

card temp; // temporary card for swapping Cards

srand(time(NULL));

// loop through Deck randomly swapping Cards
for (i = @; 1 <= 51; i++){
j = rand() % 52; // pick the index to swap with
temp = deck[i];
deck[i] = deck[j];
deck[j] = temp;

Card Deck Simulator

void printDeck(){
int 1i;
for (i = @; 1 < 52; i++){
if (i % 13 == 0) {
printf("\n");
}
printf("%c %8s, ", deck[i].face, suitString[deck[i].suit]);

}
printf("\n\n");

Card Deck Simulator

void sortDeck(){
int i, pass;
card temp;
for (pass = @; pass < 52; pass++){
for (i = @; 1 < 5l1-pass; i++){
if (deck[i].card number > deck[i + 1].card number){
temp = deck[1i];
deck[i] = deck[i + 1];
deck[i + 1] = temp;

Card Deck Simulator

C Program Output:

Fresh Deck:
hearts, hearts, hearts, hearts, hearts, hearts, hearts, hearts, hearts, hearts, hearts, hearts, hearts,
diamonds, diamonds, diamonds, diamonds, diamonds, diamonds, diamonds, diamonds, diamonds, diamonds, diamonds, diamonds, diamonds,
spades, spades, spades, spades, spades, spades, spades, spades, spades, spades, spades, spades, spades,
clubs, clubs, clubs, clubs, clubs, clubs, clubs, clubs, clubs, clubs, clubs, clubs, clubs,

Shuffled Deck:

hearts, hearts, Q diamonds, clubs, diamonds, clubs, diamonds, spades, diamonds, spades, spades, clubs, spades,

clubs, clubs, K spades, clubs, spades, diamonds, hearts, clubs, spades, spades, hearts, clubs, diamonds,

7
3 spades, clubs, A diamonds, spades, diamonds, hearts, diamonds, hearts, hearts, diamonds, hearts, spades, clubs,
K
J spades, hearts, 7 clubs, hearts, clubs, spades, diamonds, clubs, hearts, diamonds, hearts, diamonds, hearts,

Sorted Deck:

hearts, hearts, hearts, hearts, hearts, hearts, hearts, hearts, hearts, hearts, hearts, hearts, hearts,
diamonds, diamonds, diamonds, diamonds, diamonds, diamonds, diamonds, diamonds, diamonds, diamonds, diamonds, diamonds, diamonds,
spades, spades, spades, spades, spades, spades, spades, spades, spades, spades, spades, spades, spades,
clubs, clubs, clubs, clubs, clubs, clubs, clubs, clubs, clubs, clubs, clubs, clubs, clubs,

PROGRAMMING

CT103
Week 12b

L
Sign in on Blackboard

- Please sign in on blackboard for CT103.

- | will leave the sign in option open for an hour after the
lecture.

L
Lecture Content

- Last lecture (Week 12a):
- Bubble sort
- Sorting
- Example C program

- Today’s lecture (Week 12b):

- Revision

REVISION

L
Data Types

- S0 we can see that we need different variable types, or
data types, to hold information

- The basic set of C data types is:

- int - this holds an integer
e.qg.10 21 456 -6899

- float — holds a floating point number
e.g. 125.467

- double — holds a very big floating point number
e.g. up to 1.797e+308

- char — holds a character
eg. A ‘c ‘%

- Also strings — holds multiple characters
e.g. ‘hello’

Modifiers

- Short, I.e. smaller (less memory)
-Long, I.e. larger (more memory)
- Signed, I.e. positive or negative
- Unsigned, I.e. non negative

- The amount of storage used for each data type
(+ modifier) Is not set in stone

- ANSI has the following rules:
short int <= int <= long int
float <= double <= long double

D
Modulus

- The modulus operator allows us to get the remainder
when doing integer division.

- What is the remainder?

- When dividing two numbers that don’t divide evenly, the remainder
IS what is left over.

- E.g. 9/4 = 2 with a remainder of 1.
c INC: 904 = 1. #include <stdio.h>

void main() {
int num;
printf("Enter a number:");
scanf_s("%d", &num);

i (nund2=-0) { Enter a number:1
printf("Even"); Odd

}

1

: Sep,fintf(..Odd..); Enter a number:4

} Even

L
If Else Statements

- We use an if statement to check if a statement iIs true.
- If it Is false, do what Is Iin the else statement.
- We can also have else if statements for multiple checks.

int temp = 35; // deg C
int rain = ©0; // © = no rain, 1 = railn
if (temp > 18) {
if (!rain) {
printf("bring suncream \n");

}
}

else {
printf("don't bring suncream \n");

}

L
Boolean Operators

- The primary Boolean operators are:

- AND (In C: &&)
-OR(InC:|)
- NOT (InC: 1)

- XOR (In C: 1=)

L
Truth Tables

- The following truth table shows how each of these
operators work.

- In C: 1 =True, 0 = False

NOT AND OR XOR
x | x' X y|xy X y | Xx+ty X y x®y
TT 0O 0] 0 o 0| 0 0 0 0
1|0 o 1|0 o0 1| 1 0 1 1
1 0|0 1 0| 1 1 0 1
1 1|1 1 1| 1 1 1 0

Source: https://introcs.cs.princeton.edu/java/7 1boolean/

Switch Statement

- We also talked about Switch statements.

// switch statement

int num = 11;

switch (num) {

case O:
printf("You have selected 0\n");
break; B Microsoft Visual Studio Debug Console

case 1: You can only select 0 or 1
printf("You have selected 1\n");
break;

default:
printf("You can only select © or 1\n");
break;

While Loops

The while loop will repeat a block of code over and over
while some condition is true.

#include <stdio.h>

. . B8 Microsoft Visual Studio Debug Console
void main() {

int numi; 1=20
int num2; Enter number 1:56
int total; Enter number 2:52
int 1 = @; The sum is 108
while (i<3){
printf("i = %d\n",1); Enter number 1:42
printf("Enter number 1:"); Enter number 2:2
scanf_s("%d", &numl); The sum is 44

printf("Enter number 2:");
scanf_s("%d", &num2);
total = numl + num2;
printf("The sum is %d\n", total); Enter number 2:2

1++; The sum is 35

Enter number 1:33

L
Do While Loops

- You can use a do while loop if you want to ensure that you
execute a block of code at least once.

“Hello” will be printed at a
minimum of once, irrespective

int j = 0; of what value j has.

printf("Hello\n");
J++;
} while (j<4);

L
For Loops

- For loops are useful if we want to repeat some code a
predetermined number of times.

B3 C\Users\Karl\so

int 1i;
for (i = 0; i < 4;i++) {
printf("Hello\n");

}

L
For Loop vs While Loop

- Lets compare the structure of for loops and while loops.

int j = 9;
for (int i = @; 1 < 4;i++) { while (j<4) {
printf("Hello\n"); printf("Hello\n");

J++;

}

For Loop While Loop

L
Arrays

- An array is used to store a collection of data.

- You can think of an array as a collection of variables of
the same type.

[0] (1] [2] [3] [4]
int grades[5] = { 44, 55, 66, 33, 88 };
grades[@] = 48; // easy to access/change any member of an array
printf("second grade is %d\n", grades[1]);

for (int i = 0;i < 5;i++){
printf("%d ",grades[i]); B Microsoft Visual Studio Debug Console —

} second grade is 55

48 55 66 33 88

C:\Users\©063190s\source\repos\tutorial:

riall2.exe (process 17672) exited with «
Press any key to close this window . .

L
2D Arrays

- What if we have 2 dimensional (2D) data that we need to use in our
program? We use 2D arrays!

- How do | loop over elements in a 2D array?
- You need 2 loops:

- Outer loop for the rows

- Inner loop for the columns

- In the first part of this example, we use two loops to set the values in a 4x4
array. We use a separate variable (val) for the values in the array.

int x[4][4];
int r, ¢, val = 9;

// set array values
for (r =0; r < 4; r++){
for (c = 0; c < 4; c++){
x[r][c] = val;
val++;
}
}

L
Strings

- A string Is a collection of characters, I.e. text.

- Specifically, in C strings are defined as an array of
characters.

- You should simply use %s to print strings.

#include <stdio.h>
void main()

{ B8 Microsoft Visu

char myString[] = "Hello"; Hello
printf("%s",myString); -

printf("\n\n");

L
Common String functions

- Strcpy_s() Copy one string to another (seen already)

- Strncpy_s() Copy n characters from one string to another

- Strcat_s() Link together (concatenate) two strings

- Strncat_s() concatenate n characters from two strings

- strcmp() Compare two strings

- strncmp() Compare n characters from two strings

L
Constants

- Constants refer to fixed values that the program cannot
change during its execution. These are also often called
literals.

const float gravity = 9.81,;
printf("Acceleration due to gravity = %0.2f.\n\n", gravity);

B C\Users\Karl\source\repos\CT103_C_Programming!DebughCT103_C_Programming.exe

#Define iIn C Example

#include <stdio.h>
#include "string.h"

B Microsoft Visual Studio Debug Console

Force = 98.10 N.

#define g 9.81

void main() {
float mass = 10;
float F;
F = mass * g;
printf("Force = %0.2f N.\n",F);

L
Character Tests

- This is a library with functions that are useful for testing
and mapping characters.

#include <ctype.h>

- Some useful character testing functions:
- Isalpha
- isdigit
- isupper
- islower
- iIsspace

Arrays of Strings

As with the other 2D arrays we have seen, we can
create a 2D array of characters.

#include <stdio.h>
#include <string.h>
#include <ctype.h>

B3 Microsoft Visual Studio Debug Console

void main() {
char names[10][20] = { "Smith", "Burke", "Geary", "Neville" };
int 1;

puts("Names “);
for (1 =0; 1 < 4; i++){
puts(names[i]);

}

puts("\nFirst Letters ");
for (1 = 0; i < 4; i++){

printf("%c ", names[i][@]);
}

L
Function Template

- All functions have the following template:
type name (parameters){
return;

- Type = data type returned by the function (can be void).
- Name = function name.

- Parameters = data we are giving to the function (can be
empty).

- Return = what data is returned by the function (can also
return nothing).

C Program with Function

C program that creates a
function to read in an
age.

Notice how this function
does not read in any
parameters.

B8 Microsoft Visual Studio Debug Console

Enter your age:
63

My age is 68.

#include <string.h>
#include <ctype.h>
#include <stdio.h> _
Function prototype

int readAge();
ge() Main (we should be

void main() { familiar with this one)

int myAge = readAge();
printf("My age is %d.\n", myAge);

}

int readAge() { Function itself

int age;

puts("Enter your age:");
scanf_s("%d",&age);
return age;

D
Global Variables

- Global variables are variables
that are created outside ofa = =

fLJr](:ti()r] —————————————————________‘———————_,,VOid displayGames();
’ int gamesPlayed = @;

void main() {
displayGames();

- Lets look at the following playGame();

playGame();
example where we declare a plaeene0s
global variable: | ciplaemes0;

void playGame() {
gamesPlayed++;

¥

void displayGames() {
printf("%d games have been played.\n", gamesPlayed);

}

L
Conditional Operator

- The conditional operator is a compact way of representing
decision making statements.

void main()

{
double taxThreshold = 30000.00;

int lowRate = 25, highRate = 45;
double salary;
int rate;

printf("Enter salary: ");
scanf_s("%1f", &salary);

rate = (salary >= taxThreshold) ? highRate : lowRate;

printf("your tax rate is %d%% \n", rate);

D
Maths in C

- Math.h has many useful functions:

- Pow() — raise one number to the power of another.
- Sgrt() — Square root of a number.

- Sin() — returns the sine of an angle in radians.

- Cos() — returns the cosine of an angle in radians.

- Tan() — returns the tangent of an angle in radians.
- Exp() — returns the exponent on a value.

- Log() — returns the natural log of a value.

L
Function like Macros

- Function like macro:

#include <stdio.h>
#include <math.h>

#define MAX(X,y) (x>y?Xx:y)
void main() {

int num = MAX(12,27);
printf("Max of %d and %d is %d.\n", 12, 27,num);

B Microsoft Visual Studio Debug Console

Max of 12 and 27 is 27.

Random Numbers

#include <stdio.h>
#include <stdlib.h>
#include <time.h>

B8 Microsoft Visual Studio Debug Console

void main()

{

int randNum;

// this converts a time structure (special C type) to
// a long integer

// 1t will contain the number of seconds since 1 Jan 1970, ©00:00:00
long 1t = time(NULL);

// srand is the seeding function - gives rand() a starting point
srand(1lt);

for (int i = 0; i < 100; i++){
randNum = rand() % 6 + 1;
printf("%d - %d\n", i, randNum);

L
Structures

- We can use structures to store information in a more
organised manner.

- We declare a structure using the keyword struct, as
follows:

typedef struct customer
{
char name[20];
int accountNumber;
float balance;
char address[20];
} customer;

Enumeration

typedef enum { IDLE, BUSY, ASLEEP, MAINTENANCE } STATUS;

STATUS getSystemStatus();

° Enumeratlon IS a. User void wait(int delay);

defined datatype in void main(){
the C programming Bicerimive RN
Ianguage- while (1){
switch (getSystemStatus()){
case IDLE:
- . puts(fSystem Idle - can accept input");
- It is used to assign ase puoy. |
names to values. i

case ASLEEP:
puts("System Asleep - initate wakeup procedure");

break;
@ ThIS makes the Casepﬂiilz-'l‘-gs‘:l:s;:in Maintenance mode - wait until finished");
break;
program more .
readable. .

STATUS getSystemStatus(){
return (STATUS)(rand() % 4);

¥

Bubble Sort

void main() {
int iarray[5] = { 10,2,9,7,1 };
int temp;
int len = 5, pass, i, Jj;

// loop to control number of passes
for (pass = 0; pass < len; pass++){
//each pass we do one comparison less, as the highest number bubbles to the
// right / top
for (i =0; i < len - pass - 1; i++){
// compare adjacent elements and swap them if first element is greater
// than second element
if (iarray[i] > iarray[i + 1]){
temp = iarray[i];
iarray[i] = iarray[i + 1];
iarray[i + 1] = temp;

B Microsoft Visual Studio Debug Console

=

}

// print out the array after each comparison
for (j = 0; j < len; j++) {
printf("%3d", iarray[j]);

}
printf("\n");

p
P
2
p
p
2
P
p
P
1

N R NNSNWWOWWOWLO
NN R R OSSN NN

Finally

- Have a good Christmas break ©

: Why do programmers
confuse Halloween
with Christmas?

: Because
Oct 31 = Dec 25

PROGRAMMING

CT103
Week 13

L
Sign in on Blackboard

- Please sign in on blackboard for CT103.

- | will leave the sign in option open for an hour after the
lecture.

Course Info Semester 2

- Lectures — 2 hours per week
- Thursday 1pm, IT125.
- Thursday 1pm, MY129 Lecture Theatre 2.
- Attendance will be take at each lecture

- Labs — 2 hours per week
- Tuesday IT106
- Group 1: 2pm-4pm Group 2: 4pm-6pm
- Starts 18" January

- Tutorials
- Wednesday 11lam, AC213
- Attendance not mandatory, only if you need extra help.
- Starts 19" January

L
Lab Groups

- Group 1:
- 2pm to 4pm surnames A to K

- Group 2:

 4pm to 6pm surnames L to Z

D
CT103 Semester 2

- | will be lecturing this course until week 6 of semester 2.

- From week 7 until the end of semester 2, Sam will be your
lecturer.

Lecture Content

- Today’s lecture (Week 13):
- Functions Recap
- Recursion
- Fibonacci Sequence
- Example C Problem
- 3D Animated Donut in C
- C Code in Visual Studio

FUNCTIONS RECAP

L
Functions

- We will be using functions a lot when we learn about
recursion today.

- Let’'s do a quick recap on functions.

L
Functions

- What is a function?

- Definition: A function is a piece of code that can be
called whenever we need to execute that code.

L
Functions

- What is the point of functions?

- Benefits:
- Functions allow us to reuse code, therefore avoid repetition.
- More readable programs.
- Enables us to divide complex problems into simpler ones.
- Easier to make changes to program.

L
Function Template

- All functions have the following template:
type name (parameters){
return;

- Type = data type returned by the function (can be void).

- Name = function name.

- Parameters = data we are giving to the function (can be
empty).

- Return = what data is returned by the function (can also
return nothing).

C Program with Function

C program that creates a
function to read Iin an
age.

Notice how this function
does not read in any
parameters.

B Microsoft Visual Studio Debug Console

Enter your age:
68

My age is 68.

#include <string.h>
#include <ctype.h>
#include <stdio.h> _
Function prototype

int readAge();
ge() Main (we should be

void main() { familiar with this one)

int myAge = readAge();
printf("My age is %d.\n", myAge);

}

int readAge() { Function itself

int age;

puts("Enter your age:");
scanf_s("%d",&age);
return age;

RECURSION

L
What Is Recursion?

- Recursion is a method of problem solving where
problems are solved by reducing them to smaller
problems that resemble the form of the original problem.

- Recursion can make your code more readable.

L
Recursive Functions

- Recursive functions are functions that use recursion.

- A recursive function will call itself within the body of the
function.

- You therefore need to be careful to avoid infinite loops
and running out of memory...

L
Recursive Function Syntax

- What does a recursive function look like?
##tinclude <stdio.h>
void myFunction();

void main() {
myFunction();

}

Function calling itself

void myFunction() {
printf("hi.\n");
myFunction();

L
Recursive Function Syntax

- Be careful running this code.
#include <stdio.h>

- If you run this code it won’t stop void myFunction();
running and printing out “hi.” until void main() {
you run out of memory. myFunction();
}
- You will get a stack overflow error. void myFunction() {

printf("hi.\n");
myFunction();

- How do we fix this? }

L
Recursive Function V2

- WIll this code work?
#tinclude <stdio.h>

void myFunction(int n);

void main() {
myFunction(10);
}

void myFunction(int n) {
for (int 1 =0; 1 < n; i++) { _ _
printf("-"); Function still
} calling itself

printf("hi.\n");
if (n >= 1) {

myFunction(n - 1);
}
}

Recursive Function V2

#include <stdio.h>

Works perfectly!

void myFunction(int n);

Microsoft Visual Studio Debug Console

void main() {
myFunction(10);
}

void myFunction(int n) {
for (int 1 =0; i < n; i++) {
printf("-");
}
printf("hi.\n");
if (n >= 1) {
myFunction(n - 1);

}

L
No Recursion Version

- Recursion is not the only way to write the program we
saw on the previous slide.

- We could write a similar program in C without using
recursion.

L
No Recursion Version

- Will this code produce #include <stdio.h>
the same output? void myFunction(int n);

void main() {

: myFunction(10);
- [t no Ionger recurswely }
calls itself. —_—
void myFunction(int n) {
int m=n;

for (int k = 0; k <= n;k++) {
for (int 1 =0; 1 < m; i++) {

printf("-");
}
printf("hi.\n");
m -=1;

}
}

NoO Recursion Version

Gives the same output. #include <stdio.h>
void myFunction(int n);

Microsoft Visual Studio Debug Console

void main() {
myFunction(10);

}

void myFunction(int n) {
int m=n;
for (int k = 0; k <= n;k++) {
for (int 1 =0; 1 < m; i++) {

printf("-");
}
printf("hi.\n");
m -=1;

L
Side By Side Comparison

void myFunction(int n) { void myFunction(int n) {
for (int i = 0; i < n; i++) { int m=n;
printf("-"); for (int k = 0; k <= n;k++) {
} for (int i =0; i < m; i++) {
printf("hi.\n"); printf("-");
if (n >= 1) { }
myFunction(n - 1); printf("hi.\n");
} m -=1;
} }
}

With Recursion Without Recursion

FIBONACCI SEQUENCE

L
Fibonacci Sequence

- The Fibonacci Sequence is a sequence of numbers in
which each number is the sum of the two preceding
numbers. The sequence starts from O and 1.

- The sequence looks like: 0, 1,1, 2, 3, 5, 8, 13, 21, 34, ...
- The Fibonacci Sequence often appears in nature.

1348

L
Fibonacci Sequence in C

- Next we will look at how you would write a computer
program that will print the Fibonacci Sequence both with
and without using recursion.

L
Fibonacci Sequence with Recursion

#include <stdio.h>
int fibonacci(int n);

void main() {
int maxN = 8;
for (int i = 0; 1 < maxN;i++) {
int ans = fibonacci(i);
printf("%d\n", ans);
}
}

int fibonacci(int n) {
if (n<=1) {
return n;

}

return fibonacci(n - 1) + fibonacci(n - 2);
}

Fibonacci Sequence with Recursion

#include <stdio.h>

B8 Microsoft Visual Studio Debug Console

int fibonacci(int n);

void main() {
int maxN = 8;
for (int 1 = 0; i < maxN;i++) {
int ans = fibonacci(i);
printf("%d\n", ans);
}
}

int fibonacci(int n) {
if (n<=1) {
return n;

}

return fibonacci(n - 1) + fibonacci(n - 2);
}

L
Fibonaccl Seqguence without Recursion

#include <stdio.h>
int fibonacciNoR(int nl, int n2);

void main() {
int maxN = 8;
int curNum = 0;
int prevNum = 0;
for (int i = @; i < maxN; i++) {
if (ic=1) {
curNum = i;
prevNum = curNum - 1;
¥
else {
int tempNum = fibonacciNoR(curNum, prevNum);
prevNum = curNum;
curNum = tempNum;
¥
printf("%d\n", curNum);
}
¥

int fibonacciNoR(int n1, int n2) {
return nl+n2;

}

Fibonaccl Sequence without Recursion

#include <stdio.h>

int fibonacciNoR(int nl, int n2);

. . Microsoft Visual Studio Debug Console
void main() {

int maxN = 8;
int curNum = ©;
int prevNum = 0;
for (int i = @; i < maxN; i++) {
if (i<=1) {
curNum = i;
prevNum = curNum - 1;
}
else {
int tempNum = fibonacciNoR(curNum, prevNum);
prevNum = curNum;
curNum = tempNum;
}
printf("%d\n", curNum);
}
}

int fibonacciNoR(int nl1, int n2) {
return nl+n2;

}

0
1
1
2
3
5
8
1

v

L
Side By Side Comparison

#include <stdio.h>

int fibonacciNoR(int nl, int n2);
#include <stdio.h> void main() {
int maxN = 8;
int curNum = 0;
)) int prevNum = 0;
Vo}d main() { for (int i = @; i < maxN; i++) {
int maxN = 8; if (i<=1) {
for (int i = 0; i < maxN;i++) { curNum = i;
int ans = fibonacci(i); prevNum = curNum - 1;
printf("%d\n", ans); }
} else {
int tempNum = fibonacciNoR(curNum, prevNum);
prevNum = curNum;
curNum = tempNum;

int fibonacci(int n);

}

int fibonacci(int n) {
if (n<=1) { }

, return n; printf("%d\n", curNum);

}

return fibonacci(n - 1) + fibonacci(n - 2); }

int fibonacciNoR(int ni1, int n2) {
return nl+n2;

}

With Recursion Without Recursion

EXAMPLE C PROBLEM

L
Example C Problem

- You must write a C program that searches for a
particular number.

- The target number is set randomly.

- The only information you have is the maximum possible
value that the target number can have.

- Write 2 functions to search for this number. One function
must use recursion, the other must not.

L
C Problem No Recursion Function

int searchNumNoRecur(int n) {
for (int 1 = 0; 1 < n;i++) {
if (i == targetN) {
return i;
}
}
}

L
C Problem Recursion Function

int searchNumRecur(int n) {
if (n== targetN) {
return n;

}

searchNumRecur(n-1);

}

D
C Problem Solution

#include <stdio.h> int searchNumRecur(int n) {
#include <string.h> if (n== targetN) {
#include <stdlib.h> return n;
#tinclude <time.h> }
searchNumRecur(n-1);
int targetN; }
int searchNumRecur(int n);
int searchNumNoRecur(int n); int searchNumNoRecur(int n) {
for (int i = 0; i < n;i++) {
void main() { if (i == targetN) {
srand(time(NULL)); return 1ij;
int maxN = 200; }
targetN = rand() % maxN; }
}
int ansl = searchNumRecur(maxN);

int ans2 = searchNumNoRecur(maxN);

printf("Number %d found using recursion.\n", ansl);
printf("Number %d found without using recursion.\n", ans2);
printf("Target was %d.\n", targetN);

C Problem Solution

#include <stdio.h> int searchNumRecur(int n) {
#include <string.h> if (n== targetN) {
#include <stdlib.h> return n;
#include <time.h> }
searchNumRecur(n-1);
int targetN; }
int searchNumRecur(int n);
int searchNumNoRecur(int n); int searchNumNoRecur(int n) {
for (int i = 0; 1 < n;i++) {
void main() { if (i == targetN) {
srand(time(NULL)); return i;
int maxN = 200; }
targetN = rand() % maxN; }
}

int ansl = searchNumRecur(maxN);

int ans2 = searchNumNoRecur(maxN);

printf("Number %d found using recursion.\n", ansl);
printf("Number %d found without using recursion.\n", ans2);
printf("Target was %d.\n", targetN);

} B8 Microsoft Visual Studio Debug Console

Number 183 found using recursion.
Number 183 found without using recursion.

Target was 183.

L
Limits of Previous Solution

- In the solution on the previous slide, we searched for a
number with a max value of 200.

- Is there a max value at which our solution will fail?

- Lets try and increase this max value.

L
Limits of Previous Solution

- We have now increased the maximum value “maxN” to

void main() {
20,000 . \ srand(time(NULL));
int maxN = 20000;
targetN = rand() % maxN;

int ansl = searchNumRecur(maxN);

int ans2 = searchNumNoRecur(maxN);

printf("Number %d found using recursion.\n", ansl);
printf("Number %d found without using recursion.\n", ans2);
printf("Target was %d.\n", targetN);

}

- This results in too many recursive calls and we get a
stack overflow error...

. . Exception Unhandled = X
1nt S€a r‘ChNumRecu r (1nt n) { Q Unhandled exception at 0x00921FAQ in ProjectT.exe: OxCO0000FD:
if (n== targetN) { Stack overflow (parameters: 0x00000001, 0x01202FC8).
return n;

}

searchNumRecur(n-1);

}

d 4 b Exception Settings 2z

Copy Details | Start Live Share session...

3D SPINNING DONUT USING
DONUT SHAPED C CODE

L
Try Running the Following C Code

k; double sin()
,cos(); main() {float A =
9o, B =90, i, j, z[1760]; char b[
1760]; printf("\x1b[2]"); for (;;
) { memset(b, 32, 1760); memset(z, O, 7040)
; for (j = 9; 6.28 > j; j += 0.07)for (i = 0; 6.28
> 1i; 1 += 0.02) {float c = sin(i), d = cos(j), e =
sin(A), f = sin(j), g = cos(A), h=d + 2, D=1/ (c *

h*e+f*g+5), l=cos(i),m=cos(B),n=s\
in(B),t=c*h*g - f * e;int x=40+30 * D *
(1*h*m -t * n),y = 12 + 15*D*(1* h * n
+t*m), o = x +80%*y, N =8*((f*e -c *d* g
Y *m - c *d *e-f*g- 1 *d*n);if (22 > y &&

y >0 &% x > 0 & 80 > x && D > z[o]) {z[o] = D;;; b[o]=
"L, mmy=RES@UIN > @ 2 N i @]}/ MprrkekkkcekokK | | %/
/***/printf("\x1b[H"); for (k = @; 1761 > k; k++)

putchar(k % 80 ? b[k] : 10); A += 0.04; B +=

Dpn’t forget h_eaders... 0.02; }}/*****##########******* =3~
#include <stdio.h> oo o= I 1 I skokoskoskoskskokokokokokkkkkk | | | = o o _
#include <string.h> ° e T T °
#include <stdlib.h> oy S yES==========] ~-,
#include <tme.h> * /

#include <math.h> * 2 I

#include <windows.h>

C Code Output

$$9$599$995955995%
s####w#*—ﬂ**”*#w#wsss

L
Similar Code (Not Donut Shaped)

void main() { #include <stdio.h>
float A =0, B = 6; #include <string.h>
oY #include <stdlib.h>
float z[1760]; #include <time.h>
char b[1760]; #include <math.h>

printf("\x1b[23"); #include <windows.h>
while(1<2) {

memset(b, 32, 1760);

memset(z, 0, 7040);

for (j = @; j < 6.28; j += 0.07) {

for (i =0; i < 6.28; i += 0.02) {
float ¢ = sin(i);
float d = cos(j);
float e = sin(A);
float £ = sin(j);
float g = cos(A);
float h = d + 2;
float D=1/ (c*h*e+f*g+5);
float 1 = cos(i);
float m = cos(B);
float n = sin(B);
float t =c *h *g - f *e;
int x =40 + 30 *D * (1 *h *m -t * n);
inty =12+ 15 *D * (1 * h * n + t * m);
int 0 = x + 80 * y;

int N=8* ((f*e-c*d*g)*m-c*d*e-Ff*g-1%*d*n);
if (22 >y & y > 0 && x > 0 & 80 > x && D > z[o0]) {

z[o] = D;

b[o] = ".,-~:;=I*#$@"[N > @ ? N : 0];

}

}

printf("\x1b[H");

for (k = @; k < 1761; k++) {
putchar(k % 80 ? b[k] : 10);
A += 0.00004;
B += 0.00002;

}

Sleep(10);

L
Donut Code Source Material

- Code source - Andy Sloane (https://www.alkOn.net/).

- If you want to read more about how this code works, see
the following links:
- https://www.alk0n.net/2011/07/20/donut-math.html

- https://www.dropbox.com/s/79ga2m7p2bnjlga/donut deobfuscate
d.c?dIl=0

- https://www.youtube.com/watch?v=DEgXNfs_HhY

https://www.a1k0n.net/
https://www.a1k0n.net/2011/07/20/donut-math.html
https://www.dropbox.com/s/79ga2m7p2bnj1ga/donut_deobfuscated.c?dl=0
https://www.youtube.com/watch?v=DEqXNfs_HhY

C CODE

D
C Code

- Let’s finish today’s lecture by running some C programs
In Visual Studio.

PROGRAMMING

CT103
Week 14

L
Sign in on Blackboard

- Please sign in on blackboard for CT103.

- | will leave the sign in option open for an hour after the
lecture.

L
Lecture Content

- Today’s lecture (Week 14):

- Reading in data from file
- Writing to a file

- Structured data and files
- Example C programme

FILE INPUT

L
File Input

- Up until now, all of the information/data in our programs
has been either:
- “hard-coded” into the program as a variable by the programmer.
- Passed into the program through the console.

- What if we want to use other information/data in our
program that is stored somewhere else on our
computer?

L
File Input

- What if we want to use other information/data in our

program that is stored somewhere else on our
computer?

- We are able to read in data from other files into our C
program.

- Today we will focus on text (.txt) files.

L
File Access

- How do we access the file?

- There are two types of file access:

- Sequential access:

- You just start at the beginning and read in the data in a continuous
stream.

- Random access:

- You can jump around the file, reading (and writing) data at different
locations.

- We will start with sequential access.

L
File Pointers

- In order to read in our file, we need to use file pointers.

- We mentioned pointers a few times in the course so far,
we will cover pointers in depth in the coming weeks.

- Briefly, pointers are variables that are used to store
addresses of other variables.

L
File Pointers

- What is a file pointer?

- Afile pointer is a pointer used to manage and keep
track of the files being accessed.

- The program needs a physical address to read / write
from. For this we use a FILE pointer.

- We open the file to set up the pointer.

- When we are finished with the file we must close it.

L
File Pointers

- What does a file pointer look like in C?
- YOUu can create one as follows:

FILE* fptr;

- You will need the following library:

#include "stdio.h"

OPENING AFILE

L
Opening a File

- Lets say you have a file on your machine called
‘temp1.txt’.

o temp1 - Notepad

File Edit Format View Help
Here is my file

100% Windows (CRLF) UTF-8

L
Opening a File

- The following C program will open the file ‘temp1.txt'.

#include <stdio.h>
#include <string.h> This will be a different file path for you

#include <stdlib.h>
void main() {
FILE *fptr;
fopen_s(&fptr, "C:\\Users\\Karl\\Desktop\\templ.txt", "r");

if (fptr == NULL){
puts("Error Opening File \n Exiting ")
return;
}
else {
printf("Everything works fine.\n");
char c = fgetc(fptr);

while (c != EOF){
printf("%c", c);‘\5\\5\\5\“‘--\\5\5_ . T
EOF means ‘End Of File

c = fgetc(fptr);
}
}

fclose(fptr);

Opening a File Output

#include <stdio.h>
#include <string.h>
#tinclude <stdlib.h>

void main() {
FILE *fptr;
fopen_s(&fptr, "C:\\Users\\Karl\\Desktop\\templ.txt", "r");

if (fptr == NULL){
puts("Error Opening File \n Exiting ");
return;

}

else {
printf("Everything works fine.\n");
char c¢ = fgetc(fptr);
while (c != EOF){ B8 Microsoft Visual Studio Debug Console

printf("%c", c);

€ = feete(); Everything works fine.
) Here is my file

fclose(fptr);

Opening a File

What if the path name is wrong?

#include <stdio.h>

#include <string.h>
#include <stdlib.h>

Incorrect spelling

void main() {

FILE *fptr;
fopen_s(&fptr, "C:\\Users\\Karl\\Desktopp\\templ.txt", "r");

if (fptr == NULL){
puts("Error Opening File \n Exiting ");
return;

}

else

{ B8 Microsoft Visual Studio Debug Console

printf("Everything works fine.\n");
char c = fgetc(fptr);
while (c¢ != EOF){
printf("%c", c); . .
c = fgetc(fptr); EXltlng *® o o 8 o 8 8 »
}
}

fclose(fptr);
}

Error Opening File

WRITING STRINGS TO A
FILE

L
Writing to a File

- In the previous example, we read data in from a file.

- This is useful, however what if we want to store data
generated my our program in a file?

- We will talk about writing to a file next.

L
Writing to a File

- We used the following line of code to open our file:

fopen_s(&fptr, "C:\\Users\\Karl\\Desktop\\templ.txt", "r");

/ / /

File pointer address File location Read indicator
- The “r" indicates we are opening the file for reading only.

- If we want to write to the file, we need to change this
mode.

L
File Open Modes

- “r": Opens a file for reading.
- The file must exist.

- “w”: Creates an empty file for writing.

- If a file with the same name already exists, its content is erased and the file is
considered as a new empty file.

- “a”: Appends to a file.

- Writing operations, append data at the end of the file. The file is created if it does
not exist.

- “r+”: Opens a file to update both reading and writing.
- The file must exist.

- “‘w+”: Creates an empty file for both reading and writing.
- “a+”: Opens a file for reading and appending.

L
Opening a File to Write

- S0 In order to write to the file, we would need to do
something like the following:

fopen_s(&fptr, "C:\\Users\\Karl\\Desktop\\temp2.txt", "w");

- This will open a file that we can write to.

- However, after we open the file, how do we actually write
to it?

L
Writing to a File

- How do we actually write to the file?

- There are “file” versions of most input/output functions
that you would use to input/output with the
keyboard/screen.

- The difference is that you point the input/output to a
particular physical location via the FILE* pointer.

L
Writingto a File in C

#include <stdio.h> .- .
#include <string.h> Now writing to a file

#include <stdlib.h>

void main() {
FILE *fptr;
printf("\nNow writing to a file.\n");

fopen_s(&fptr, "C:\\Users\\Karl\\Desktop\\temp2.txt", "w");

if (fptr == NULL) {

puts("Error Opening File \n Exiting ")

return;
}
else {

printf("Everything works fine. Now writing to file.\n");

for (int i = 0; i < 5;i++) {
fprintf(fptr,"Line %d of text.\n",(i+l));

} ‘\
; ‘fprintf’ to print to file

fclose(fptr);

Writing to a File in C Output

Microsoft Visual Studio Debug Console

#include <stdio.h> ow writing to a file.

#include <string.h>

SR \ erything works fine. Now writing to file.

void main() {
FILE *fptr;
printf("\nNow writing to a file.\n");

fopen_s(&fptr, "C:\\Users\\Karl\\Desktop\\temp2.txt", "w");

if (fptr == NULL) {
puts("Error Opening File \n Exiting ");
return;
}
else {
printf("Everything works fine. Now writing to file.\n");
for (int i = 0; i < 5;i++) {
fprintf(fptr,"Line %d of text.\n",(i+l));
}

}
fclose(fptr);

L
Writing to a File

- We can also see on the desktop, the new file ‘temp2.txt’:
- Note: Of course you can create files anywhere you like.

o] temp2 - Notepad

File Edit Format View Help
Line 1 of text.
Line 2 of text.
Line 3 of text.
Line 4 of text.
Line 5 of text.

100% Windows (CRLF) UTF-8

L
Read the File Temp?2

- We can read the file we just created, back into memory if
we like.

- Previously we read in each character using ‘fgetc()’

c = fgetc(fptr);

- We can also read in full lines at a time.

L
Read the File Temp?2

- The easiest way to read the data from the file is to use
fgets() to read it line by line.

- With fgets() you have to specify the maximum length
array you're reading into.

- If there are less characters on the line than the length of
the array, that's no problem — fgets() will stop reading
when it gets to the newline character.

- It reads each line as a string.

L
Read the File Temp?2

printf("\nNow readining in the file we just made.\n");

char line[101];
fopen_s(&fptr, "C:\\Users\\Karl\\Desktop\\temp2.txt", "r");

if (fptr == NULL){
puts("Error Opening File \n Exiting "3
return;

}

while (!feof(fptr)){
fgets(line, 101, fptr);
puts(line);

}

fclose(fptr);

Read the File Temp2

printf("\nNow readining in the file we just made.\n");

char line[101];
fopen_s(&fptr, "C:\\Users\\Karl\\Desktop\\temp2.txt", "r");

if (fptr == NULL){

puts("Error Opening File Exiting ");

return;
}

. Now readining in the file we just made.

while (!feof(fptr)){ DU aee

fgets(line, 101, fptr);

puts(line)' Line 2 of text.

b

} i of text.
fclose(fptr);

of text.

of text.

of text.

L
Debugger

- We can use the debugger that we saw in semester 1 to
see the data read from the file:

46
47 I printf("\nNow readining in the file we just made.\n"); Value
48 I (x01423058 {_Placeholder=0x014adf73 }
49 I char line[1e1]; Ox010ffael "Line 1 of text.\n"
50 fopen_s(&fptr, "C:\\Users\\Karl\\Desktop\\temp2.txt", "r");
51
52 = if (fptr == NULL){
53 I puts("Error Opening File \n Exiting ");
= 1 return; “Line 1 of text@
55 }
56 I I
57 I[j—] while (!feof(fptr)){
58 I fgets(line, 101, fptr);
© 59 I puts(line);
60 }
61 I I fclose(fptr);
— | |
Search (Ctrl+E) P~ SearchDepth: 3 -
- S

L
New Lines

“Line 1 of text@

- What if we leave the \n out when writing to the file?

fprintf(fptr,"Line %d of text.",(i+l));

L
New Lines

- What if we leave the \n out when writing to the file?

- We will end up with this:

e
T —] [P pe————
| TEMPL - INOTEPA

File Edit Format View Help
Line 1 of text.Line 2 of text.Line 3 of text.Line 4 of text.Line 5 of text.

Ln 1, Col 1 100% Windows (CRLF) UTF-8

L
fputs

- We used fprintf() to write to a file before.

- We can also use fputs():

fputs("Line of text.\n", fptr);

D
End of File

- We already saw feof(fptr).

- This is a C library function that checks the file stream (via
the FILE™ pointer) for an ‘end-of-file’ indicator.

- This indicator would be set when a function reading from
the file reaches the end of the file (data stream).

- feof () returns false as long as the end-of-file indicator
has not been set.

WRITING DATA TO FILE

L
Write Using Data

- Up until now, we have been writing strings to a file.

- Let’'s now look at how we can write data organised in
structures to a file.

L
Structures Recap

- We can use structures to store information in a more
organised manner.

- We declare a structure using the keyword struct, as
follows:

typedef struct {
char name[20];
int accountNumber;
float balance;
char address[20];
} customer;

L
Write Structured Data to File

typedef struct{

printf("\nExample using structs.\n"); E2;£[109]°
J
int age;
person pl = { "Joan Farrell", 32 }; } person;
person p2 = { "Sabine Delors", 28 }; ’
person p3 = { "Zach Leonard", 21 };

fopen_s(&fptr, "C:\\Users\\Karl\\Desktop\\temp3.txt", "w");

if (fptr == NULL){
puts("Error Opening File \n Exiting);
return;

}

fprintf(fptr, "Name\tAge\n");

fprintf(fptr, "%s\t%d\n", pl.name, pl.age);
fprintf(fptr, "%s\t%d\n", p2.name, p2.age);
fprintf(fptr, "%s\t%d\n", p3.name, p3.age);

fclose(fptr);

Structured Data File

o) temp3 - Notepad

File Edit Format View Help
Name Age

Joan Farrell 32
Sabine Delors 28
Zach Leonard 21

L 100% Windows (CRLF)

L
Read Data Back From File

printf("\nReading strucuted data from file.\n");

char firstName[50], surname[50];
int age;
fopen_s(&fptr, "C:\\Users\\Karl\\Desktop\\temp3.txt", "r");

if (fptr == NULL){
puts("Error Opening File \n Exiting ");
return;

}

fgets(line, 101, fptr);
printf("Line is: %s\n",line);

for (int i = 0; 1 < 3; i++) {
fscanf_s(fptr, "%s ", firstName, 50);
fscanf_s(fptr, "%s", surname, 50);
fscanf_s(fptr, "\t%d\n", &age);
printf("firstName is: %s\n", firstName);
printf("surname is: %s\n", surname);
printf("Age is: %d\n", age);

}

fclose(fptr);

Read Data Back From File

printf("\nReading strucuted data from file.\n");

char firstName[50], surname[50];
int age;
fopen_s(&fptr, "C:\\Users\\Karl\\Desktop\\temp3.txt", "r");

if (fptr == NULL){
puts("Error Opening File Exiting ");
return;

} Reading strucuted data from file.

fgets(line, 101, fptr); Line 1s: Name Age

printf("Line is: %s\n",line); . .
firstName is: Joan

for (int i = @; i < 3; i++) { surname is: Farrell
fscanf_s(fptr, "%s ", firstName, 50); Age is: 32
fscanf_s(fptr, "%s", surname, 50); firstName is: Sabine
fscanf_s(fptr, "\tkd\n", &age); surname is: Delors

printf("firstName is: %s , firstName);
printf("surname is: %s , surname);
printf("Age is: %d\n", age);

Age is: 28
firstName is: Zach
surname is: Leonard
Age is: 21

1

}

fclose(fptr);

L
Reading Multiple Data Types
- Awkward to read multiple data types.
- Have to use fixes like we saw in the previous example:

fscanf_s(fptr, "%s ", firstName, 50);
fscanf_s(fptr, "%s", surname, 50);
fscanf_s(fptr, "\t%d\n", &age);

- We will see later on how we can tackle this using the
strtok function to parse strings.

EXAMPLE C PROBLEM

L
Example C Problem

- You are writing software to keep track of vehicles for a
mechanic.

- Write a struct to organise the information about each car
In your program: make, model, price, etc.

- A file called ‘carsNew.txt’ exists and is used to store all
vehicle information.

- Write a function to read In the data stored in this text file.

- Write another function to add a new vehicle to this text
file.

- Test both functions.

L
Text File

- Here is our text file stored on the desktop:

M| carsNew - Notepad

File Edit Format View Help

Toyota Corolla 1.4 1201234 2012 leeece 5Soeee
Toyota Corolla 1.4 1201234 2012 leeece 5Soeee
Toyota Corolla 1.4 1201234 2012 leeece 5Soeee
Mercedes c22e 2.20 181G555 2015 45867 23500.000000
Mercedes c22e 2.20 181G555 2015 45867 23500.000000
Mercedes c22e 2.20 181G555 2015 45867 23500.000000

Mercedes c22e 2.20 181G555 2015 45867 23500.000000

L
Structure

- Here is our structure and function prototypes:

#include <stdio.h>
#include "string.h"

typedef struct{
char make[41], model[41];
float litres;
char reg[41];
int year, mileage;
float price;
} car;

void readCars(FILE* fptr);
void writeCar(FILE* fptr, car c);

L
Functions

- Here are our functions:

void readCars(FILE* fptr) {

car c;

while (!feof(fptr)){
fscanf_s(fptr, "%s\t", c.make, 41);
fscanf_s(fptr, "%s\t", c.model, 41);
fscanf_s(fptr, "%f\t", &c.litres);
fscanf_s(fptr, "%s\t", c.reg, 41);
fscanf_s(fptr, "%d\t", &c.year);
fscanf_s(fptr, "%d\t", &c.mileage);
fscanf s(fptr, "%f\t", &c.price);
printf("%s\ths\t%1f\t%s\t%d\t%d\t%1f\n", c.make, c.model, c.litres, c.reg, c.year, c.mileage, c.price);

}

void writeCar(FILE* fptr, car c){
fprintf(fptr, "%s\ths\t%.21f\t%s\thd\t%d\t%1f\n", c.make, c.model, c.litres, c.reg, c.year, c.mileage, c.price);

}

D
Main

- Here Is main:

void main() {
char fileName[] = "C:\\Users\\Karl\\Desktop\\carsNew.txt";
FILE* fptr;
fopen_s(&fptr, fileName, "a");
car newCar = { "Mercedes", "C220", 2.2, "181G555", 2015, 45867, 23500.00 };
car car2;

if (fptr == NULL) {

puts("Error Opening File \n Exiting ");
return;
}
else {
writeCar(fptr, newCar);
fclose(fptr);
}

fopen_s(&fptr, fileName, "r");
readCars(fptr);

fclose(fptr);

C Program Output

Microsoft Visual Studio Debug Console

Toyota Corolla 1.400000 12D1234 2012 100000 5000.000000
Toyota Corolla 1.400000 12D1234 2012 100000 5000.000000
Toyota Corolla 1.400000 12D1234 2012 100000 5000.000000
Mercedes C220 2.200000 181G555 2015 45867 23500.000000

Mercedes C220 2.200000 181G555 2015 45867 23500.000000
Mercedes C220 2.200000 181G555 2015 45867 23500.000000
Mercedes C220 2.200000 181G555 2015 45867 23500.000000
Mercedes C220 2.200000 181G555 2015 45867 23500.000000

L
Updated Text File

- Here is our updated text file:

| carshew - Notepad

File Edit Format View Help

Toyota corolla 1.4 12D1234 2812 100000 5600
Toyota Corolla 1.4 12D1234 2812 190000 5000
Toyota Corolla 1.4 1201234 2012 leo@ea 5000
Mercedes c220 2.20 181G555 2015 45867 23500.000000
Mercedes c220 2.20 181G555 2015 45867 23500.000000
Mercedes c220 2.20 181G555 2015 45867 23500.000000
Mercedes c220 2.20 181G555 2015 45867 235€0.000000

j] carsNew - Notepad
File Edit Format View Help

I'I'O}'O‘ta Corolla 1.4 1201234 212 leeeee 5eee

Extra Car Toyota Corolla 1.4 1201234 212 leeeee 5eee
Toyota Corolla 1.4 1201234 212 leeeee 5eee
Mercedes c22e 2.20 181G555 215 A5867 23500.000000
Mercedes c22e 2.20 181G555 215 A5867 23500.000000
Mercedes c22e 2.20 181G555 215 A5867 23500.000000
Mercedes c22e 2.20 181G555 215 A5867 23500.000000

Mercedes c22e 2.20 181G555 215 A5867 23500.000000

C CODE

D
C Code

- Let’s finish today’s lecture by running some C programs
In Visual Studio.

PROGRAMMING

CT103
Week 15

L
Sign in on Blackboard

- Please sign in on blackboard for CT103.

- | will leave the sign in option open for an hour after the
lecture.

L
Lecture Content

- Today’s lecture (Week 15):

- More file reading/writing
- Updating files

- Problems reading in files
- Example C programme

FILE READING/WRITING

L
File Open Modes

- “r": Opens a file for reading.
- The file must exist.

- “w”: Creates an empty file for writing.

- If a file with the same name already exists, its content is erased and the file is
considered as a new empty file.

- “a”: Appends to a file.

- Writing operations, append data at the end of the file. The file is created if it does
not exist.

- “r+”: Opens a file to update both reading and writing.
- The file must exist.

- “‘w+”: Creates an empty file for both reading and writing.
- “a+”: Opens a file for reading and appending.

Writing to a File in C Output

Microsoft Visual Studio Debug Console

#include <stdio.h> ow writing to a file.

#include <string.h>

SR \ erything works fine. Now writing to file.

void main() {
FILE *fptr;
printf("\nNow writing to a file.\n");

fopen_s(&fptr, "C:\\Users\\Karl\\Desktop\\temp2.txt", "w");

if (fptr == NULL) {
puts("Error Opening File \n Exiting ");
return;
}
else {
printf("Everything works fine. Now writing to file.\n");
for (int i = 0; i < 5;i++) {
fprintf(fptr,"Line %d of text.\n",(i+l));
}

}
fclose(fptr);

Read Data From File

printf("\nReading strucuted data from file.

FILE *fptr;

char firstName[50], surname[50];

int age;

fopen_s(&fptr, "C:\\Users

if (fptr == NULL){
puts("Error Opening File
return;

}

fgets(line, 101, fptr);
printf("Line is: %s\n",line);

for (int 1 = 0; i < 3; i++) {
fscanf_s(fptr, "%s ", firstName, 50);
fscanf_s(fptr, "%s", surname, 50);
fscanf_s(fptr, "\t%d\n", &age);
printf("firstName is: %s\n", firstName);
printf("surname is: %s , surname);
printf("Age is: %d\n", age);

1

}

fclose(fptr);

Exiting

Karl\\Desktop\\temp3.txt", "r");

Reading strucuted data from file.
Line is: Name Age

Joan
Farrell

firstName is:
surname 1is:
Age is: 32

firstName is: Sabine
surname 1is: Delors
Age is: 28

firstName is: Zach
surname is: Leonard
Age is: 21

UPDATING AFILE

L
Updating a File

- Sequential access is fairly straightforward.
- You can read or write from the beginning or end of the file

- Sequential Access is not usually used to update records in place.
- Why?

- Note: Updating records ‘in place’ refers to reading the records, processing
them, and writing them back to their original position without destroying
other records.

Updating a File

- Why is Sequential Access not usually used to update records in place?

- Imagine the following line in a text file:
- 300 White 0.00

- How would we replace ‘White’ with ‘Washington’ so it looks like the following?
- 300 Washington 0.00

- We would find it very difficult to avoid overwriting the 0.00 using the formatted
input / output because the fields in each record will vary in size.

- Normally if we want to change records in a sequential access file we write out
all records again to a new file.

L
Updating a File Example

- Lets say you had the following code:

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

void main() {
FILE* fptr;
fopen_s(&fptr, "C:\\Users\\Karl\\Desktop\\temp4.txt", "w+");

if (fptr != NULL) {
fputs("This is the text in my file.", fptr);
fclose(fptr);

L
Updating a File Example

- This code will run and produce a text file called ‘temp4.txt'.

E'I temp4 - Notepad

File Edit Format View Help
This is the text in my file.

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

void main()
FILE* fptr;
fopen_s(&Fptr, "C:\\Users\\Karl\\Desktop\\tempd.txt", "w+");

if (fptr != NULL) {
fputs("This is the text in my file.", fptr);
fclose(fptr);

L
Updating a File Example

- What if we wanted to change the text at some point in the middle of the text
file?

& temp4 - Notepad - O *

File Edit Format View Help
This is the text in my file.

- We could use a function called fseek().

Updating a File Example

- Lets see how we use fseek() to update the file:

#include <stdio.h>

#include <string.h>
#include <stdlib.h> Now r+

void main() {
FILE* fptr;
fopen_s(&fptr, "C:\\Users\\Karl\\Desktop\\temp4.txt", "r+");

if (fptr != NULL) {
fseek(fptr, 7, SEEK SET);

fputs(" new text in my file.", fptr);
fclose(fptr);

}

- Note: We will explain fseek() in the coming slides.

L
Updating a File Example

- This code will run and alter the text file‘temp4.txt'.

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

void main() {
FILE* fptr;
fopen_s(&Ffptr, "C:\\Users\\Karl\\Desktop\\temp4.txt", "r+");

if (fptr != NULL) {
fseek(fptr, 7, SEEK_SET);

fputs(" new text in my file.", fptr);
fclose(fptr);

}
Temp4.txt before running above code Tempd4.txt after running above code

& temp4 - Notepad _ | temp4 - Notepad

File Edit Format View Help File Edit Format View Help
This is the text in my file. This is new text in my file.

FSEEK

L
fseek()

- We saw in the previous example how fseek() can be
used to adjust a portion of the data in a file.

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

void main() {
FILE* fptr;
fopen_s(&Fptr, "C:\\Users\\Karl\\Desktop\\temp4.txt", "r+");

if (fptr != NULL) {
fseek(fptr, 7, SEEK SET);
fputs(" new text in my file.", fptr);
fclose(fptr);

}
}

- How does it work?

L
fseek()

- What Is fseek()?
- We use fseek() to move around in a file

- fseek() moves the file pointer so that you can read and
write at different places.

L
fseek()

- fseek() has the following function signature:

- fseek(filePtr, offset, origin)

- filePtr is the file pointer.

- offset (a long int) is the number of bytes to skip forwards or
backwards in the file.

- It can be positive or negative.

- origin tells fseek() from where to start ‘seeking’.
- We need to select a value for origin.

L
Possible Origin Values

- You can use any of the three values for origin when
calling fseek().

T

SEEK SET Beginning of file

SEEK CUR Current position in file

SEEK_END End of file

L
fseek()

- Once you position the file pointer with fseek() you can
use the file input and output functions to read from and
write to the file.

- Using SEEK_END will act as append if you are writing to
the file.

- If you position the file pointer over existing data, and
then write new data, it will replace the existing data.

L
fseek() example 2

- What if we start change the value of the offset from 7?

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

void main() {
FILE* fptr;
fopen_s(&fptr, "C:\\Users\\Karl\\Desktop\\temp4.txt", "r+");

. Now 3
if (fptr != NULL Zré”//,,,,———”””””//’
fseek(fptr, 3,“SEEK_SET);

fputs("MORE TEXT", fptr);
fclose(fptr);

L
fseek() example 2

- What if we start change the value of the offset from 7?

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

void main() {
FILE* fptr;
fopen_s(&Ffptr, "C:\\Users\\Karl\\Desktop\\temp4.txt", "r+");

if (fptr != NULL) {
fseek(fptr, 3, SEEK_SET);
fputs("MORE TEXT", fptr);
fclose(fptr);
}
}

Temp4.txt before running above code Tempd4.txt after running above code

| temp4 - Notepad E temp4 - Notepad

File Edit Format View Help File Edit Format View Help
This is new text in my file. ThiMORE TEXTtext in my file.

L
fseek() example 3

- What if we want the origin to be at the end of the file?

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

void main() {
FILE* fptr;
fopen_s(&fptr, "C:\\Users\\Karl\\Desktop\\temp4.txt", "r+");

if (fptr 1= NULL) {) New offset
fseek(fptr, -5, SEEK_END); and origin
fputs("fantastic text file!", fptr);
fclose(fptr);

}

L
fseek() example 3

- What if we want the origin to be at the end of the file?

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

void main() {
FILE* fptr;
fopen_s(&fptr, "C:\\Users\\Karl\\Desktop\\temp4.txt", "r+");
if (fptr !'= NULL) {
fseek(fptr, -5, SEEK_END);

fputs("fantastic text file!", fptr);
fclose(fptr);

}

Temp4.txt before running above code Tempd4.txt after running above code

E temp4 - Notepad

E temp4 - Notepad

File Edit Format View Help

ThiMORE TEXTtext in my file. File Edit Format View Help

ThiMORE TEXTtext in my fantastic text file!

fseek() example 4

- Does fseek() work if my text file has multiple lines?

- Lets use the following file ‘temp5.txt”:

3 temp5 - Notepad
File Edit Format View Help

Toyota
BMW
Opel
Audi

L
fseek() example 4

- Does fseek() work if my text file has multiple lines?

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

void main() {
FILE* fptr;
fopen_s(&fptr, "C:\\Users\\Karl\\Desktop\\temp5.txt", "r+");

if (fptr != NULL) {
fseek(fptr, -4, SEEK _END);
fputs("Ford", fptr);
fclose(fptr);

fseek() example 4

- Does fseek() work if my text file has multiple lines?

#include <stdio.h»>
#include <string.h>
#include <stdlib.h>

void main() {
FILE* fptr;
fopen_s(&fptr, "C:\\Users\\Karl\\Desktop\\temp5.txt",

"r+");
if (fptr != NULL) {
fseek(fptr, -4, SEEK_END);
fputs("Ford", fptr);
fclose(fptr);
}
}

Tempb.txt before running above code Tempb5.txt after running above code

j temp5 - Notepad
File Edit Format View Help

jl temp5 - Notepad

File Edit Format View Help
Toyota

Toyota

BMW BMW
Opel Opel
Audi Ford

FTELL

L
ftell()

- ftell() i1s another useful function when reading/writing to
file.

- ftell() allows us to get the current file position of the
stream.

- This can be useful for getting the file size!

L
ftell()

- ftell() function signature:

long int ftell(FILE* f)
- The function returns a long int.
- The functions name is ftell().

- The function reads in a pointer to the file.

ftell() example

- Lets have a look at an example using ftell().

- Lets use the file temp5.txt from before:

E temp5 - Notepad
File Edit Format View Help

Toyota
BMi
Opel
Ford

L
ftell() example

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

void main() {
FILE* fptr;
fopen_s(&fptr, "C:\\Users\\Karl\\Desktop\\temp5.txt", "r+");

if (fptr != NULL) {
fseek(fptr, O, SEEK END);
int len = ftell(fptr);
printf("Size of temp5.txt: %d bytes.\n", len);
fclose(fptr);

L
ftell() example

B8 Microsoft Visual Studio Debug Console
#include <stdio.h> Size of temp5.txt: 22 bytes.
#include <string.h>
#include <stdlib.h>

C:\Users\Karl\source\repos\Pro

void main() {
FILE* fptr;
fopen_s(&fptr, "C:\\Users\\Karl\\Desktop\\temp5.txt", "r+");

if (fptr != NULL) {
fseek(fptr, O, SEEK END);
int len = ftell(fptr);
printf("Size of temp5.txt: %d bytes.\n", len);
fclose(fptr);

Is this correct?

e R ki BHE
Tempo.txt Sijze Rightdick

| temp5 Properties x
Open
Print General Security Details Previous Versions
] temps
Edit
] D ‘tempS
Share with Skype
7-Zip
Type offile: Text Document {.txt)
CRC SHA
Opens with: .] Notepad Change...
Share
Open with Location: C\Users\Karl\Desktop
Give access to Size: 22 bytes (22 bytes)
A
Size ondisk: 0 bytes
Scan for threats...
Restore previous versions Created: Wedngsday 26 January 2022, 18:19:09
Modified: Wedpesday 26 January 2022, 18:46:57

Send to

Accessed: Today 26 January 2022, 7 minutes ago
Cut

Copy

Attributes: Read-only [_|Hidden Advanced...

Create shortcut
Delete

Rename

Properties

Go to properties Size = 22 bytes (same as our code output)

END OF FIRST LECTURE

START OF SECOND
LECTURE

FILE READ ISSUES

Comments on fseek()

- Using fseek is pretty useful if you have a very simple file
structure and you know exactly where in your file you
want to go.

- Unfortunately, life is not that easy — for example, we are
still left with the problem that in most cases the size of
iIndividual fields will vary in records (such as names,
addresses, etc.)

- In those cases we are better off just reading in the file
line by line (sequential access) until we find the data we
want.

- We can then make any changes we want to the data and
write out the entire file again.

L
Example problem with fseek()

- Recall temp5.txt.

2] temp5 - Notepad

File Edit Format View Help
Toyota

BMW

Opel

Ford

- What if we want to change line two from “BMW" to
“Mitsubishi”?

L
Example problem with fseek()

- What if we want to change line two from “BMW” to
“Mitsubishi”?

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

void main() {
FILE* fptr;
fopen_s(&fptr, "C:\\Users\\Karl\\Desktop\\temp5.txt", "r+");

if (fptr != NULL) {
fseek(fptr, 7, SEEK SET);

fputs("Mitsubishi"”, fptr);
fclose(fptr);

}
- Would this work?

L
Example problem with fseek()

- What if we want to change line two from “BMW” to
“Mitsubishi”?

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

E temp5 - Notepad

File Edit Format View Help
Toyota

We lost Opel

void main() {
FILE* fptr;
fopen_s(&Fptr, "C:\\Users\\Karl\\Desktop\\temp5.txt", "r+");

if (fptr != NULL) {
fseek(fptr, 7, SEEK_SET);
fputs("Mitsubishi", fptr);

fclose(fptr); @ temp5 - Notepac
} We replaced BMW ‘ . File Edit Format View Help
; with Mitsubishi e, e

- Did it work? Not how we want it to...

L
Problems Reading Data Files

’ 1 FIEIdS Of UnpredlCtable I C:\Users\0063190s\Dropbox\... — n %
Iength / COntent File Edit Search View Encoding Language Settings

Tools Macro Run Plugins Window ?

sHEHG aff‘@ilnk'ﬁlli‘llﬂl:\di”al 7
fruit_bctE!|

- Multi-word fields make %s I orange navel 0.30

2 orange valencia 0.35
pretty useIeSS. 3 orange blood 0.50

4 apple pink lady 0.40

5 apple granny smith 0.50

& apple jazz 0.45

7 apple jonagold 0.55

2 apple red delicious 0.40

S apple fuji 0.40

10 grapes thompson seedless 1.20

11 grapes crimson seedless 1.30

12 grapes muscat 2.8%90
13 grapes concord 1.45
14 grapes red globe 1.55

Ln:3 ColWindows (CRLF) UTF-8 IN

L
Problems Reading Data Files

- 2. Choosing an appropriate data structure.
- 3. People with same name or different people?

I C:\Users\0063190s\athletes.txt - Notepad++
File Edit Search View Encoding Language Settings Tools Macro Run Plugins Window ?

sHEHEREE sk oc iy 2% BEZ1 FEELE®|
B fruit bt £ [athietes txt E3

69324 Schillonie Calvert 24 Jamaica 2012 Athletics 0 1 0 1
69325 Scott Brash 2é& Great Britain 2012 Equestrian 1 0 0 1
€936 Scott Brennan 25 Australia 2008 Rowing 1 0 0 1

6927 Scott Frandsen 28 Canada 2008 Rowing 0O 1 o 1

6928 Scott Gault 29 United States 2012 Rowing O 0 1 1

6929 Scott Goldblatt 25 United States 2004 Swimming 1 0 0 1
€240 Scott Goldblatt 21 United States 2000 Swimming 0 1 0 1
6941 Scott McGrory 30 Australia 2000 Cycling 1 0 0 1

6942 Scott Moir 22 Canada 2010 Figure Skating 1 0 0 1

€943 Scott Niedermayer 36 Canada 2010 Ice Hockey 1 o] o} 1
£944 Scott Niedermayer 28 Canada 2002 Ice Hockey 1 o] 0 1
6945 Scott Touzinsky 26€ United States 2008 Volleyball 1 0 0 1
€946 Scott Tucker 24 TUnited States 2000 Swimming 0 1 0 1
€947 Scott Young 34 United States 2002 Ice Hockey O 1 0 1
6948 Scotty Lago 22 United States 2010 Snowboarding 0 0 1 1

L
Problems Reading Data Files

- 4. Unusual / unique / non-standard formats.

- PR

13 C++
14 D. Dobkbbs
15 2000
16 B34677

17 - 10.00
18 12.99

1% C for Beginners
20 G. Perry

21 2008
22 RAl1234

23 - 15.00
24 18.99

25 Beginners C
26 R. Juric

27 1977
28 006010
29 1 25.00

30 1 30.00
21

L
Problems Reading Data Files

- 5. Missing / corrupt data or illegal characters

w *C:\Users\0063190s\cars_tabs.txt - Notepad++
File Edit Search View Encoding Llanguage Settings Tools Macro Run Plugins Window ?

cHEHB B s ko c ayxxERHZTEFIEAC
E{:ars_tabs_b(t E!|

1 1998 VW Passat 18945¢ 350.00

2 2005 Ford Focus 560.00

3 2008 Nissan Primera 55000 7590.00

4 2012 Audi AS 150 120538.00

5 2012 Budi A8 150 120538.00

& 2012 Audi A8 150 120538.00

7 Mercedes c220 0.000000 IMRET 5240848 524085¢ 0.000000
o]

L
Problems Reading Data Files

- 6. What delimiters were used?

@’ C:\Users\0063190s\customers.txt - Notepad + +

File Edit Search View Encoding Language Settings Tools Macro Run Plugins Window 2
cOHERGE s Glhoe iy ax BRI EEEAa® EEMI
You have to figure [customers bt 3

1 first name last name company name city
OUt What 2 Aleshia Tomkiewicz AlanDRoser_1burgCpaPc St.5Stephens$Ward
. . 3 Ewvan Zigomalas Cap$Gemini$America AbbeySWard
dellmlter(S) Were 4 France Andrade "Elliott, $John$WSEsq" East$SouthbourneSandSTucktonsSw
. 5 Ulysses lﬂcwalters "Mcmahan, $SBenSL" HawerbyS$cum$Beesbhy
used and If Some © Tyisha Veness Champagne$Room Greets$Greenfand$LyngSWard
7 Eric Rampy "Thompson, $Michael$CSEsg” Desborough
CharaCterS (e-g- $) 2 Marg Grasmick WrangleSHillSAutoSAuctSas31lvy BargateSWard
. 9 Laguita Hisaw InSCommunicationsS$Inc Chirton$ward
are belng to 10 Lura Manzella BizerbaUsaInc Staple$HillSWard
11 Yustte EKlapec MaxiVideo Parwich
replace anOther 12 Fernanda Writer ES&SRSAssoclatesSInc Wilmington
13 Charlesetta Erm "Cain, $John$SM$Esqg" Loundsley5Green$Ward
One (Space) 14 Corrinne Jaret Sound$Vision$SCorp DeeSWard
15 Niesha Bruch Rowley/hansell$Petetin "Broxzburn, $Uphall$and$Winchburg"
1¢ Rueben Gastellum Industrial$EngineeringSAssocs Weston—-Super—-Mare
17 Michell Throssell WeissSSpirt$SaSGuyer Carbrooke
18 Edgar Kanne "Crowan, SKenneth$WSEsg" NewSMilton
1% Dewitt Julio EittenhouseSMotorScCo Parkham
20 Charisse Spinello ModernSPlasticsSCorp DarnallSward
21 Mee Lapinski GallowaySElectricSCoSInc Marldon
22 Peter Gutierres NiagaraSCustombuiltSMfgSCo Prestatyn$SCommunity
23 Octavio Salwvadore Practical$Periphrals LyeSandS$StourbridgeSNorthSward

L
Delimiters

- Quick note on delimiters.
- What are delimiters?

- Delimiters refer to: one or more characters that
outline the boundary between data.

- These can be: tab, whitespace, new line, comma, etc.

L
Problems Reading Data Files

- 7. dates — what format was used?

3 tempb - Notepad

File Edit Format View Help
16/@2/2018

17/2/2018

2/17/2018

5-6-2011

18.4.09

2018-12-2

6 May 2005

L
Problems Reading Data Files

- 8. What are the formatting rules? (zip codes, phone
numbers, urls, emails,...)

iz C:\Users\0063190s\us-500b.txt - Notepad++ — X
File Edit Search View Encoding Language Settings Tools Macro Run Plugins Window 2 X
cHHERGE ko hyxxHEETFERAGD® EEDBE
=] us-500b.txt E3
1 first name,last_ name,company name,address,city,county, state, zip,phonel,phone2,email, web A

Z James,Butt, "Benton John B Jr", €649 N Blue Gum St,New
Orleans,0Orleans,LA,70116,504-621-8927,504-845-1427, jbuttlgmail .com, http://www.bentonjohnbir.com

3 Josephine,Darak]jy, "Chanay Jeffrey A Esq",4 B Blue Ridge
Blvd,Brighteon,Livingston,MI, 48116,810-292-9388,810-374-9840, josephine darakjy@darakjy.org, http://www.chanay
jeffreyaesg.com

4 Art,Venere,"Chemel James L Cpa",8 W Cerritos Ave
#54,Bridgeport,Gloucester, NJ,8014,856-636-8749,856-264-4130, art@venere.org,http://www.chemel jameslcpa.com

5 Lenna, Paprocki,Feltz Printing Service, €39 Main
St,Anchorage, Anchorage, BK, 99501, 907-385-4412,907-921-2010, lpaprocki@hotmail.com, http://www.feltzprintingser
vice.com

= Timam ettt T2 T T man Tlamd bt amr Tt it mam . T A e b

FRUIT EXAMPLE DATASET

L
Fruit Example

- Lets look at the ‘fruit.txt’ file. ET—— E—

File Edit Format View Help
orange navel @.3@

orange valencia 8.35
® I orange blood .50
How can we scan in data et Dot i oae
1 apple ranny smith 0.50
when some fields have AP
. apple jonagold 9.55
mUItIpIe WOrdS and SOme apple red delicious ©.40
y ,? apple fuji 0.40
(j()r] t H grapes thompson seedless 1.20
grapes crimson seedless 1.30

grapes muscat 2.90
grapes concord 1.45
grapes red globe 1.55

L
Fruit Example

- WIll this code work?

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

void main() {
FILE* fptr;
char line[200];
char fruit[2e], variety[2€];
double price;

fopen_s(&fptr, "C:\\Users\\Karl\\Desktop\\fruit.txt", "r");

if (fptr != NULL) {
while (!feof(fptr)){
fscanf_s(fptr, "%s\t", fruit, 20);
fscanf_s(fptr, "%s\t", variety, 20);
fscanf_s(fptr, "%1f\n", &price);
printf("%s\t¥%s\t%e.21f\n", fruit, variety,price);

}
fclose(fptr);

Fruit Example

Will this code work? Sort of-...

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

void main() {
FILE* fptr;
char line[200];
char fruit[28], variety[20];
double price;
fopen_s(&fptr, "C:\\Users\\Karl\\Desktop\\fruit.txt", "r");
if (fptr !'= NULL) {
while (!feof(fptr)){
fscanf_s(fptr, "%s\t", fruit, 2@);
fscanf_s(fptr, "%s\t", variety, 20);
fscanf_s(fptr, "%1f\n", &price);
printf("%s\t%s\t%0.21f\n", fruit, variety,price);
}
fclose(fptr);

File Edit
orange
orange
orange
apple
pple >
apple
apple
apple
apple
grapes
grapes
grapes
grapes
grapes

A

Format View Help

navel 8.38
valencia @.35
blood ©.58

pink lady 0.40

granny smith 2.50
jazz 9.45
jonagold @.55
red delicious @.40
fuji 0.48
thompson seedless
crimson seedless
muscat 2.90

concord 1.45

red globe 1.55

B Microsoft Visual Studio Debug Consale

navel 0.30
valencia
blood

pink

0.40

granny

0.50

jazz
jonagold

red

delicious

apple fuji

grapes thompson
seedless 1.20
grapes crimson 0.40
seedless 1.30
grapes muscat 2.96
grapes concord 1.45
grapes red 1.45
globe 1.55 1.45

1.20
1.30

L
Fruit Example 2

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

- How about this? void main() {

FILE* fptr;

char line[200@];

char fruit[2e], variety[20];

double price;

fopen_s(&Ffptr, "C:\\Users\\Karl\\Desktop\\fruit.txt", "r");

if (fptr != NULL) {
inti=9e, j=2;
while (!feof(fptr)){
char c = fgetc(fptr);

while (c != "\t"){
fruit[j] = c;
3+
c = fgetc(fptr);
¥
fruit[j] = "\@';
j=9;
¢ = fgetc(fptr);
while (c != "\t"){
variety[j] = c;
3+
¢ = fgetc(fptr);
¥

variety[j] = '\@';
fscanf_s(fptr, "%1f\n", &price);
printf("Fruit: %s,\tvariety: %s,\t\t\tPrice: %.21f\n", fruit, variety, price);
j=e;
}

fclose(fptr);

Fruit Example 2

How about this? Much better

<stdio.h>
#include <string.h>
<stdlib.h>

void main() {
FILE* fptr;
char line[200];
char fruit[2e], variety[20];
double price;
fopen_s(&fptr, "C:\\Users\\Karl\\Desktop\\fruit.txt", "r");
if (fptr != NULL) {
inti=9, j=0;
while (!feof(fptr)){
char ¢ = fgetc(fptr);
while (c != "\t'){
fruit[j] = c;
J++;
c = fgetc(fptr);
}
fruit[j] = '\@';
ji=e;
c = fgetc(fptr);
while (c != "\t'){
variety[j] = c;
J+;
c = fgetc(fptr);
}
variety[j] = ' H
fscanf_s(fptr, "%1f
printf("Fruit: %s,
j=0;

", &price);

Variety: %s, Price: %.21f

}

fclose(fptr);

", fruit, variety, price);

E|

File Edit Format View Help
orange navel @.30

orange valencia @.35
orange blood ©.50

apple pink lady 0.40
W granny smith 8.50
apple jazz 9.45

apple jonagold @.55
apple red delicious @.4@
apple fuji 9.40

grapes thompson seedless
grapes crimson seedless
grapes muscat 2.9@

grapes concord 1.45

grapes red globe 1.55

Microsoft Visual Studlp Debug Console

navel,

apple,
apple,
apple,
apple,
apple,

Fruit:

Fruit:
Fruit:

1.20
1.30

Parsing

- In this solution, we used s s
parsing.

#include <stdlib.h>

void main() {
FILE* fptr;
char line[200];
char fruit[2e], variety[20];
double price;
fopen_s(&fptr, "C:\\Users\\Karl\\Desktop\\fruit.txt", "r");

if (fptr 1= NULL) {

- Parsing refers to analysing
a string or text into logical e QT

char c¢ = fgetc(fptr);
while (c != "\t'"){

syntactic components.

c = fgetc(fptr);

¥
fruit[j] = "\@';
j=e;
¢ = fgetc(fptr);
while (c != "\t'"){
variety[j] = c;
J++5
c = fgetc(fptr);
¥

variety[j] = "\@';
fscanf_s(fptr, "%1f\n", &price);
printf("Fruit: %s,\tVariety: %s,\t\t\tPrice: %.21f\n", fruit, variety, price);
j=e;
¥

fclose(fptr);

¥
}

L
Fruit Example 3

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

- Another way of doing It. v w0 ¢

FILE* fptr;

char line[200];

char fruit[2e], variety[20];

double price;

fopen_s(&Fptr, "C:\\Users\\Karl\\Desktop\\fruit.txt", "r");

if (fptr != NULL) {
inti=9, j=og9;
while (!feof(fptr)){
fgets(line, 20@, fptr);
while (line[i] != "\t') {
fruit[j] = line[i];
i++;
J++;
Iy
fruit[j] = "\e"';
i++;
j=e;

while (line[i] != "\t') {
variety[j] = line[i];
it+4;
J++;
iy
variety[j] = "\@';
i++;
price = atof(&line[i]);
printf("Fruit: %s,\tvariety: %s,\t\t\tPrice: %.21f\n", fruit, variety, price);
i=0, j=0;
}
fclose(fptr);

Fruit Example 3

Works perfectly.

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

void main() {
FILE* fptr;
char line[2e@];
char fruit[2e], variety[20];
double price;
fopen_s(&fptr, "C:\\Users\\Karl

Desktop\\fruit.txt", "r");

[
if (fptr != NULL) {
inti=e9, j=o0;
while (!feof(fptr)){
fgets(line, 20e, fptr);

Fruit: g
Fruit: or g arie bl

while (line[i] != "\t') { Fruit: apple, pink
fruit[j] = line[i]; Fruit: apple, gran
e Fruit: ,
I Fruit: apple,
imﬁtﬁ] = e Fruit: apple,
i+t Fruit: apple,
j=e; Fruit: grapes,
Fruit:
while (line[i] != "\t") { Fruit:
Yariety[j] = line[i]; EX
;::; Fruit:
}
variety[j] = "\@';
i+

H
price = atof(&line[i]);
printf("Fruit: %s,\tVariety: %s,
i=w9, j=0;

Price: %.21f\n", fruit, variety, price);

}
fclose(fptr);

File Edit Format View Help
orange navel ©.3@

orange valencia 8.35
orange blood ©.50

apple pink lady 2.40
apple granny smith 2.50
apple jazz .45

apple jonagold @.55
apple red delicious @.4@
apple fuji 9.40

grapes thompson seedless
grapes crimson seedless
grapes muscat 2.9@

grapes concord 1.45

grapes red globe 1.55

Fruit: or ; iety: navel,
valencia,

lady,
smith,

1.20
1.30

L
atof()

- We used atof() in this
#include <string.h>
#include <stdlib.h>

solution. i) <

FILE* fptr;

char line[2ee];

char fruit[2e], variety[20];

double price;

fopen_s(&fptr, "C:\\Users\\Karl\\Desktop\\fruit.txt", "r");

- atof Is a useful function to £ (g =) ¢

while (!feof(fptr)){

fgets(line, 200, fptr);
. while (line[i] != "\t") {
convert a string to a float

fruit[j] = line[i];
i++;
J++;

}

fruit[j] = "\e";

i++;

- In solution 3 we also used

while (line[i] != "\t') {

fgets() to read in a line at a

J++;
- 1
tl me variety[j] = "\@";
- i+

price = atof(&line[i]);
printf("Fruit: %s,\tVariety: %s,\t\t\tPrice: %.21f\n", fruit, variety, price);
i=w8, j=0;

}

fclose(fptr);

}
}

Side by side comparison

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

void main() {
FILE* fptr;
char line[20@];
char fruit[2e], variety[20];
double price;

fopen_s(&Fptr, "C:\\Users\\Karl\\Desktop\\fruit.txt", "r");

if (fptr != NULL) {
inti=8, j=20;
while (!feof(fptr)){
char ¢ = fgetc(fptr);
while (c != "\t"){
fruit[j] = c;
J+5
c = fgetc(fptr);

}
fruit[j§] = "\e';
j=9;

¢ = fgetc(fptr);
while (c != "\t'"){
variety[j] = c;
J++;
c = fgetc(fptr);
¥
variety[j] = "\@’;
fscanf_s(fptr, "%1f\n", &price);

printf("Fruit: %s,\tvariety: %s,\t\t\tPrice: %.21f\n", fruit, variety, price);

j=9;
}

fclose(fptr);

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

void main() {
FILE* fptr;
char line[2e@];
char fruit[2@], variety[20];
double price;
fopen_s(&fptr, "C:\\Users\\Karl\\Desktop\\fruit.txt",

if (fptr != NULL) {
inti=9, j=o0;
while (!feof(fptr)){
fgets(line, 208, fptr);
while (line[i] != "\t") {
fruit[j] = line[i];
it++;
J4+5
¥
fruit[j] = "\e';
i++;
j=6;

while (line[i] != "\t") {
variety[j] = line[i];
it++;
J4+3

¥

variety[j] = "\8';

i++;

price = atof(&line[i]);

printf("Fruit: %s,\tVariety: %s,\t\t\tPrice: %.21f\n", fruit, variety, price);

i=o0, j=e;
}
fclose(fptr);

"r');

C CODE

D
C Code

- Let’s finish today’s lecture by running some C programs
In Visual Studio.

PROGRAMMING

CT103
Week 16

L
Sign in on Blackboard

- Please sign in on blackboard for CT103.

- | will leave the sign in option open for an hour after the
lecture.

L
Lecture Content

- Today’s lecture (Week 16):

- Memory requirements
- Pointers

- Pointers and arrays

- Pointers and strings

- Pointers and functions
- Example C programme

MEMORY REQUIREMENTS

L
Memory Requirements

- Different space requirements for different variables:

char c;
short int i;
intj;

long x;
float f;
double d;

puts ("Variable Sizes: ");

printf(" Size of char = %d \n", sizeof(c));
printf(" Size of short int = %d \n", sizeof(i));
printf("Size of int = %d \n", sizeof(j));
printf("Size of long = %d \n", sizeof(x));
printf("Size of float = %d \n", sizeof(f));
printf("Size of double = %d \n", sizeof(d));

Sizeof()

sizeof() returns the number of bytes of whatever variable
(including structures and arrays) you give it.

B3 Microsoft Visual Studio Debug Console

ariable Sizes:
of char = 1
of short int = 2
of int = 4

of long = 4
of float = 4
of double = 8

Memory Addresses

- We store variables in memory.

- We access the address of a variable by putting & in front
of It.

- For example:

int x = 4;

printf ("x = %d \n", x);
printf ("addr of x = %d \n",&x);

B8 Microsoft Visual Studio Debug Console

X = 4

addr of x = 18217808

Decimal Addresses

%d to see address as decimal

printf("Address of char = %d \n", &c);
printf("Address of short int = %d \n", &i);
printf("Address of int = %d \n", &));
printf("Address of long = %d \n", &x);
printf("Address of float = %d \n", &f);
printf("Address of double = %d \n", &d);

char = 19921011
short int = 19920996
int = 19920984

long = 19920972
float = 199209660
double = 19920944

Hexadecimal Addresses

%X to see hexadecimal address (lowercase letters)

printf("Address of char = %x \n", &c);
printf("Address of short int = %x \n", &i);
printf("Address of int = %x \n", &));
printf("Address of long = %x \n", &Xx);
printf("Address of float = %x \n", &f);
printf("Address of double = %x \n", &d);

B8 Microsoft Visual Studic Debug Console

Address of char = 7ff8bf
short int = 7ff8bo
int = 7ff8a4

long = 7898
float = 7ff88c
double = 7ff87c

Hexadecimal Addresses

%X to see hexadecimal address (uppercase letters)

printf("Address of char = %X \n", &c);
printf("Address of short int = %X \n", &i);
printf("Address of int = %X \n", &j);
printf("Address of long = %X \n", &x);
printf("Address of float = %X \n", &f);
printf("Address of double = %X \n\n", &d);

B Microsoft Visual Studio Debug Console

char = 4FFA73
short int = 4FFA64
int = 4FFASS

long = 4FFA4C
float = 4FFA40
double = 4FFA30

D
Hexadecimal — Numbers Base 16

Hex To Decimal and Binary Converter

Convert Hex To Decimal and Binary :

Insert

HEX Vvalue |Dﬂ12FF5F

Decimal 1245023 |

Binary 000100101111111101011111 |

| Conversion Code - Chart

DECIMAL O 1 2 3 4 5 & 7 8 @ 10 11 12 13 14 15
' HMEX 0 1 2 |3 4 5 6 7 8 |9 | A B C D | E|F
| BINARY 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

POINTERS

L
What are pointers?

- We have seen pointers a few times, e.g.
- When we create file pointers to open a file.

FILE* fptr;
fopen s(&fptr, str, "r");

- Definition: A pointer is a variable whose value is the
address of another variable.

Pointers

%p will print leading zeros

char c;
char *cp = &c;

printf("Address of char = %p \n\n\n", &c);
printf("cp contains %p \n",cp);

B Microsoft Visual Studio Debug Console

Address of char = Q0O8FF87F

cp contains OO8FF87F

L
Pointers

- The operator * has special purpose also.

- We usually apply it to a memory address.
- It returns the variable which that address points to!

- We have to use pointer variables to hold memory
addresses for the appropriate type of variable
- E.g

Int * X, /l defines pointer to an integer

float *y; 1/ defines pointer to afloat

Print Pointers

%p will print leading zeros

printf("Address of char = %p \n", &c);
printf("Address of short int = %p \n", &i);
printf("Address of int = %p \n", &));
printf("Address of long = %p \n", &x);
printf("Address of float = %p \n", &f);
printf("Address of double = %p \n", &d);

char = 0077F8CF
short int = 0077F8CO
int = 0077F8B4

long = ©077F8A8
float = 0077F89C
double = ©077F88C

POINTERS EXAMPLE

Pointers Example 1

OO4FFE6GO
OO4FFEGO
void main(){ A
int x = 4;
int* addr;

Remember: A pointer is a variable whose

addr = &x; e valueis the address of another variable

printf("x = %d \n", Xx);

printf("addr of x = %p \n", &x);
printf("addr of x = %p \n", addr);
printf("value of x = %d \n", *addr);

Remember

- Pointer variables hold the addresses of other variables —
that’s their purpose.

- We don’t know in advance where the program will store
the variables — and normally don'’t care.

- Dereferencing
- just means using the pointer to get to the variable!

Dereferencing

- Here we are dereferencing the pointer:

void main(){
int x = 4;
int* addr;

addr = &x; Dereferencing

printf("x = %d \n", x);

printf("addr of x = %p \n", &x);
printf("addr of x = %p \n", addr);
printf("value of x = %d \n", [*addr);

Pointers Example 2

Here we are dereferencing the pointer:

void main(){
int x = 4; // store 4 in memory location given to X
int* al; // create a variable that can hold the address of an integer

al = &x; // store the address of x in our new pointer variable

printf("x = %d \n", x); // print out the value of x (4)

printf("x = %d \n", *al); // dereference the address stored in al and print value found there(4)

*3l = 7; // store the value 7 in the variable stored at address al (which is the address of x)

printf("x = %d \n", x); // print out value of variable of x (should be 7!)

BS Microsoft Visual Studio Debug Console

Pointers Example 3

void main(){
double dl1 = 88.5;
double* pl = &d1;

*pl = *pl * 2.0;

printf("dl now contains the value: %.2f \n", dl);
}

B8 Microsoft Visual Studie Debug Console

dl now contains the value: 177.00

D
Do’s and Don't's

- Get used to pointers.
- Use the & to get the address of a variable.

- Use * to define a pointer variable and to dereference a
pointer variable.

- Only use pointer variables with the correct variable data
type.

- E.g. an integer pointer must point to an integer

POINTERS AND ARRAYS

L
Pointers and Arrays

- S0 far today, we have looked at pointers for variables like
Integers, floats, chars, etc.

- Next we will look at using pointers for arrays.

Pointers and Arrays

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

B8 Microsoft Visual Studio Debug Console

void printArray(int arr[], int len);

void main(){
int arrayl[] = { 1,3,5,7,9 };
puts("original array");

changed array
printArray(arrayl, 5); 21 3 5 7 9

int* ip = arrayl;
*ip = 21;

puts("changed array");
printArray(arrayl, 5);

The pointer ‘ip’ will point to

) the O™ element of arrayl

void printArray(int arr[], int len){
for (int 1 = 0; i < len; i++){
printf("%d ", arr[i]);
}
printf(" ");

Pointers and Arrays

- Could | dereference ‘ip’ and pass that into printArray?
- i.e. would this work?

void main(){
int arrayl[] = { 1,3,5,7,9 };
puts("original array");
printArray(arrayl, 5);

int* ip = arrayl;

*ip = 21;
puts(“changed array");
printArray(arrayl, 5);

printArray(*ip, 5);
}

void printArray(int arr[], int len){
for (int 1 = 0; 1 < len; i++){
printf("%d ", arr[i]);
¥
printf("\n\n");

Pointers and Arrays

- Could | dereference ‘ip’ and pass that into printArray?

void main(){

}

- I.e. would this work? No.

printf("%d
int arrayi[] = { 1,3,5,7,9 };
puts("original array");
printArray(arrayl, 5);

}
printf("\n\n");

int* ip = arrayl;

*ip = 21;
puts("changed array");
printArray(arrayl, 5);

printArray(*ip, 5);

void printArray(int arr[], int len){

}

for (int i = @; i < len; i++){
printf("%d ", arr[i]);

}

printf("\n\n");

The pointer ‘ip’ will point to
the O™ element of arrayl.
We need to point to the full array.

void printArray(int arr[], int len){
for (int 1 = @; 1 < len; i++){

", arr[i]); €
N

Exception Thrown X

Exception thrown: read access violation.
arr was 0x1110127.

Copy Details ‘ Start Live Share session...

4 Exception Settings
Break when this exception type is thrown
Except when thrown from:
[] Project1.exe

Open Exception Settings | Edit Conditions

Pointers and Arrays

- We would need to point to the full array.

void main(){
int arrayl[] = { 1,3,5,7,9 };
puts(“"original array");
printArray(arrayl, 5);

int* ip = arrayil;

*ip = 21;
puts(“"changed array");
printArray(arrayl, 5);

int(*ip2)[5] = &arrayl;

puts("Dereferenced array pointer ip2");
printArray(*ip2, 5);

}

void printArray(int arr[], int len){
for (int i = @; i < len; i++){
printf("%d ", arr[i]);
}
printf("\n\n");

Pointers and Arrays

We would need to point to the full array.

void main(){
int arrayl[] = { 1,3,5,7,9 }; B Microsoft Visual Studio Debug Conscle

original array

puts(“original array");
printArray(arrayl, 5);

int* ip = arrayl;

*ip = 21;
puts("changed array");
printArray(arrayl, 5);

int(*ip2)[5] = &arrayl;

puts("Dereferenced array pointer ip2"); . .

printArray(*ip2, 5); Dereferenced array polnter 1ip2
} 21 3579

void printArray(int arr[], int len){
for (int i = @; i < len; i++){
printf("%d ", arr[i]);

}
printf(" ");

L
Pointers and Arrays

- Can we reset array pointers?

- I.e. would this work? void main(){
int arrayl[] = { 1,3,5,7,9 };
puts("original array");
printArray(arrayl, 5);

int* ip = arrayil;

*ip = 21;
puts(”"changed array");
printArray(arrayl, 5);

int(*ip2)[5] = &arrayl;

puts("Dereferenced array pointer ip2");
printArray(*ip2, 5);

for (int 1 = 9; 1 < 5; i++) {
ip = &arrayl[i];
*ip = *ip * 2;

}
puts("After loop");

printArray(arrayl, 5);

Pointers and Arrays

Can we reset array pointers?
l.e. would this work? Yes.

B8 Microsoft Visual Studie Debug Console

void main(){

int arrayi[] = { 1,3,5,7,9 }; Orlglnal array
puts("original array"); 1 3 5 7 9

printArray(arrayl, 5);

int* ip = arrayl;
*ip = 21;

puts("changed array"); Changed ar‘r\ay
printArray(arrayl, 5); 21 3 5 7 9

int(*ip2)[5] = &arrayl;

o e eneeg ey ponter 2223 Dereferenced array pointer ip2
21 3 57 9

for (int i = @; i < 5; i++) {
ip = &arrayl[i];
*ip = *ip * 2;

gu"cs("A-Fter‘ loop™); -Fter 100p
} printArray(arrayl, 5); ‘ 6 1@ 14 18

END OF FIRST LECTURE

START OF SECOND
LECTURE

POINTERS AND STRINGS

Pointers and Strings

- Let’s now have a look at pointers and strings.
- Which of the following are correct?

void main(){
char stringl[] = "Food & Drink";
puts(stringl);

char* cp;

cp = stringl;

puts(cp);

printf("cp = %p.\n",cp);

cp = &stringl;

puts(cp);
printf("cp = %p.\n", cp);

cp = &stringl[o];

puts(cp);
printf("cp = %p.\n", cp);

Pointers and Strings

Which of the following are correct? All of them.
Why?

void main(){
char stringl[] = "Food & Drink";
puts(stringl);

& Drink
cnar <p; & Drink
cp = stringl;
puts(cp);
printf("cp = %p.\n",cp); 0095[:788 .

& Drink

cp = &stringl;

puts(cp);
printf("cp = %p.\n", cp);

OO95F788.
& Drink
printf("cp = %p.\n", cp); 0095F788 .

cp = &stringl[o];
puts(cp);

Pointers and Strings

Food & Drink
Food & Drink
Cp = ©0Q95F788.

. I ' ?
Which of the following are correct? All of Food & Drink
them. cp = P0O95F788.
- Why? Food & Drink
Cp = O095F788.
- An array name often evaluates to a void main(){
. char stringl[] = "Food & Drink";
pointer. puts(stringl);
- This is referred to as an array ‘decaying’ to a
pointer. char® cp;
cp = stringl;
puts(cp);

printf("cp = %p.\n",cp);

Next cp points to ‘F’ in string \>

- Remember 0t element. = &stringl;
PUtS(CP)S
printf("cp = %p.\n", cp);

- Apointerto an array isthe same asa — | . _ gstringi[e];

pointer to its first element puts(cp);
printf("cp = %p.\n", cp);

Pointers and Strings

Puts() will start printing the characters from the address
you give It:

void main(){
char stringl[] = "Food & Drink";
puts(stringl);

char* cp = &stringl[5];

B8 Microsoft Visual Studio Debug Console

, puesten; Food & Drink

& Drink

Incrementing Pointers

void main(){ FOOd & Drink
h tringl[] = "Food & Drink";
char stringl]] 00 rin OOd & Dr'lnk
char* cp = stringl; .
for (int i = 0; i < 10;i++) { Od & Drlnk
puts(cp); d & Drink
Cp++;

& Drlnk

}
}

Incrementing Pointers with Ints

#include <stdio.h>
#include <string.h>
#l nc 1 u d e < S‘td 1 ib . h > B Microsoft Visual Studio Debug Console

void printArray(int arr[], int len);

void main(){
int arrayl[] = { 1,3,5,7,9 };
int* ip = arrayl;
printArray(ip, 5);
ip++;
printArray(ip, 4);
ip++;
printArray(ip, 3);
ip++;
printArray(ip, 2);
ip++;
printArray(ip, 1);

}

void printArray(int arr[], int len) {
for (int 1 = @; i < len; i++) {
printf("%d ", arr[i]);
}
printf(" ");

Be Careful Incrementing Pointers

void main(){

int arrayl[] = { 1,3,5,7,9 };

int* ip = arrayl;

printArray(ip,
ip++;
printArray(ip,
ip++;
printArray(ip,
ip++;
printArray(ip,
ip++;
printArray(ip,
ip++;
printArray(ip,

5);
4);
3);
2);
1);

5);

No warnings or errors and no
crash, so these bugs can be hard
to find and cause serious
problems if giving the wrong data

-858993460 177296088 20183144 16000307 1

POINTERS AND
FUNCTIONS

L
Pointers and Functions

- We already saw earlier how we can pass pointers to full
arrays into functions.

int(*ip2)[5] = &arrayil;

puts("Dereferenced array pointer ip2");
printArray(*ip2, 5);

- Here printArray() expects an array:

void printArray(int arr[], int len){
for (int i = @; i < len; i++){
printf("%d ", arr[i]);
}
printf("\n\n");
}

Pointers and Functions

. We can see here hOW void printArray(int* ptr, int len);
printArray() expects a void main(){
pointer- int arrayl[] = { 1,3,5,7,9 };

printArray(ip, 5);

. . . % .
B8 Microsoft Visual Studio Debug Console VOld prlntArray(lnt ptr, 1nt 1en){

_' for (int 1 = 0; i < len; i++){
13579 printf("%d ", *(ptr + i));
}
printf("\n\n");

int* ip = arrayl; // or &arrayl[9]

Pointers and Functions

- WIll this work?

void printArray(int* ptr, int len);

void main(){
int arrayl[] = { 1,3,5,7,9 };

- Since printAr_ray() int* ip = arrayl; // or &arrayl[0]
expects a pointer..

rintArray(arrayl, 5);

void printArray(int* ptr, int len){
for (int 1 = 0; i < len; i++){
printf("%d ", *(ptr + 1));

}
printf("\n\n");

Pointers and Functions

- WIll this work?
- Yesl!

void printArray(int* ptr, int len);

void main(){
int arrayl[] = { 1,3,5,7,9 };

int* ip = arrayl; // or &arrayl[@]

- Since printArray()

expects a pointer__ rintArray(arrayl, 5);

void printArray(int* ptr, int len){
- Why? for (int i = @; i < len; i++){

- Arrays decay to pointers. } printf("%d ", *(ptr + 1));

pri nt.F(" \ n \n ") ; B8 Microsoft Visual Studic Debug Conscle

} 13579

L
Incrementing Pointers

- When we increment a pointer,
—__ we are not simply adding one to ~ void printString(char* cptr);

the address. void main(){
char stringl[] = "C Programming";
- We are adding the size in } printstring(stringl);
bytes of whatever data type the
pointer points to. void printString(char* cptr){
int 1 = 0;
while (*(cptr + i) != "\0"){
- However, chars are of size 1 printf("%c”, *(cptr + 1));
— byte. So in this case we are y 1+
actually adding 1 to the printf("\n");
address... }

B Microsoft Visual Studio Debug Console

C Programming

C CODE

D
C Code

- Let’s finish today’s lecture by running some C programs
In Visual Studio.

PROGRAMMING

CT103
Week 17

L
Sign in on Blackboard

- Please sign in on blackboard for CT103.

- | will leave the sign in option open for an hour after the
lecture.

L
Question from last week:

- Someone at the end of last week’s lecture asked:

- Does the line of code [below] dereference the pointer and then
add 47’

printf("\nmyNewPTR +4 dereferenced = %d\n", *myNewPTR+4);

- You were correct! The line should have been:

printf("\nmyNewPTR +4 dereferenced = %d\n", *(myNewPTR+4));

- This will increment the pointer by 4 blocks of memory and
then dereference it.

L
Lecture Content

- Today’s lecture (Week 17):

- Memory requirements
- Strcpy_s function

- Structure pointers

- Linking structures

- Example C programme

MEMORY REQUIREMENTS

Characters -

void main() {
char stringl[] = "Visual Studio 2019";

int i = 0;
while (stringl[i] != "\@'){
printf("%d %c\n", &stringl[i], stringl[i]);
i++;
}
}
4548301
4548302

Difference is sizeof(char) = 1

Integers

void main() {
int arrayl[] = { 4,56,-10,11,323 };
int i = 0;

while (i< 5) Microsoft Visual Studio Debug Console
{
printf("%d %d\n", &arrayl[i], arrayl[i]);
i++;
}
} /338824 11

7338828 323

Difference is sizeof(int) = 4

Doubles

void main() {

double arrayl[] = { 1.5, 3.3, -76.5, 0.04, -1.3 };
int 1 = 0;
while (i < 5){
printf("%d %.21f\n", &arrayl[i], arrayl[i]); [Microsoft Visual Studio Debug Console
) T 15727632 1.50
} 15727640 3.30

15727648 -76.50

15727656 0.04
15727664 -1.30

Difference is sizeof(double) = 8

Characters (Using Pointers)

Microsoft Visual Studio Debug Console

void main() {
char stringl[] = "Visual Studio 2019";

char* cp = stringl;

int i = 0;
while (*cp != "\0"){
printf("%d %c\n", cp, *cp);
Cp++;
}
}
19922138

Difference is sizeof(char) = 1

Integers (Using Pointers)

void main() {
int arrayl[] = { 4,56,-10,11,323 };
int *ip = arrayl;

int i = 0;
while (1 < 5){ B8 Microsoft Visual Studio Debug Console
Print-F("%d %d\n", ip, *ip); 11925436 4
fra; 11925440 56
} 11925444 -10
} 11925448 11

11925452 323

Difference is sizeof(int) = 4

Doubles (Using Pointers)

void main() {
double arrayl[] = { 1.5, 3.3, -76.5, 0.04, -1.3 };
double* dp = arrayl;
int i = 0;

B8 Microsoft Visual Studio Debug Console

while (i < 5){
printf("%d %.21f\n", dp, *dp); 1768024 1.50
dp++; 1768032 3.30

144 1768040 | -76.50
} 1768048 |0.04
1768056 -1.30

Difference is sizeof(double) = 8

DIY STRCPY_S FUNCTION

Strcpy s Function

- Remember strcpy_s() from when we learned about
strings in semester 1.

- This function overwrites one string with another.

- Let’'s see how we can write a function ourselves
using pointers to do the same thing.

L
myStringCopy()

void myStringCopy(char* target, char* source);

void main(){
char t[100]; // target string
char s[] = "Here is the string."; // to copy from
myStringCopy(t, s);
printf("%s",t);

void myStringCopy(char* target, char* source){

while (*source I= "\0'){
*target = *source;
target++;
source++; B8 Microsoft Visual Studio Debug Console
} Here is the string.

*target = '\0@';

L
myStringCopy()

- How would we modify the new function we wrote to
also return the array pointer?

Wil this work?

char* myStringCopy(char* target, char* source);

void main(){
char t[100]; // target string
char s[] = "Here is the string."; // to copy from
char * tPtr = myStringCopy(t, s);
printf("%s",tPtr);

}
char* myStringCopy(char* target, char* source){
while (*source I= '"\0"'){
*target = *source;
target++;
source++;
}

*target = '\0@';
return target;

Will this work?

char* myStringCopy(char* target, char* source); Unfortunately not
void main(){ Why?

char t[100]; // target string
char s[] = "Here is the string."; // to copy from

char * tPtr = myStringCopy(t, s);
printf("%s",tPtr);

Microsoft Visugh' Studio Debug Console

char* myStringCopy(char* target, char* source){

while (*source != "\0"){
Itmgitf’%owre; To automatically close t
arget¥+, le when debugging stops.

source++;
Press any key to close t

}
*target = '\0';

return target;

myStringCopy()

- We need to return the pointer to the original address
of the start of the target string

- But in myStringCopy we have kept incrementing this
value as we copied characters

- SO0 we need to fix this

It works

char* myStringCopy(char* target, char* source);

void main(){
char t[100]; // target string
char s[] = "Here is the string."; // to copy from
char * tPtr = myStringCopy(t, s);

printf("%s",tPtr);
} \ B3 Microsoft Visual Studio Debug Console

Here is the string.

char* myStringCopy(char* target, char* source){

char* origTarget = target;
while (*source I= '"\0"'){ ‘\\\‘\\\\\\\\\\\\\
*target = *source; We kept the original pointer

target++;
source++;
}
*target = "\0@';
return origTarget; < We returned this instead

STRUCTURE POINTERS

Structures

typedef struct{
i n't d ay R mo n't h R yea r ; Microsoft Visual Studio Debug Console
} date; First Name Surname Balance

{e]s) Smith

typedef struct{
int id;
char firstName[21];
char surname[21];
double balance;
date lastTransDate;
} account;

void displayAccount(account accl);

void main(){
account myAccount = { 101, "Bob", "Smith", 801.94, {18,5,2021} };
displayAccount(myAccount);

void displayAccount(account accl){
printf("Account ID\tFirst Name\tSurname\tBalance\tLast
Transaction\n%10d\t%10s\t%10s\t%7.21f\t%d/%d/%d \n\n",
accl.id, accl.firstName, accl.surname, accl.balance, accl.lastTransDate.day,
accl.lastTransDate.month, accl.lastTransDate.year);

Last Transaction
801.94 18/5/2021

Account Structure Memory

4 21 21 8 4 4 4 total: 66 bytes
Ap——ly p— Y— — {———
int char[21] char[21] double int int int
id firstName surname balance day month year
\] J
v lastTransDate 3

Y

account

Structure Pointers

4 21 21 8 4 4 4 total: 66 bytes
i . S— S a— o S— >
int char[21] char[21] double int int int
id firstName surname balance day month year

\ 1)
lastTransDate
L\ Y 7
account
account accountl | 101 | "Fred" | "smith" | 195.67 | 10 5 2020 |
< >
O0FF0000 O0FF0042

account* acptr = &accountl OOFF0O000

Structures — With Pointers

typedef struct{

int day, month, year;
} date; B Microsoft Visual Studie Debug Console

First Name Surname Balance Last Transaction

typedef struct{ Bob Smith 801.94 18/5/2021
int id;
char firstName[21];
char surname[21];
double balance;
date lastTransDate;
} account;

void displayAccount(account* accptr);

void main(){

account myAccount = { 101, "Bob", "Smith", 801.94, {18,5,2021} };
displayAccount(&myAccount);

void displayAccount(account* accptr){
printf("Account ID\tFirst Name\tSurname\tBalance\tLast
Transaction\n%10d\t%10s\t%10s\t%7.21f\t%d/%d/%d \n\n",
(*accptr).id, (*accptr).firstName, (*accptr).surname, (*accptr).balance,
(*accptr).lastTransDate.day, (*accptr).lastTransDate.month,
(*accptr).lastTransDate.year);

Differences Structure Example

1. We send the address of the structure to the function
displayAccount

2. The function receives the value of the address which
It uses to Initialise the (local) variable accptr

3. To access the contents of a structure via a pointer, we
dereference the pointer first.

4. lastTransDate IS NOt & pointer, so we use the . to access
it's members.

Dereferencing Structure Pointers

- We could have used the ->" symbol with our structure as
follows:

void displayAccount(account* accptr) {
printf("Account ID\tFirst Name\tSurname\tBalance\tlLast Transaction\n%1@d\t%10s\t%1@s\t%7.21f\t%d/%d/%d ‘\n\n",

accptr->id, accptr->firstName, accptr->surname, accptr->balance, accptr-»>lastTransDate.day, accptr-»>lastTransDate.month,
accptr->lastTransDate.year);

- This works the same as what we had originally:

void displayAccount(account* accptr){
printf("Account ID\tFirst Name\tSurname\tBalance\tlLast Transaction\n%1led\t%10s\t%10s\t%7.21f\t%d/%d/%d ‘\n\n",

(*accptr).id, (*accptr).firstName, (*accptr).surname, (*accptr).balance, (*accptr).lastTransDate.day, (*accptr).lastTransDate.month,
(*accptr).lastTransDate.year);

->

- We could have used the ->" symbol with our structure as
follows:

void displayAccount(account* accptr) {
printf("Account ID\tFirst Name\tSurname\tBalance\tlLast Transaction\n%1@d\t%10s\t%1@s\t%7.21f\t%d/%d/%d ‘\n\n",
accptr->id, accptr->firstName, accptr->surname, accptr->balance, accptr-»>lastTransDate.day, accptr-»>lastTransDate.month,
accptr->lastTransDate.year);

b

- -> will dereference the structure pointer and access the
data member within the structure.

- E.g. accptr->id is the same as (*accptr).id

D
C Code

- We will finish the first half of the lecture by running some
C code in Visual Studio.

END OF FIRST LECTURE

START OF SECOND
LECTURE

LINKING STRUCTURES

Linking Structures

- Pointing to structures is a powerful tool in C.

- When used with dynamic allocation, we can build chains
of linked data structures of unlimited size on the fly.

- You will learn more about dynamic memory allocation
later on in the course.
- Briefly, it is the process of allocating memory during run time.

Structures — With Pointers

typedef struct{
char name[100];
struct person* child;
}person;

void display person(person* personPointer);

void main(){
person* personPtr;
person pl = { "Molly Jones"™, NULL }; // create a person
person p2 = { "Mary Jones", NULL }; // create second person

pl.child = &p2; // now first person ‘points’ to it’s child
person p3 = { "Tom Jones", NULL }; // create third person
p2.child = &p3; // now second person ‘points’ to it’s child
display person(&pl); // call function to print them out

Structures — With Pointers

void display person(person* ptr){

person* child;

printf("%s ", ptr->name);

child = ptr->child;

while (child != NULL){
printf("has child: %s ", child->name);
child = child->child;

}

printf("\n");

Structures — With Pointers

B8 Microsoft Visual Studio Debug Console

olly Jones has child: Mary Jones has child: Tom Jones

typedef struct{
char name[10@@];
struct person* child;
}person;

void display_person(person* personPointer);

void main(){
person* personPtr;
person pl = { "Molly Jones", NULL }; // create a person
person p2 = { "Mary Jones", NULL }; // create second person

pl.child = &p2; // now first person ‘points’ to it’s child
person p3 = { "Tom Jones", NULL }; // create third person
p2.child = &p3; // now second person ‘points’ to it’s child
display_person(&pl); // call function to print them out

void display_person(person* ptr){

person* child;

printf("%s ", ptr->name);

child = ptr->child;

while (child != NULL){
printf("has child: %s ", child->name);
child = child->child;

}

printf("\n");

EXAMPLE PROBLEM

Example C Problem

You are writing software for a software company to organise the various
employment positions at the company, i.e. the management structure.

Create a structure for an employee type that holds the title of the position
and a pointer to their manager.

The company has 5 different levels of seniority:

Junior developer.

Senior developer.

Lead developer.

Director of software engineering.

. CEO.

Write a function that will display the management structure of the
company.

[]
a k0N e

D
C Code

- Go to Visual Studio.

L
Problem solution

- Employee struct

typedef struct {

char role[100];

struct employee* manager;
temployee;

L
Problem solution

- Creating employees:

void main() {

employee CEO = { "CEO", NULL }; // CEO

employee direct = { "Director of Software Eng", &CEO }; // Director
employee lead = { "Lead Developer", &direct }; // Lead Developer
employee senior = { "Senior Developer", &lead }; // Senior Developer
employee junior = { "Junior Developer", &senior }; // Junior Developer

getCompanyStaffStruct(&junior); // call function to print them out

Problem solution

- Function to display structure:

void getCompanyStaffStruct(employee* ptr) {

printf("Level\t\t\tPosition\n");

int level = 1;

employee* manager;

printf("%d\t\t\t%s\n",level, ptr->role);

manager = ptr->manager;

while (manager != NULL) {
level++;
printf("%d\t\t\t%s\n", level, manager->role);
manager = manager->manager;

¥
printf("\n");

L
Problem solution

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include<time.h>

Py Fu” Solutlon #include <math.h>

typedef struct {

char role[1lee];

struct employee* manager;
}employee;

void getCompanyStaffStruct(employee* personPointer);
void main() {

employee CEQO = { "CEO", NULL }; // CEO

employee direct = { "Director of Software Eng", &CEO }; // Director
employee lead = { "Lead Developer", &direct }; // Lead Developer
employee senior = { "Senior Developer", &lead }; // Senior Developer
employee junior = { "Junior Developer", &senior }; // Junior Developer

getCompanystaffstruct(&junior); // call function to print them out
}

void getCompanyStaffStruct(employee* ptr) {
printf("Level\t\t\tPosition\n");
int level = 1;
employee* manager;
printf("%d\t\t\t%s\n",level, ptr->role);
manager = ptr->manager;
while (manager != NULL) {
level++;
printf("%d\t\t\t%s\n", level, manager->role);
manager = manager->manager;
¥
printf("\n");

Problem solution

Code output:

Microsoft Visual Studio Debug Console

Position
Junior Developer
Senior Developer

Lead Developer
Director of Software Eng
CEO

PROGRAMMING

CT103
Week 18

L
Sign in on Blackboard

- Please sign in on blackboard for CT103.

- | will leave the sign in option open for an hour after the
lecture.

L
Lecture Content

- Today’s lecture (Week 18):
- Strtok_s
- Reading CSV Files
- Strtok_s and CSV Files

STRTOK S

Remember the problem of parsing a string or file
record, where a field can contain more than 1 word?

- In this situation fscanf_s using %s is no use to
us.

- For example you have a file like this:

Name Age|Occupation Birth Date
David Vose 46 |[Risk Analyst 13/10/1974
Mary Smith Software

Burke 57 |Engineer 01/09/1963

So the data line looks like:

- It depends on the delimiter used.
- If it is tab delimited, a line will look like this:

Mary Smith Burke\t57\tSoftware Engineer\t01/09/1963\n

So how to parse this?

- We have seen how you can copy from the line
Into temporary strings, stopping at the delimiter
(\t in this case):

- Repeating this then for each field.

- Converting to doubles, ints, etc. as needed using functions
like atoi().

- This definitely works, no problem.

Example From Week 15

Scanning strings with spaces.

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

void main() {
FILE* fptr;
char line[2e@];
char fruit[2e], variety[20];
double price;
fopen_s(&fptr, "C:\\Users\\Karl\\Desktop\\fruit.txt", "r");

if (fptr != NULL) {
inti=e9, j=o0;
while (!feof(fptr)){
fgets(line, 20e, fptr);
while (line[i] != "\t') {
fruit[j] = 1line[i];
i++;
J++;
}
fruit[j] = "\@";
i++;
j=6;

while (line[i] != "\t") {
variety[j] = line[i];
i++;
J++;
1
variety[j] = "\@";
it++;
price = atof(&line[i]);
printf("Fruit: %s,\tVariety: %s,
i=w9, j=0;

Price: %.21f\n"

}
fclose(fptr);

Fruit:
Fruit:
Fruit:
Fruit:
Fruit:
Fruit:
Fruit:
Fruit:
Fruit:
Fruit:
Fruit:
Fruit:
Fruit:
Fruit:

E|

File Edit
orange
orange

orange

apple,
apple
apple,
apple,
grap
grap
p
grap

grap

, fruit, variety, price);

apple ©
apple
apple
apple
apple
apple
grapes
grapes
grapes
grapes
grapes

navel,
valencia,
bl ,
pink la

fuji,
thomp
crim

Format View Help
navel ©.30

valencia 2.
blood ©.50
pink lady 2]

granny smith 0.

jazz .45

jonagold Q.
.40

red delicious 5}
fuji 9.4@
thompson seedless
crimson seedless
muscat 2.9@
concord 1.45

red globe 1.

35

.40

50

55

55

1.20
1.30

Another approach

- We could also replace the delimiters with \0’ s

- Effectively splitting the source (line) string into sub-
strings.

- All you need then is the starting point for each sub-
string, which you can store in a char* pointer.

- We can use strtok() for this!

L
Replace delimiters with \0’

and save pointers to start of substrings

Mla|r|y Sim|i|t|h Blu|r|kle\t|5|7|\t|S|o|f|t|w|a|r]|e Elnjg|i|n|ele(r\fj21|/|9|/|1963|\n

Mla|r|y Sim|i|tlh Blu|rlk|le\e|5|7[\0|5|o|f|t|wla|r|e Eln|g|i|n|e|e|r\@ 1\8l9 [\6[1963 \n

s ——e @ 0 ® ¢

char® substringl = L

char® substringl= |@———1——

char* substringl = @
char* substringl = @
char* substringl- |@——————————— [[[[[T T T L L LT 11T T 1 [[|
char® substringl = @

L
STRTOK S Example

void main() {
char stringToParse[] = "Mary Smith Burke\t57\tSoftware Engineer\t@1/09/1963\n";
char delims[] = "\t";
char* next = NULL;
char* first = strtok _s(stringToParse, delims, &next);
printf("first = %s\n", first);
printf("next = %s\n", next);
printf("orig string = %s\n", stringToParse);

STRTOK S Example

void main() {
char stringToParse[] = "Mary Smith Burke\t57\tSoftware Engineer\t01/09/1963\n";
char delims[] = "\t";
char* next = NULL;
char* first = strtok s(stringToParse, delims, &next);
printf("first = %s\n", first);
printf("next = %s\n", next);
printf("orig string = %s\n", stringToParse);

Microsoft Visual Studio Debug Console

Mary Smith Burke
Software Engineer ©1/09/1963

Mary Smith Burke

Be Careful with Strtok s

Strtok_s Is destructive

Microsoft Visual Studio Debulg Console

irst = Mary Smith Burke
next = 57 Software Engineer

orig string = Mary Smith Burke

©1/09/1963

Next substring

- Next time you call strtok_s, it will replace the second
delimiter with \O’ and return the pointer to the second
field.

- However you must now pass in NULL as the first
argument instead of a string:
- This is how it knows you are still parsing the same string.

Subsequent Strings

void main() {
char stringToParse[] = "Mary Smith Burke\t57\tSoftware Engineer\t01/09/1963\n";
char delims[] = "\t";
char* next = NULL;
char* first = strtok s(stringToParse, delims, &next);

while (first != NULL) {
printf("%s\n", first);
first = strtok s(NULL, delims, &next);

Subsequent Strings

void main() {
char stringToParse[] = "Mary Smith Burke\t57\tSoftware Engineer\t01/09/1963\n";
char delims[] = "\t";
char* next = NULL;
char* first = strtok s(stringToParse, delims, &next);

while (first != NULL) {
printf("%s\n", first);
first = strtok s(NULL, delims, &next);

} B Microsoft Visual Studic Debug Console

) Mary Smith Burke
57
Software Engineer

01/09/1963

CSV FILES

Scanning from file

- Up until now, we have only considered reading data
from .txt files.

o E . g . 3 fruit - Notepad

File Edit Format View Help
brange navel 0.30

orange valencia 0.35
orange blood @.5@
apple pink lady 0.40

apple granny smith 0.50

apple jazz 0.45

apple jonagold 0.55

apple red delicious ©.4@

apple fuji 0.40

grapes thompson seedless 1.20
grapes crimson seedless 1.30
grapes muscat 2.90

grapes concord 1.45

grapes red globe 1.55

Scanning from file

- What if our data is in another file format?

- For example: CSV files
- CSV = Comma Separated Value

D
CSV Flles

namesTest - Excel

Insert Page Layout Formulas Data Review View

== X, | |Calibri 111 | === B |General -~ [&Conditio
By~ B T U- A A ===[E- E-9% » EFomata
Paste .
C¥ H- DA EE(® 98 [cell style
Clipboard = Font P Alignment n MNumber R
E12 - | f

A | B | C |
Bob Smith 12
Bill Smith 43
Alex Smitl 21
Aaron Smi 54
Alice Smitl 34
Jane Smitt 54

i il il vl el il

D
CSV Flles

Has .csv file
82 namesTest Properties eXtenSIOI’]

General Security Details Previous Versions

>,
a |namesTest

Type offile: Microsoft Excel Comma Separated Values File (.csv)

namesTlest

Opens with: Excel 2016 Change...

Location: C\Users\Karl\Desktop
Size: 91 bytes (91 bytes)

Size ondisk: 0 bytes

Created: Wednesday 16 February 2022, 19:28:54
Modified: Wednesday 16 February 2022, 19:33:02

Accessed: Today 16 February 2022, 8 minutes ago

Aftributes: []Read-only [|Hidden Advanced...

Cancel

L
Scanning CSV files

- How can we read in CSV files?

e T F
= X |calib - ==_FEF |General - [gConditiol
DE‘@- B I U- A A ===E- E-9% s Hfomata
Paste — . N
. N - DA~ =3 -0 [Cell Style
Clipboard =& Font F] Alignment Numb
E12 - S

1 Bob Smith 12
2 Bill Smith 43
3 Alex Smitt 21
4 Aaron Smi 54
5 Alice Smitl 34
6 Jane Smitt 54
7

Scanning CSV files

New file extension

void main() {
FILE* fptr;

char myfilePath[] = "C:\\Users\\Karl\\Desktop\\namesTest.csv";
char line[200];
fopen_s(&fptr, myfilePath, "r");

if (fptr != NULL) {
while (!feof(fptr)) {
fscanf_s(fptr, "%s,", line, 20);
printf("%s\n", line);

}
fclose(fptr);

} Much the same as before!

Scanning CSV files

Microsoft Visual Studio Debug Console

Sort of works...
Bob

Smith,12
void main() { Bill
FILE* fptr; Smith,43
Alex
char myfilePath[] = "C:\\Users\\Karl\\Desktop\\namesTest.csv"; NSubkdswrii
char line[200];
fopen_s(&fptr, myfilePath, "r");

if (fptr != NULL) {
while (!feof(fptr)) {
fscanf_s(fptr, "%s,", line, 20);
printf("%s\n", line);

}
fclose(fptr);

How about this?

void main() {
FILE* fptr;

char myfilePath[] = "C:\\Users\\Karl\\Desktop\\namesTest.csv";
char line[200];
fopen s(&fptr, myfilePath, "r");

pen_s (&fp y) Use fgets?

if (fptr != NULL) {
while (!feof(fptr)) {

fgets(line, 200, fptr);
printf("%s\n", line);

}
fclose(fptr);

How about this?

Works great!
void main() {

FILE* fptr;

char myfilePath[] = "C:\\Users\\Karl\\Desktop\\namesTest.csv";
char line[200]; :
fopen_s(&fptr, myfilePath, "r"); Bob Smith,12
Bill Smith,43

if (fptr != NULL) {
while (!feof(fptr)) {
fgets(line, 200, fptr); Aaron Smith, 54
printf("%s\n", line);

Alex Smith, 21

Alice Smith, 34

}

-Fclose(fptp); Jane Smith,54

} Jane Smith, 54

Scan Names Only

- Can we use strtok_s to get just the names from our csv
file?

L
Scan Names Only

void main() {
FILE* fptr;

char myfilePath[] = "C:\\Users\\Karl\\Desktop\\namesTest.csv";
char line[200];

char delims[] = ",";
fopen_s(&fptr, myfilePath, "r");

if (fptr 1= NULL) { Will this work?
while (!feof(fptr)) {
fgets(line, 200, fptr);
printf("Line = %s\n", line);

char* next = NULL;

char* first = strtok s(line, delims, &next);
printf("Name = %s\n\n", first);

first = strtok s(NULL, delims, &next);
printf("Age = %s\n\n", first);

strcpy s(line, 200, next);
}

fclose(fptr);

Scan Names Only

void main() {
FILE* fptr;

char myfilePath[] = "C:\\Users\\Karl\\Desktop\\namesTest.csv";
char line[200];

char delims[] = ",";
fopen_s(&fptr, myfilePath, "r");

if (fptr 1= NULL) { We can easily separate
while (!feof(fptr)) { names and ages
fgets(line, 200, fptr);
printf("Line = %s\n", line);

char* next = NULL;
char* first = strtok s(line, delims, &next);

printf(“Name = %s ", first);
first = strtok s(NULL, delims, &next);
printf("Age = %s ", first);
strepy s(line,200, next);
}
fclose(fptr);

Microsoft Visual Studio Debug Console

Line = Bob Smith,12

Mame = Bob Smith

Line = Bill Smith,43

Mame = Bill Smith

Line = Aaron Smith, 54

MName = Aaron Smith

Line = Alice Smith, 34

MName = Alice Smith

Line = Jane Smith,54

Mame = Jane Smith

Age = (null)

C CODE

D
C Code

- Let’s finish today’s lecture by running some C programs
In Visual Studio.

CT103 Programming

Semester 2 Week 7
Revision: Loops, Arrays, File Handling

Dr. Sam Redfern
Discord Server: the same one we're using for CT1114

Exercise

* Write a C program which asks the user for a positive integer, and then
(using a loop) determines and displays the minimum number of terms
needed in the summation

*1+3+5+7+9+...
 for the sum to exceed the user's integer.

* Questions:
 What's the best kind of loop to use here?
 What work do we want each loop iteration to do?
* What variables do we need?

Arrays

Allows a program to store multiple variables under the same name

A first example of a data structure or collection
Declaration:

type arrayName [arraySize |;

e.g.:
double balance[5];

Declare and initialising at the same time:
double balance[] = {1000.0, 2.0, 3.4, 7.0, 50.0};

Access members of an array (for read or write):
double b = balance[0];
double b = balance[i];

balance

Arrays are random access data structures: you can access any element at any
time without needing to access preceding elements first. This is very useful.

1000.0

2.0

34

7.0

50.0

Example

07 _CountlLetters.cpp
e Counting upper case letters
* Random access FTW!

* Also makes clever use of char-as-int in
the C language (in C, char variables
store ASCII values as 1-byte integers)

fsdfsdfIKHHIKHIHIHIJKHBHKJ

snsar
COOO®®
Nd=ZzEZZ
CO®EN PR
SR 0
SRR
S5 Y
SECIRVES
zQam
ce b o®
xRoT
COO®®

#include <stdio.h>
#include <ctype.h>

int main(void) {

int ¢, i, letter[26];

for (i = 0; 1 < 26; ++i)
letter[i] = 0©;
while ((c = getchar()) != "\n") {

if (isupper(c))
letter[c - "A']++;
}

for (1 =0; 1 < 26; i++) {
if (i % 6 == 0)
printf("\n");
printf("%4c:%3d", 'A' + i, letter[i]);
}
printf("\n\n");

return 0;

Generating Random Numbers in a range

/* Generate random numbers within a range. */
#include <stdio.h>

#include <stdlib.h>

#include <time.h>

int rnd(int lower, int upper);

int main(void) {
srand(time(0));
printf("Here's some random numbers between 1 and 10:\n");
for (int 1=0; i<20; i++)
printf("%d ", rnd(1,10));
}

int rnd(int lower, int upper) {
int range = (upper-lower)+1;
return (rand()%range) + lower;

Exercise (Arrays)

* Write a program which generates an array of 10000 random integers,
each in the range 0-100

* The program should then identify which of the numbers occurred
most often

* How might we do this...? What data do we need?
* We need an array to store the frequencies of each possible value (0-100)
* The frequency array is therefore of size 101

* Loop for each of the 10000 random numbers
e .. For each number, increment the frequency array at the appropriate index
* Another loop, after the first one, for each of the values 0-100

* Check each to see if it's the most frequent (pattern: find the largest value in a list of
values).

=

© LooNOOUVT ~AWNPER

=

NEStEd LOO pS /* Display times tables using nested loops */

#include <stdio.h>

* Example: times tables int main(void) {
for (int y=1; y<=12; y++)

printf("%4d", y);

2 3 4 5 6 7 8 9 10 11 12 printf(“\n");

2 3 4 5 6 7 8 9 10 11 12)

4 6 8 10 12 14 16 18 20 22 24 for (int x=1; x<=10; x++) {

6 9 12 15 18 21 24 27 30 33 36 printf("\n");

8 12 16 20 24 28 32 36 40 44 48)

10 15 20 25 30 35 40 45 50 55 60 for (int y=1; y<=12; y++) {
12 18 24 30 36 42 48 54 60 66 72 printf("%4d", x*y);

14 21 28 35 42 49 56 63 70 77 84

16 24 32 40 48 56 64 72 80 88 96 }

18 27 36 45 54 63 72 81 90 99 108 }

20 30 40 50 60 70 80 90 100 110 120

printf("\n");

return 0;

Exe rC|Se (NEStEd LOO pS) zlease enter a positive integer: 9

X 3k
Please enter a positive integer: 6 o
% K 5 3k 3k
* % 3K 3K K 3k 3k
* k % 3K 3K K K 5k %k
% sk 5k k K 3K 3k 3k 3k sk sk
sk sk k 5k k 3K 3K 3k 3k 3k 3k sk sk
% %k % k k % 3K 3K K 3k 3k 3k 3k 3k sk
* X
* % * %k
* % % * &k
* % K % kA A
* % k K % * Aok ok x
% 5 sk % > %k ok Kok ok ok
XK K K 5k 5k 3k 3k
3K 3K 3k 3k 3k 3k 3k sk

%k %k >k 5k 5k 5k 5k >k k

Exercise: Number guessing game

* Write a program which generates a random number between 1 and 100
* The player has to guess the number in as few guesses as possible

* After each guess, the program tells them if they're too high or too low

* After the correct guess, they're told how many guesses it took.

* Questions:
 What's the best kind of loop to use here?
 What work do we want each loop iteration to do?
* What variables do we need?

Reading from File

e A text file is a collection of ASCII characters

 Text files also contain the newline character - signifying the end of a
line

* A simple way to read a file line-by-line is to use fgets()
* See next slide

##tinclude <stdio.h>
#tdefine MAXSTRING 100

int main() {
// fopen requests a file to be opened obtains a FILE pointer to access it
FILE *file ptr;
file ptr = fopen("dictionary.txt", "r"); // open for reading

if (file_ptr == NULL)
printf("Could not open dictionary.txt");

else {
char txt[MAXSTRING]; // string for reading each line into
int lines = 0;
while (fgets(txt, MAXSTRING-1, file ptr)!=NULL) {
lines++;

}

printf("dictionary.txt contained %d lines.", lines);
fclose (file ptr); // don't forget to close the file

}

return 0;

Exercise: Read a file and display each line
which contains an 's' in it

* (I will supply the file —it's a dictionary)
* Question: how do we find out whether a string contains 's' ?

Lab Assignment: Word guessing game

* Write a C program which reads the supplied dictionary file into an

array of strings (make sure the array is big
100000 is plenty)

enough for all the words..

* The program should reject words from the file which have less than 4

or more then 7 letters

* It should then randomly pick a word and t
in the word and try to get the whole word
possible (a politically incorrect person mig

* Make appropriate use of functions
* For required output, see next slide

ne user must guess letters
in as few guesses as

nt call the game 'Hangman')

Loaded 30409 suitable words from the dictionary.

Guess 1.

Guess a letter >i

Guess a letter >a

Guess a letter >e

Guess 4.
a--e--
Guess a letter >m

Guess 5.
a--e--
Guess a letter >t

Guess 6.
atte-t

Guess a letter >s

Well done, that took you 6 guesses to find attest!

Stack and Heap considerations..

Declaring a very large array inside a function could cause the program to fail with an error, e.g.
* char dictionary[100000][50];

@ main()

C6262: Function uses '1100032' bytes of stack: exceeds /analyze:stacksize '16384'. Consider moving some data to heap.

randm = ©;

* |t depends on your compiler whether this happens
* Theissue is that some compilers put a severe limit on the allowable memory used by the Stack

. Eyou move your very large array outside of the function, making it global, that should fix it because now it will be allocated on the
eap

* The Stack is for short-term working memory within a function, the Heap is for longer-term memory that your program needs to
allocate for longer

* See:

* https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2015/code-quality/c6262 ?view=vs-
2015&redirectedfrom=MSDN

e https://www.guru99.com/stack-vs-heap.html

https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2015/code-quality/c6262?view=vs-2015&redirectedfrom=MSDN
https://www.guru99.com/stack-vs-heap.html

CT103 Programming

Semester 2 Week 8
More String Handling, File Handling, and Binary Search

Dr. Sam Redfern
Discord Server (the same one we're using for CT1114)

Separating words in a string (with some pangrams)

* "The quick brown fox jumps over the lazy dog"

* "How vexingly quick daft zebras'... jumpers... jump!"
e "Pack my box... with five dozen, liquor jugs"

e "Jack's ' dawn loves...my big\t\t sphinx, , of quartz."

What rules are needed to robustly separate words in all these cases?
* Alphabetic letters
* Apostrophes
* White-space? Dots? Tabs? Commas? Exclamations?

* When we have identified the rules, what's the general process for
displaying each word on a separate line?

An approach (example)

* Declare a string to use to build the current word into, e.g.: char word[50];

* |terate through each letter in the user-supplied string

* Check the letter using isalpha() from<ctype.h>
* Ifit's alphabetic, add it to the end of word[]
* How can we ‘add to the end’ of a string in C?
* Ifit's not alphabetic, then print out word|[] on a new line (if it has anything in) and reset

word|[] to empty
» Special treatment of apostrophes? They may be internal or external to a word

* Sample solution: 08 WordsTolLines.cpp

Spellchecking (exercise)

* We can use the dictionary. txt file again
* Load in dictionary.txt as we did in the hangman game
* Ask the user for a word

* |Is the word in the dictionary?

* Consider Lowercase vs. Uppercase letters?
» Use tolower() on from <ctype.h> on each character in turn

* How to search the dictionary.. linear search?
* 08 Spellcheck_ Linear.cpp

Binary Search

If our data is stored in sorted sequence, we can
use Binary Search rather than Linear Search

Two variables are needed to record the region
of search space still to be considered:

* Low

* High
Each iteration involves checking the Middle
item in the remaining search space, with 4
possibilities:

* Too Low?

* Too High?

* Item Found?

* Failed?

Each iteration halves the remaining size of the
search space

Solution to previous exercise, now done this
way: 08 Spellcheck Binary.cpp

1"

15

28

33

40

47

51

64

76

82

85

94

11

15

28

33

40

47

51

64

76

82

85

94

11

15

28

33

47

51

64

76

11

15

28

33

40

47

51

76

strtok () - split strings into tokens

* A function for splitting strings, where you supply the delimiter which separates your tokens
e Similartothe .split () method of strings in Javascript
* #include <string.h>

char* strtok (char* str, const char* delimiters);
* A sequence of calls to this function splits str into tokens, which are sequences of contiguous
characters separated by any of the characters that are part of delimiters.
On a first call, the function expects a C string as argument for str, whose first character is used as

the starting location to scan for tokens. In subsequent calls, the function expects a null pointer and
uses the position right after the end of the last token as the new starting location for scanning.

e See: http://www.cplusplus.com/reference/cstring/strtok/
e https://www.tutorialspoint.com/c standard library/c function strtok.htm

http://www.cplusplus.com/reference/cstring/strtok/
https://www.tutorialspoint.com/c_standard_library/c_function_strtok.htm

strtok() example

#include <string.h>

#include <stdio.h>

int main () {
char str[80] = "This is - www.tutorialspoint.com - website";

const char s[2] = "-";

char *token;

/* get the first token */

token = strtok(str, s);
/* loop through other tokens */

while(token != NULL) {

printf ($s\n", token);

token = strtok(NULL, s);

Exercise: Some more fun with files

* 3files, with the 1000 most common surnames, male forenames, and female forenames from a US
county census (see next slide):

* surnames.txt
e forenames_male.txt
* forenames_female.txt

* See sample data from them on the next slide: not just names, but names and cumulative
frequencies

* What character is being used as delimiter here?

* Exercise: write a program to:
e open surnames.txt
* read its contents into an array of strings
* Remove the cumulative frequency from each name by using strtok
* Print out one of the surnames, selected randomly from the array

My sample solution (08 random_names.cpp) will:

. r?cad all 3 files in line by line, separating the name from the frequency number, and storing them into 3 arrays
of strings

* generate 10 random male names and 10 random female names. It doesn’t worry about the frequencies yet
(other than removing them upon reading).. We’ll explore their use next week.

@ ® forenames_female.txt

Smith 1.006 James 3.318 Mary 2.629

Johnson 1.816 John 6.589 Patricia 3.702
Williams 2515 Robert 9.732 Linda 4.737

Jones 3.136 Michael 12.361 Barbara 5.717

Brown 3.757 William 14.812 Elizabeth 6.654
Davis 4.237 David 17.175 Jennifer 7.586
Miller 4.661 Richard 18.878 Maria 8.414

Wilson 5 Charles 20.401 Susan 9.208

Moore 5.312 Joseph 21.805 Margaret 9.976
Taylor 5.623 Thomas 23.185 Dorothy 10.703
Anderson 5.934 Christopher 24,22 Lisa 11.407

Thomas 6.245 Daniel 25.194 Nancy 12.076
Jackson 6.555 Paul 26.142 Karen 12.743

White 6.834 Mark 27.08 Betty 13.409

Harris 7.109 Donald 28.011 Helen 14.072

Martin 7.382 George 28.938 Sandra 14.701
Thompson 7.651 Kenneth 29.764 Donna 15.284

Garcia 7.905 Steven 30.544 Carol 15.849
Martinez 8.139 Edward 31.323 Ruth 16.411
Robinson 8.372 Brian 32.059 Sharon 16.933

Clark 8.603 Ronald 32.784 Michelle 17.452
Rodriguez 8.832 Anthony 33.505 Laura 17.962

Lewis 9.058 Kevin 34.176 Sarah 18.47

Lee 9.278 Jason 34.836 Kimberly 18.974
Walker 9.497 Matthew 35.493 Deborah 19.468

Hall 9.697 Gary 36.143 Jessica 19.958

Allen 9.896 Timothy 36.783 Shirley 20.44

Young 10.089 Jose 37.396 Cynthia 20.909
Hernandez 10.281 Larry 37.994 Angela 21.377

King 10.471 Jeffrey 38.585 Melissa 21.839

Wright 10.66 Frank 39.166 Brenda 22.294

Lopez 10.847 Scott 39.712 Amy 22.745

Hill 11.034 Eric 40.256 Anna 23.185

Scott 11.219 Stephen 40.796 Rebecca 23.615

Green 11.402 Andrew 41.333 Virainia 24.045%

/achary Dartaghan is as common as Mary
Smith??

 What is the cumulative frequency data and how we can use it..?

* We'll see a solution next week, using arrays of structs to keep the
names and their frequency data neatly together

Graded Assignment: Flesch Readability Index

* Write a program which reads all the text in a file and computes the Flesch Readability Index for it.

* The Flesch Readability Index was invented as a simple tool for determining the legibility of a
document without linguistic analysis. It may be implemented using the following 4 steps:

1. Count all words. A word is any sequence of characters delimited by white space.

2. Count all syllables in each word. Each group of adjacent vowels (a, €, i, 0, u, y) counts as one
syllable (for example, the "ea" in "real" contributes one syllable, but the "e..a" in "regal" counts
as two syllables). However, an "e" at the end of a word doesn't count as a syllable. Also, each
word has at least one syllable, even if the previous rules give a count of 0.

3. Count all sentences. A sentence is ended by a full stop, colon, semicolon, question mark, or
exclamation mark.

4. The index is computed by the following formula:
syllables words
- 1.015%*

Index =206835- 84.6*

Starting code: 08_LAB_START_Flesch.cpp words sentences

What are the steps for solving this?

e Separate words
* Then...?

Starting code: 08 LAB_START Flesch.cpp

CT103 Programming

Semester 2 Week 9

Practice with Structs and Arrays (and Pointers, and Files).

Dr. Sam Redfern

Discord Server (the same one we're using for CT1114)

Recall from last week: names with cumulative
frequencies

e Zachary Dartaghan is as common as Mary Smith??

* What is the cumulative frequency data and how we can use it..?

* Example: updating the previous solution to use frequencies, and
produce statistically believable sets of names:

* 09 random_names_with_freq.cpp

* My solution uses linear search.. could it use binary search?

Structs for soccer teams and games

typedef struct {

char name[30];

int won, lost, drew;

int goalsFor, goalsAgainst;
} team;

typedef struct {
char teamlname[30];
char team2name[30];
int goalsl, goals2;

} game;

soccer_teams.txt (newline-delimited strings)

Manchester City
Manchester United
Leicester City
West Ham

Chelsea

soccer_results.txt (a mix of strings and
integers, delimited by tabs and newlines)

Manchester City 2 Manchester United 1
Leicester City3 West Ham 1

Chelsea © Manchester City 2
Manchester United 1 Leicester Cityl
West Ham 2 Chelsea 1

sscanf() is one way of parsing strings
delimited by miscellaneous characters

* i.e. we want Manchester City to be read as one string, not two
* Explanation of the fscanf codes

e See: https://stackoverflow.com/questions/10908668/how-do-you-
read-tab-delimited-strings-from-a-txt-file-and-put-them-into-variable

%[*\t] - any character that is not a TAB

W - the TAB character

2[*\n] - any character that is not a MEWLINE
W\ - the NEWLINE character

https://stackoverflow.com/questions/10908668/how-do-you-read-tab-delimited-strings-from-a-txt-file-and-put-them-into-variable

09 SoccerStructs.cpp

* Functions:

« FILE* openFileForReading(char* filename)
* a helper function for opening a file

* bool readinTeams()

* Reads team names in from soccer_teams.txt, and populates an array of teams (with other team struct data
zeroed)

* int readlnResults()

* Reads in and parses data from soccer_results.txt, and updates the data of appropriate teams identified in each
game

* team* findTeamByName(char* name)

e A hfel;l)er f)unction which searches the array of teams for one with name matching the argument (returns NULL
on fallure

* int getPoints(team™ t)
* A helper function which calculates the points of a team (i.e. 3*won + drew)

* int getSortValue(team™ t)
* A helper function which returns a value for a team, which is suitable for sorting teams into a league table

Exercise

* Modify 09 SoccerStructs.cpp so that it displays the teams in a league
table format (but not yet sorted)

Team Won Drew Lost GF GA Pts

Manchester City 2 %)
Manchester United %)
Leicester City 1
West Ham 1

Chelsea e

MNP ®
= w B N B
= B2 N w R
D W B P O

1
1
e
e

Exercise

* Modify the previous program so that it now sorts the league table

Team Won Drew Lost GF GA Pts

Manchester City 2 %) e 4 1 6
Leicester City 1 1 e 4 2 4
West Ham 1 e 1 3 - 3
Manchester United %) 1 1 2 3 1
Chelses e % 2 1 4 %

» Suggested ‘sortvalue’ calc: 1000*points + GF - GA

"Colossal Cave Adventure”

— %« Written in FORTRAN for
the PDP-11 mainframe

BUTLDING awu
r & VELL yoyg
ON THE GRODND pemes FOR A LR
- SROUND HERe | GE SPRING,
LANP NEbgpy. - e

7 * We can play it here:
TINTENIORY —
oo TR P20 T o ' . https://grack.com/dem

DO YOU REALLY WANT T0 QuIT Nowr
0K

et SR | os/adventure/

YOU ARE OBVIOUSLY A RANK AMATEUR. BETTER LUCK NEXT TIME,

TO ACHIEVE THE NEXT HIGHER RATING, YOU NEED 9 NORE POINTS.

https://grack.com/demos/adventure/

Colossal Cave: Some Commands

N, S, E, W, IN, OUT

LOOK
QUIT

* You will implement the above over 2 weeks of labs

adventure locations.txt

ID N S E W IN ouT Description

1 5 4 6 7 2 %] On the NUIG campus, beside the CS building.

2 %] %] %] %] 3 1 In the Computer Science Building, beside a computer lab.
3 %] %] %] %] %] 2 In a computer Lab.

4 1 0 8 7 9 (%] On the Salthill prom. The sea looks inviting (but cold).
5 0 1 6 7 0 0 In Newcastle.

6 %] 8 %] 1 %] %] In Terryland.

7 0 0 1 0 0 0 In Knocknacarra.

8 1 %] %] 4 %] %] On Quay Street. Everywhere is shut (stupid pandemic).

9 %] %] %] %] %] 4 In the Sea. It's freezing!

This file is tab-delimited
Note the presence of the two header lines at the start of the file, which you'll need to deal with

Exercise

* Write a program which defines a struct suitable of storing the
locations defined in adventure locations.txt

* Now have the program read adventure locations.txt into
an array of these structs

* (09 _AdventureA_Readlocations.cpp)

Exercise

* Modify your previous program so that it displays each location (after
reading them all in), including where each location leads to if you
travel North from it.

 Sample output:

Successfully read 9 locations from file

Location 1 is On the NUIG campus, outside the CS building. North leads to In Newcastle.

Location 2 is In the Computer Science Building, outside a computer lab. From there you cannot go north.

Location 3 is In a computer lab. From there you cannot go north.

Location 4 is On the Salthill prom. The sea looks inviting (but cold). North leads to On the NUIG campus, outside the CS building.
Location 5 is In Newcastle. From there you cannot go north.

Location 6 is In Terryland From there you cannot go north.

Location 7 is In Knocknacarra. From there you cannot go north.

Location 8 is On Quay Street. Everywhere is shut (stupid pandemic). North leads to On the NUIG campus, outside the CS building.
Location 9 is In the Sea. It's freezing From there you cannot go north.

-~ =

Lab Assignment

* Using the file adventure locations.txt, implement the

movement commands (N, S, E, W, IN, OUT) as well as LOOK,
HELP and QUIT

* Display the description of each location as the player moves to it

* You can start with the code from the previous exercise (your own
code, or my sample solution).

» See sample input/output on next slide

Welcome to Galway Adventure. Type 'helpT fo; help.

On the NUIG campus, outside the CS building.
warning: this program uses gets(), which is unsafe.
> help

I know these commands:

n, s, e, w, in, out, look, help, quit.

> W

In Knocknacarra.
> s

You can't go that way.
> e

On the NUIG campus, outside the CS building.
> in
In the Computer Science Building, outside a computer lab.

> look

In the Computer Science Building, outside a computer lab.
> out

On the NUIG campus, outside the CS building.
> s

On the Salthill prom. The sea looks inviting (but cold).
> quit
Bye!

CT103 Programming

Semester 2 Week 10
Command-Line Arguments
and Fun with Calendars

Dr. Sam Redfern
Discord Server (the same one we're using for CT1114)

Command Line Arguments

ConsoleApplication2 Property Pages ? n

L]
i YO u Ca n Set t h e I n p Uts Configuration: | Active(Debug) v | Platform: | Active(Win32) v Configuration Manager...
° C P it Debugger to launch:
(command line

General

arguments) for your .exe oeisgng =

iLocal Windows Debugger P

c/c Command Arguments
JC++

in the option o
Manifest Tool ftac o
XML Document Generator Debugger Type Auto

Browse Information Environment

* Project Properties e

Custom Build Step

* Configuration Properties y'
* Debugging
e Command Arguments

OK ‘ Cancel App

Or alternatively, run from a command prompt

* Open the folder
containing your solution

* There should be a Debug
folder — open it

e |t should contain the
.exe

[[4 = ConsoleApplication2 =l n
File Home Share View 0
/ - -< T . (= m|
T & Cut * ‘ i New item ~ &9 Open ¥ [Select all
= | — e A x E,@ ’ = f
- [\ Copy path T | Easy access v 2.0 Select none
Copy Paste Copy Delete Rename New Properties a !
e to~ - folder - oo Invert selection
A <« O_Molloy (\\fs6) (F:) » C_Labs » ConsoleApplication2 v ¢ Search ConsoleApplication2 L
A Name Date modified Type g
1M This PC s _
ConsoleApplication2 File folder
m Desktop :
Debug File folder
| Documents y
o File folder
& Downloads Tl g i
b Musi (= ConsoleApplication2.psess Visual Studio Perf...
usic S g7 i
=) [ConsoleApplication2.sdf SQL Server Comp...
=| Pictures e (R D
i w4 ConsoleApplication2.sin Microsoft Visual S...
Videos

fi,,, Local Disk (C:)
Kl SAMSUNG (D:)
a Local Disk (E:)
5 O_Molloy (\\fs6) (F:)
C_Labs
. Accounts
ConsoleApplication
ConsoleApplication2
ConsoleApplication2
Debug
Debug
ipch

6 items 1 item selected

Visual Studio can open a command prompt at
the correct folder for you

* File
* >0Open Command Prompt e
* >In this Debug folder — | Frequent places

‘ ‘ Open new window

1 Downloads
o | ,
SE Open command prompt y 2 Bxam

3 C12104

I ’ 4 CT103
,u’ Open Windows PowerShell »

5 Exam
6 ProcessPal

‘@l— Delete history
X - k. 7 Spring 2015
& IT Visiting Students

0 Help » 9 Design

Week 20

¥ ¥YYYYYYY ¥ ¥

N
Close

* Now you can run the .exe by typing in the full name of the executable,
followed by the arguments

CA\Windows\system32\cmd.exe

F:\C_Labs\ConsolefApplication2\Debug>ConsolefApplication2.exe 4 + 9
onsolefApplication2.exe 4 + 9 Result = 13.06008000

F:\C_Labs\ConsolefApplication2\Debhug>_

On the Mac

°|ln Xcode

* Product

* Scheme

* Edit Scheme
* Run
* Arguments
* + (add arguments)

On the Mac (without
Xcode)

* Right click the folder that contains
your executable

* Select “New Terminal at Folder”

* Type the name of your
executable, with “./” in front of it, 'i
and command line args as desired

ece® Icode — -bash — 78x13

Last login: Wed Mar 23 11:33:31 on ttys@o00

Sams—-MacBook-Pro: !code samredfern$./10_CommandLineArgsl apple ball clock dog
This program was called with "./10_CommandLineArgsi".

argv[1l] = apple

argv[2] = ball
argv[3] = clock
argv[4] = dog

Sams-MacBook-Pro:!code samredfern$ [

v Lectures
v CT103
| - Open in New Tab
®10 Move to Trash
[

& Sync or Backup this folder

(=)

Get Info

Rename

Compress "“Icode”

Duplicate

Make Alias

Quick Look “Icode”

Share >
Quick Actions B

Copy "Icode”
Import from iPhone or iPad >

Use Groups
Sort By >
Show View Options

O 0 00
Tags...

M

Folder Actions Setup...
Open File in TextWrangler
New Terminal Tab at Folder

New Terminal at Folder

artcie-green-eggs-ana-nam.ixt

TR T TR e M ol Neol o Rel o) Nel o ol o Rel (o Hel (o) Reol <) ReM o) Ne)

article-irish-times.txt

Reading Command Line
Arguments in your code

#include <stdio.h>

int main (int argc, char *argv[]) {
int count;

// argc is the number of command-line args (including exe name)
// argv[@] is the exe name (including path)
printf ("This program was called with \"%s\".\n", argv[0]);

if (argc > 1) {
// argv[1l], argv[2] etc. are the "actual" arguments
for (count = 1; count < argc; count++)
printf("argv[%d] = %s\n", count, argv[count]);
}

else {
printf("Called with no command-line arguments.\n");

}

return 0;

}

Exercise

* Add together all of the numbers supplied at the command-line

* You can convert a string to a number using atoi() or atof() from
<stdlib.h>
« int atoi(const char *str)
 double atof(const char *str)

Some Exercises with
Calendars

A function that returns the number of days in
a month

int no of days(int year, int month) {

if (month == 9 || month == 4 || month == 6 || month
== 11)

return 30;

if (month != 2)
return 31;

// but what about February?

Exercise: Leap Years

Write a C function which receives a year number as an
argument.

The function should return 1 if the year is a leap year, and
return O if it is not.

Start with the code provided on the next slide

When you have finished, modify the program so that it receives
the year number as a command-line argument rather than
using scanf()

#include <stdio.h>

int is_leap(int year);

int no_of_days(int year, int month);

int main() {
int y;
printf("Enter a year number > ");
scanf(" %d", &y);
if (is_leap(y)==1)
printf("It's a leap year!");
else
printf("It's not a leap year!");
printf(" ... and February has %d days.",
no_of_days(y,2));

int no_of days(int year, int month) {

if (month == 9 || month == 4 || month
== 6 || month == 11)

return 30;

if (month != 2)

return 31;

return 28 + is_leap(year);

int is_leap(int year) {
return 1;

// to do: change this so that leap
years return 1

// and others return 0

What day of the week does a month start on?

* Fact: January 15, 1900 was a Monday

* So, what day of the week was February 15t, 19007
* And how do we calculate that?

* What day of the week was May 1°t, 19007

* And how do we calculate that?

 What about May 15t, 19017

Exercise

* Write a command-line-driven
program which accepts a year
number as an argument, and
one or more month numbers as
subsequent arguments

* The program should print out
calendars for the specified
months

 See starting code:
10 _CommandLineCalendarsStart.cpp

.\calendars.exe 2021 3 4

3/2021

Sun Mon Tue Wed Thu Fri

1 2 3 4 5

7 8 9 10 11 12

14 15 1o 17 18 19

21 22 23 24 25 26
28 29 30 31

4/2021

Sun Mon Tue Wed Thu Fri

4 5 6 7 8 9
11 12 13 14 15 16
18 19 20 21 22 23
25 26 27 28 29 30

Sat

13
20
2°7

Sat

10
17
24

Assignment

* In this assignment, you will be adding some more features to the text adventure

game which you started last week

* You may use your own code or my sample solution from last week as a starting

point for this week

TAKE [OBJECT]
DROP [OBJECT]
EXAMINE [OBJECT]
INVENTORY

The 4 commands you're adding this time all relate to objects
which may be picked up from one location and dropped in
another

When displaying the description of a location, also tell the
players which objects (if any) are there

'INVENTORY' lists the objects currently being carried by the
player

'EXAMINE' displays an object's description — but only if it's
being carried or in the current location

For TAKE, EXAMINE, and DROP you can have the player enter
the command and then them ask for the object — this is easier
than trying to separate them from one string

adventure objects.txt

Name Location Description

USB Drive 3 A small USB drive which holds a whopping 1TB

Ice Cream 4 An ice cream, inexplicably found on Salthill Prom

This file is tab-delimited
Note the presence of the two header lines at the start of the file, which you'll need to deal with

On the Salthill prom. The sea looks inviting (but cold).
Objects here: Ice Cream

> take

Take what? > Ice Cream

You take Ice Cream.

> inventory

You are carrying: USB Drive, Ice Cream

> W

In Knocknacarra.
Objects here: nothing

> drop

Drop what? > Ice Cream

You drop Ice Cream.

CT103 Programming

Semester 2 Week 11
Dynamic Memory Allocation
Recursion
Introduction to some more Data Structures

Dr. Sam Redfern
Discord Server (the same one we're using for CT1114)

Static vs. Dynamic memory allocation

Static arrays — size defined at compile time
 Memory stored on the stack (if declared inside a function) or the heap (if declared globally)
» Stack grows when entering new blocks (branches, loops, functions)
 Stack shrinks when leaving blocks

* Dynamic array — size defined at run time
 Memory stored on the heap

 Stays available until removed
* In C—-removed manually with function calls
* InJava, or C#, or Javascript — removed automatically with garbage collection => no risk of memory leak

Why have dynamic memory?
* Input of unknown size

e Data structures that require dynamic memory allocation
* Linked lists, trees, etc.

Flexibility and Efficiency of memory consumption

sizeof

* The sizeof operator will return the number of bytes reserved for a
variable or data type.

* Determines:
* The byte length of a simple data type (int, float, char etc.)
 Number of bytes required for a structure (user defined type)
* Byte length of an array

sizeof example

#include <stdio.h>

As expected, myStruct is reported at 12 bytes
struct {

int a;

int b;

float d;
} myStruct;

int main() {

char myString[20];

printf("An int uses %d bytes\n", sizeof(int));
printf("A float uses %d bytes\n", sizeof(float));
printf("A char uses %d bytes\n", sizeof(char));
printf("myStruct uses %d bytes\n", sizeof(myStruct));
printf("myString uses %d bytes\n", sizeof(myString));

Why is this happening?

struct {
int a;
int b;
char c1;
float d;

} myStruct;

This is reported at 16 bytes (.. but 13 was expected?)

struct { And this is also 16 bytes! (.. why?)
int a;
int b;
char cl, c2;
float d;
} myStruct;

Dynamic memory functions in <stdlib.h>

* malloc()
* Allocate a memory block

free()
e De-allocate a previously allocated memory block

e calloc()
» Allocate space for an array

realloc()
e Change the size of a previously allocated memory

e Each function is used to initialize a pointer with memory from the heap’s
free store (a section of memory available to all programs)

malloc

The function malloc() will allocate a block of memory that is size x bytes large. If
the requested memory can be allocated a pointer is returned to the beginning of
the memory block.

Note: the content of the received block of memory is not initialized.

malloc() prototype:

* void * malloc (size);
Parameters:

* Size of the memory block in bytes.

Return value:

 If the request is successful then a pointer to the memory block is returned.
* If the function failed to allocate the requested block of memory, a null pointer is returned.

malloc usage

int *ptr = (int*) malloc(sizeof (int));

* Note that malloc() does not know what the memory will be used for,
it only knows how many bytes (contiguously allocated) are required

* Therefore, the return type is void* and you will need to cast it to the
correct type e.g. int*

At what value tor numints does this fail, and
Why? 11_malloc_huge.cpp

#tinclude <stdio.h>

#include <stdlib.h>

int main() {
int* buffer;

int numInts = 1;

while (true) {

int bytesRequired = numInts * sizeof(int);

buffer = (int*) malloc (bytesRequired);

if (buffer==NULL) {
printf("Failed to allocate %d bytes.\n", bytesRequired);
return 0;

}

else {
free(buffer);
printf("Succeeded in allocating %d bytes.\n", bytesRequired);

numInts *= 10;

Dynamically Allocated Arrays

* Allows you to avoid declaring array size at declaration.
e Use malloc to allocate memory for array when needed:

int *dynamic_array;
dynamic_array = malloc(sizeof(int) * 10);
dynamic_array[0]=1;

Question: explain why we can declare an int* and then treat it like an
array, with square-bracket access to elements?

Exercise

* Write a program which asks the user for a number (call it x)
* It then uses malloc to create an array of size x, containing floats

* It should populate each array entry with a random float between 1
and 1000

* Finally, it calculates and displays the average of these values

Deallocation of memory

* As already seen, free(void*) is used to release memory back to the heap
* The operating system knows how large the block of allocated memory is

* But what if we forget to do that?
int *ptr;
ptr = (int *)malloc(sizeof(int));
ptr = (int *)malloc(sizeof(int));

* Thisis a "Memory Leak"

. This:és one of the things that garbage collectors in more modern languages
avoi

* Note: after using free() Kou should set the pointer to NULL, otherwise it
will still be pointing to the same address, which your program no longer
owns

* Modern oloerating systems will stop programs from accessing memory they don’t
own (it will crash them instead)

Recursion

e A recursive function is one which calls itself
* This gives an alternative to loops

* Generally recursion is less efficient than loops, but certain types of
problem are much easier to write using recursion

* We'll use recursion a bit later on, when loading and saving a binary decision
tree

e Question: why might recursion be less efficient than loops?

Recursion Example: sum of 1-N

#tinclude <stdio.h>

int sum(int n);

There is no benefit to using recursion in this specific case;
int main() { it's just a simple example
int number, result;
printf("Enter a positive integer: "); Infinite recursion should be avoided (just the same as
scanf("%d", &number); infinite |OOpS)

result = sum(number);

Too many recursive calls leads to 'Stack Overflow’

intf("sum = %d", 1t); i i [
printf("sum result) * Any ideas what this means, precisely?

}

int sum(int n) {
if (n 1= 0)
return n + sum(n-1);
else

return n;

Self-referential structs

e Structs that contains a pointer to a struct of the same type

* Can be linked together to form useful data structures such as lists,
gueues, stacks and trees

* Terminated with a NULL pointer (0)
struct node {

int data;
node *nextPtr;

1 15 ® » 10

* hexXtPtr
* Points to an object of type node

* Referred to as a link
 Ties one node to another node

Linked Lists

* Linked list
* Linear collection of self-referential struct objects, called nodes

* Connected by pointers
» Accessed via a pointer to the first node of the list (‘head’)
* Subsequent nodes are accessed via the link-pointer member of the current node

* Link pointer in the last node is set to NULL to mark the list’s end

e Strengths vs. arrays:
* Good for collections of data which grow and shrink at runtime

* Excellent for efficient insertion or deletion at any point in the middle of the list (just
needs some changing of pointers: see next slide\{— e.g. if you want to keep a sorted

list
* Weakness vs. arrays:

* Linked lists are sequential access (not random access), i.e. to get to element number
10000 you have to read through the preceding 9999 items

Linked Lists

b
4,\, 7

a

a

. » 3 |NULL
d
44)
C
2 d 3 |NULL
d
4
C
3 |NULL

A linked list with 3 nodes a, b, c

Inserting a new node d between b and ¢

Removing node b

Trees

* Tree nodes contain two or more links (pointers) to other nodes

* Binary trees are a particular (very useful) type of tree
* All nodes contain two links

* None, one, or both of which may be NULL T Pointer to root
* The root node is the first node in a tree. 3
e Each link in the root node refers to a child \/ root
* A node with no children is called a leaf node /)

* Recursion is a very natural way of operating

on trees ¥

Binary search tree

* Data is inserted in a particular way to facilitate rapid searching
 Values in left subtree are less than parent’s value
* Values in right subtree are greater than parent’s value

e Question: this is similar to using an array with binary search.. but is a
binary search tree superior in any way?

47
25 77
,f/f\ ™~ e \
11 65 93

43
/N /\ \

7 17 31 44 68

'Guess the Animal' game

* The player thinks of an animal and the computer has to try to guess it through a
series of yes/no questions

* This data structure is called a 'Decision Tree'

* When a leaf node is met, this is the computer's guess

does it live

* |f the guess is wrong, the player is intne Non-leaf nodes
asked for the animal they were . e are questions
actually thinking of, plus a yes/no — F
guestion to differentiate between — _t”:b_\
the (incorrect) guess and that animal PR il "

* See sample on next slide whale seatur cat dog

Leaf nodes are
animals

Think of an animal. | will amazingly guess your animal!
Press any key to start >

Were you thinking of: dog?

n

Oops. What animal were you thinking of? >cat Think of an animal. | will amazingly guess your animal!

Press any key to start >
Please give me a question to distinguish dog from cat.
>is it mean? .

is it mean? >y

Were you thinking of: cat?
For cat, would the answer be Yes or No? >y n

Thank you! Now | know another animal Oops. What animal were you thinking of? >snake
Do you want to play again? >y

Please give me a question to distinguish cat from snake. >is it furry?

For snake, would the answer be Yes or No? >n

Thank you! Now | know another animal

Do you want to play again? >n

node

// binary decision tree node for the Animal game
struct node {

char txt[100];

node* yes;

node* no;

s

The Binary Tree after adding dog, cat, snake

Is it furry?

11 GuessTheAnimal START.cpp

* This is the full game without loading and saving

* It restarts each time with just one node in the tree (i.e. one animal
and zero questions)

Using recursion to free() all the nodes that were
allocated using malloc() in GuessTheAnimal game..

This is initially called with root as the argument, and cleans up all nodes

Sequence:

void destroynode(node* n) {

if (n->yes!=NULL) e ROOT: destroynode(ls it mean?)
* Y: destroynode(is it furry?)
* Y: destroynode(cat)
if (n->nol=NULL) * Catdestroyed
* N: destroynode(snake)
destroynode(n->no); * Snake destroyed
e Isit furry? destroyed
* N: destroynode(dog)
} * Dog destroyed
* Isit mean? destroyed

destroynode(n->yes);

free(n);

Saving the data in a binary search tree

* How can we save the data stored in the Guess the Animal game?
* Here's some pseudocode for a recursive function:

savenode(n) {
write n->txt to file
write a value indicating whether n->yes is NULL or not
if n->yes is not null, then call savenode(n->yes)
write a value indicating whether n->no is NULL or not
if n->no is not null, then call savenode(n->no)

Data file: dog, cat, snake

is it mean?
NOTNULL
is it furry?
NOTNULL
cat

NULL
NULL
NOTNULL
snake
NULL
NULL
NOTNULL
dog
NULL
NULL

{

is it mean’ node, txt)

(°

is it mean’ node, is ‘yes’ pointer null?)

(°

is it furry?’ node, txt)

(°

is it furry?’ node, is ‘yes’ pointer null?)

{

cat’ node, txt)

{

cat’ node, is ‘yes’ pointer null?)

{

cat’ node, is ‘no’ pointer null?)

{

snake’ node, txt)

{

snake’ node, is ‘yes’ pointer null?)

{

snake’ node, is ‘no’ pointer null?)

{

is it mean’ node, is ‘no’ pointer null?)

{

dog’ node, txt)

{

(

(

(

(

(

(

(

(‘is it furry?’ node, is ‘no’ pointer null?)
(

(

(

(

(

(‘dog’ node, is ‘yes’ pointer null?)
(

‘dog’ node, is ‘no’ pointer null?)

Loading the data in a binary search tree

* Use recursion to load back a tree as saved above
* Pseudocode:

readnode(n) {
read n->txt from file
read the value which indicates whether n->yes is NULL or not

if the n->yes is not NULL then instantiate a new node to hold the next piece of
data, assign it to n->yes and call readnode(n->yes)

read the value which indicates whether n->no is NULL or not

if the n->no is not NULL then instantiate a new node to hold the next piece of
data, assign it to n->no and call readnode(n->no)

}

Example

* Adding load and save to 'Guess the Animal' game
 Starting point discussed in class: 11_GuessTheAnimal_START.cpp

* Loading and saving of the data in the binary search tree, allows a
more fun database of questions and animals to be built up each time

you play

