
PROGRAMMING
CT103

Dr. Karl Mason

Karl.Mason@nuigalway.ie

How to contact me

• Dr. Karl Mason

• karl.mason@nuigalway.ie

• Room 418 Top Floor IT Building

• Staff profile: https://www.nuigalway.ie/our-

research/people/engineering-and-informatics/karljohnmason/

mailto:owen.molloy@nuigalway.ie
https://www.nuigalway.ie/our-research/people/engineering-and-informatics/karljohnmason/

Course Info

• Lectures – 2 hours per week
• Monday 11 am, Dillon Theatre.

• Wednesday 11am, McMunn Theatre.

• Attendance will be take at each lecture

• Labs – 2 hours per week
• Tuesdays IT102

• Group 1: 2pm-4pm Group 2: 4pm-6pm

• Tutorials
• Monday 4pm, IT202

• Attendance not mandatory, only if you need extra help.

• Starts 4th October, none in September.

Lab Info

• We will be using Microsoft Visual Studio in the labs to do

the assignments

• You will have access to these tools via the College licence

(http://nuigalway-engineering-dreamspark.onthehub.com/)

• There are many other tools that can also be used (basically called

“C Compilers” – more on that later)

http://nuigalway-engineering-dreamspark.onthehub.com/

Lab Groups

• Group 1:

• 2pm – 4pm surnames A to K

• Group 2:

• 4pm to 6pm surnames L to Z

Book

• Course text:

• Any decent introduction to programming in C will do

• “Absolute Beginners Guide to C” by Greg Perry, Published by SAMS

• “C for Dummies” by Dan Gookin, published by Wiley

• “C How to Program” by Deitel & Deitel, published by Prentice Hall

• DO NOT get a book on C++ or C# by mistake

• Plenty of C books in the library to borrow for free

Marking

• Lab Assignments – 25%

• Submitted on Blackboard at the end of each lab.

• Lab assignments in semester 1 and 2.

• Written exam – 75%

• End of semester 2 only.

Algorithm

• An Algorithm is a sequence of instructions for the

computer to follow

• It usually describes:

• The inputs you need to accomplish the task

• The formula you need to apply to the inputs or any other

manipulation of the inputs required

• The end result or output

Steps involved in writing software

Programming

building blocks

• Lists of instructions

• Like cooking, e.g. “beat eggs; add flour and sugar; mix; pour into

baking tin; bake at 180 for 20 minutes”

• IF Statements / Conditions

• Like “IF it is raining, take an umbrella”

• Loops - Repeating behavior

• 2 loop types: For loops and While loops.

• For example “jump up and down 3 times”, or “while there is petrol

left, keep driving”

• Computing results

• Performing a sequence of steps in a particular order to get the

result

• For example to calculate your BMI divide your weight by your

height squared

PseudoCode

• Example #1 - Computing Sales Tax

• Pseudo-code for task of computing the final price of an item after calculating
sales tax. Note the three types of instructions: input (get), process/calculate
(=) and output (display)

1. get price of item

2. get sales tax rate

3. sales tax = price of time x sales tax rate

4 final price = price of item + sales tax

5. display final price

6. halt

• Variables: price of item, sales tax rate, sales tax, final price

• Note that the operations are numbered and each operation is unambiguous

• We also extract and list all variables used in our pseudo-code. This will be
useful when translating pseudo-code into a programming language

PseudoCode

• Example #2 - Computing Weekly Wages:

• Gross pay depends on the pay rate and the number of hours worked per week.

However, if you work more than 40 hours, you get paid time-and-a-half for all

hours worked over 40. Pseudo-code the task of computing gross pay given pay

rate and hours worked.

1. get hours worked

2. get pay rate

3 if hours worked ≤ 40 then

3.1 gross pay = pay rate x hours worked

4.else

4.1 gross pay = pay rate x 40 + (1.5 x pay rate x (hours worked - 40)

5.display gross pay

6.halt

• Variables: hours worked, pay rate, gross pay

Flowcharts

www.edrawsoft.com

Planning a program - flowcharts

• Popular symbols:

process
decision

input / output Terminator

(start / stop)

flow line

Gross = hours*rate

Get hours worked

start

display

gross

stop

Get pay rate

Hours

<= 40?

Gross = 40*rate +

1.5*rate*(hours-40)

Sequence

Do X

Do Y

Do Z

http://www.eod.gvsu.edu/~blaucha/c2d2/Structured%20

Design%20Using%20Flowcharts.pdf

X

Y

Z

http://www.eod.gvsu.edu/~blaucha/c2d2/Structured%20Design%20Using%20Flowcharts.pdf

Sequence Flowchart to C Code

http://www.eod.gvsu.edu/~blaucha/c2d2/Structured%20

Design%20Using%20Flowcharts.pdf

• Set Celsius

temperature to 10

• Convert to Fahrenheit

temperature

• Display temperatures

Flowchart Pseudocode C Code

http://www.eod.gvsu.edu/~blaucha/c2d2/Structured%20Design%20Using%20Flowcharts.pdf

IF-THEN-ELSE

• IF Raining? TRUE THEN

• Do A

• Otherwise

• Do B

http://www.eod.gvsu.edu/~blaucha/c2d2/Structured%20

Design%20Using%20Flowcharts.pdf

Raining?

A B

http://www.eod.gvsu.edu/~blaucha/c2d2/Structured%20Design%20Using%20Flowcharts.pdf

IF Statement Example

http://www.eod.gvsu.edu/~blaucha/c2d2/Structured%20

Design%20Using%20Flowcharts.pdf

http://www.eod.gvsu.edu/~blaucha/c2d2/Structured%20Design%20Using%20Flowcharts.pdf

WHILE

• While Hungry

• Eat

http://www.eod.gvsu.edu/~blaucha/c2d2/Structured%20

Design%20Using%20Flowcharts.pdf

Hungry? Eat

http://www.eod.gvsu.edu/~blaucha/c2d2/Structured%20Design%20Using%20Flowcharts.pdf

example

http://www.eod.gvsu.edu/~blaucha/c2d2/Structured%20

Design%20Using%20Flowcharts.pdf

http://www.eod.gvsu.edu/~blaucha/c2d2/Structured%20Design%20Using%20Flowcharts.pdf

CASE

IF Mark >= 80? THEN Grade = A

ELSE

IF Mark >= 60? THEN Grade = B

ELSE

IF Mark >= 50? THEN Grade = C

Else

IF Mark >= 40? THEN Grade = D

ELSE

Grade = F

END IF

http://www.eod.gvsu.edu/~blaucha/c2d2/Structured%20

Design%20Using%20Flowcharts.pdf

> 80?

> 60?

> 50?

Grade = B

Grade = A

Grade = C

Grade = D

http://www.eod.gvsu.edu/~blaucha/c2d2/Structured%20Design%20Using%20Flowcharts.pdf

CASE

http://www.eod.gvsu.edu/~blaucha/c2d2/Structured%20

Design%20Using%20Flowcharts.pdf

http://www.eod.gvsu.edu/~blaucha/c2d2/Structured%20Design%20Using%20Flowcharts.pdf

DO-WHILE

• Do

• EAT

• While Hungry = TRUE

http://www.eod.gvsu.edu/~blaucha/c2d2/Structured%20

Design%20Using%20Flowcharts.pdf

EAT

Hungry ?

http://www.eod.gvsu.edu/~blaucha/c2d2/Structured%20Design%20Using%20Flowcharts.pdf

DO-WHILE

http://www.eod.gvsu.edu/~blaucha/c2d2/Structured%20

Design%20Using%20Flowcharts.pdf

http://www.eod.gvsu.edu/~blaucha/c2d2/Structured%20Design%20Using%20Flowcharts.pdf

Algorithm to calculate factorial of a number

1. Start

2. Read the number n

3. [Initialize]

i=1, fact=1

4. i=i+1

5. fact=fact*i

6. Repeat step 4 through 6 until i=n

7. Print fact

8. Stop

http://cprogrammingcodes.blogspot.ie/2012/10/factorial-c-programalgorithmflowchart.html

http://cprogrammingcodes.blogspot.ie/2012/10/factorial-c-programalgorithmflowchart.html

Flowchart

http://cprogrammingcodes.blogspot.ie/2012/10/factorial-c-programalgorithmflowchart.html

http://cprogrammingcodes.blogspot.ie/2012/10/factorial-c-programalgorithmflowchart.html

PROGRAMMING
CT103

Week 1b

Lecture Content

• Last lecture (Week 1a):

• Module overview: Grading, etc.

• Introduction to algorithms.

• Pseudocode and flowcharts.

• Today’s lecture (Week 1b):

• Computer programs.

• Data types.

• Example C program.

COMPUTER PROGRAMS

What is a Program?

• Definition: A program is a set of instructions that

are run by the Central Processing Unit (CPU) on

a computer.

• The instructions are designed to accomplish a

specific task and are written in a programming

language like C.

What is a Program?

• C is what is called a high-level language – this has

to be translated into instructions called machine

language that the CPU can execute.

• Distinction between Program and Algorithm:

• A program is a set of instructions that the computer

executes.

• An algorithm is a series of steps to complete a task.

• A program contains the algorithm.

• Algorithm is the logic, program is the implementation.

Where our Program Runs

The program
runs here

We can input data here
(e.g. on a screen or

command line)

Output can go to the
screen, files, etc.

CPU and RAM

Central Processing Unit (CPU)

Random Access Memory (RAM)

CPU Runs What?

• Each CPU uses a

specific set of

instructions, called

machine language.

We write our

programs in a higher

level language which

is then translated into

a machine-specific set

of instructions for

execution by the CPU

Sams Teach Yourself C in 24 Hours ©2000 by Sams Publishing

Compiler

• If the CPU understands machine language (1s and 0s),

how do we convert our C program to machine

language?

• Answer: The compiler will do this for you!

• The compiler will convert your C program source code

(.c file) into binary code for the CPU to understand.

Programming Software

• Applications used to write software:

• Assist in writing program in high level language (e.g. C)

• Compile it into machine language

• Link various bits of machine code together to create an

application

• Run, test and debug the application

• Typically also called IDE (Integrated Development

Environment), such as MS Visual Studio or

NetBeans

Writing Programs

• We use an editor to write the program (the source code),

and then a compiler to compile it.

• A compiler turns the program into machine-language

instructions that the computer can understand.

C Compiler

Image source: Medium.com

DATA & VARIABLES

Variables

• How we temporarily store data that we are using in our

programs

• They often represent some real-world piece of data, e.g.

• salary, temperature, interest rate

• In most programming languages, including C, we have to

decide on the type of variable most suitable for the data

we want to store and manipulate

• Variable examples in C:

• float salary;

• float temperate;

• int age;

• char exam_grade;

C Number types

• There are actually different kinds of numbers:

• Integers (no decimal point)

• E.g. 10 54 0 -121

• Floating-point or real (with decimal point)

• E.g. 4343.34 0.0 0.123234 -34.223

• The choice of integer or floating-point depends on

what it represents

• Age (integer), No. of people in family (integer), Interest Rate

(floating-point), price of litre of petrol (floating-point)

Kinds of Data

• So we can see that we need different variable types, or

data types, to hold information

• The basic set of C data types is:

• int - this holds an integer

e.g. 10 21 456 -6899

• float – holds a floating point number

e.g. 125.467

• double – holds a very big floating point number

e.g. up to 1.797e+308

• char – holds a character

e.g. ‘A’ ‘c’ ‘%’

• Also strings – holds multiple characters

e.g. ‘hello’

Modifiers

• Short, i.e. smaller (less memory)

• Long, i.e. larger (more memory)

• Signed, i.e. positive or negative

• Unsigned, i.e. non negative

• The amount of storage used for each data type

(+ modifier) is not set in stone

• ANSI has the following rules:

short int <= int <= long int

float <= double <= long double

Size (bytes)

• Actual space used to store numbers can vary between

machines and operating systems, but in general:

Characters

• A character is any single character that your computer

can represent – usually there are 256 of them

• We usually use the 128 most common (called the

Standard ASCII character set)

Back to Characters

• The following are all characters:

A a 4 % ^ . Q + =] #

• A group of multiple characters is called a string

e.g.

“I love Programming!”

Functions

• A function is a piece of self-contained code that

performs a task

• For example, to print out the text “Hello”, we can

use the standard C function printf()

• printf (“Hello”);

• To read an integer input from the keyboard, we

could use:

• scanf (“%d”, &age);

• We will learn more about functions later in the

course!

PROGRAM RECAP

Designing your Program

• The most basic way of describing what should happen is

to just write it down

• The easiest way of doing this is to use Structured

English

• This means using keywords like IF, THEN, ELSE, DO, to

express what should happen

• Another common way is to use a Flowchart

Sequence

• Actions which take place one after the other

Find a teapot

Put in the tea

Pour in boiling water

IF-THEN-ELSE

• Used where you need to decide on what action to take

IF condition A

THEN action B

ELSE action C

ENDIF

“IF” Example

IF you like tea

THEN drink tea

ELSE drink coffee

ENDIF

More Realistic IF Example

IF customer_order_total > €400

THEN

IF days customer_balance is due > 60 days

THEN

hold the customer_order

send reminder letter

ELSE

process the customer order

END-IF

ELSE

process the customer order

END-IF

Structured English

Read in salary

IF salary > 35,400 THEN

Excess = salary - 35,400

BASE = 35,400

ELSE

Excess = 0

BASE = salary

ENDIF

Base_Tax = Base * Standard_Rate

Higher_Tax = Excess * Higher_Rate

Gross_Tax = Base_Tax + Higher_Tax

Tax_Credits = Single_Person_Tax_Credit + Employee_Tax_Credit

Net_Tax = Gross_Tax - Tax_Credits

Flowchart

Salary > 35,400?

Excess = salary – 35,400

Base = 35,400

Excess = 0

Base = salary

Base_Tax = Base * Standard_Rate

Higher_Tax = Excess * Higher_Rate

Gross_Tax = Base_Tax + Higher_Tax

Tax_Credits = Single_Person_Tax_Credit + Employee_Tax_Credit

Net_Tax = Gross_Tax - Tax_Credits

Start

End

FalseTrue

Workflow

http://www.pacestar.com

PROGRAM EXAMPLES

Worked Through Example

• Problem Description:

• Write a program that reads in an exam mark and outputs “Passed”

if the mark is 60 or more. Otherwise print out “Failed”.

Pseudocode

Get exam grade

If grade is greater than or equal to 60

Print “Passed”

else

Print “Failed”

Flowchart

Grade >= 60

Print “Failed” Print “Passed”

Start

TrueFalse

End

Get Grade

#include <stdio.h>

void main()

{

int grade = 0;

printf ("Enter grade: ");

scanf_s("%d", &grade);

if (grade >= 60)

{

printf ("Passed \n");

}

else

{

printf ("Failed \n");

}

}

Code in Visual Studio

• Here I will go through some C code

Programming
CT103

Week 2a

Lecture Content

• Last lecture (Week 1b):

• Computer programs.

• Data types.

• Example C program.

• Today’s lecture (Week 2a):

• C basic variable types and their size in bytes.

• Naming variables.

• Declaring and initialising variables.

• Comments.

• C program.

Before We Start

• What did ‘\n’ do in the C code example from week 1b?

• Why won’t my code run?

• Xcode for Mac.

• Access to PCs in the IT Building.

Before We Start

• What did ‘\n’ do in the C code example from week 1b?

• Answer: ‘\n’ starts a new line when printing text to the screen.

• E.g., printf (“1 \n 2 \n 3"); will print “1”, “2” and “3” on new lines.

• Why won’t my code run?

Before We Start

• Xcode for Mac.

• If anyone is still having difficulty getting Xcode set up for Mac, there

are plenty of online tutorials that can help you:

• https://www.youtube.com/watch?v=_gwPhmyiuVo

• https://www.youtube.com/watch?v=_cDXKReugEU

• Search ‘Mac Xcode C’ on YouTube and you will find many results.

• Access to PCs in the IT Building.

• You should have received an email instructing you to go to

http://www.it.nuigalway.ie/accounts to get an initial password.

• If you haven’t yet, you should go to this link and follow the

instructions.

https://www.youtube.com/watch?v=_gwPhmyiuVo
https://www.youtube.com/watch?v=_cDXKReugEU
http://www.it.nuigalway.ie/accounts

VARIABLES

Variables
• We need to be able hold data in our programs and change it as we do

calculations

• Variables are pieces of memory that C reserves to hold our data

• Data is stored in binary form

• The more memory a variable uses, then the more data (1’s and 0’s) it

can hold – hence the bigger numbers need more memory, e.g. (on a

64-bit windows machine):

• char 1 byte

• short int 2 bytes

• int 4 bytes

• float 4 bytes

• double 8 bytes

Bits and Bytes
• What is a bit?

• A bit is the most basic unit of information, i.e. 1 or a 0.

• What is byte?

• A byte is 8 bits, e.g. 10101100.

• A kilobyte is 1024 bytes, i.e. 1 KB = 1024 B (210 = 1024)

• A megabyte is 1024 kilobytes…

• Etc.

• However…

Bits and Bytes
• However…

• In International System (SI) Units, kilo means 1000.

• A kilobyte is 1000 bytes, i.e. 1 KB = 1000 B

• A megabyte is 1000 kilobytes… etc.

• These SI units are used for:

• Data transfer rates

• Hard drive capacities

• Other definition (1KB = 1024B) used for operating systems.

Types of C variables

Name Description

char Holds character data such as ‘x’ and ‘*’

short int Holds integer data such as 1, 32, -456

Stores data between -32768 and 32767

Or 0 to 65535 if unsigned

int Holds integer between -2,147,483,648 and 2,147,483,647

(double this if unsigned)

long int Same as for int on a 32-bit compiler, but on 64 bit compiler:

−9,223,372,036,854,775,808 to +9,223,372,036,854,775,807

float Holds floating point data such as 0.003, -12.4

double Holds extremely large and small floating point data

(bigger/smaller than ±3.4x1038 !!)

Floating point

• A floating point number is one with a decimal number after

the point.

• Decimal fractions difficult to represent exactly as binary

fractions, so the binary is as close as possible, but there

will be an approximation, but as we usually only display to

a certain number of decimal places, we don’t usually

notice.

• So we are usually seeing the rounded display of the

actual machine value.

Rounding

• So for example if I execute this:

• I see this output (printf allows me to specify the number of

decimal places I see)!

• In this case I am telling printf to print the variable f 30 characters

wide, of which 28 are after the decimal point

float f = 0.1;

printf("%30.28f", f);

Float vs double

• The double (64 bits) occupies twice the memory of a float

(32 bits), therefore can store bigger, and more precise,

numbers.

• So you can convert from a float to a double, but not

necessarily the other way, without loss of precision.

• Depending on the platform you might use float if you don’t

need doubles, to save on memory, performance and

bandwidth.

NAMING VARIABLES

Naming variables

• Every variable you want to use needs a different name.

• A variable name can be from 1 to 32 characters long.

• The name must begin with a letter followed by any letter,

number, underscore combination.

• The following are valid examples of variable names:

myData pay94 age_limit amount

• The following are invalid examples of variable names :

95Pay my age rate*pay printf

Variable naming conventions

• These are just some of the variable naming conventions (also called

‘cases’ or identifier formats).

• Many companies have their own conventions.

double annualsalary; // flat case

double annualSalary; // camel case

double annual_salary; // snake case

double Annual_Salary; // camel snake case

Declaring and Initialising variables

• We usually declare variables at the start of the program and we can

optionally initialise them at the same time

float salary, pension; // variables declared but not initialised
char initial = 'c'; // declared and initalised
int departmentNumber; // not initialised
int age = 0; // declared and initalised

// now assign a value to the variable 'salary'
salary = 35000.00;

• Note how we can put comments at the end of a line.

• We will talk more about these later today!

Storing data in variables

• We use the assignment operator (=) to put data in

variables

age = 34;

salary = 50000;

pension = salary + age*1000;

In general, we take what is on the right hand side (or what

it evaluates to if it is an equation or a function call), and

put it into the left hand side (usually a variable)

Printing out values of variables

• We can use printf() to do the work for us here

• For example:

int age = 25;
float salary = 34000.00;
char initial = 'D';

printf("age = %d \n", age);
printf("salary = %.2f \n", salary);
printf("initial = %c \n", initial);

printf("you are %d years old, you earn %.2f and your middle
initial is %c \n", age, salary, initial);

Using printf

• The printf function takes in a number of inputs

• The first input is always the text you want to print out,

which may include placeholders (actually called

conversion characters) for 1 or more pieces of data

• The data is supplied in the inputs following the formatted

text input, with inputs separated by commas, for example:

int age = 35;
float salary = 35000.00;

printf("you are %d years old and earn %.2f per year", age, salary);

Conversion Characters

• Remember that we have to tell C exactly how to print

numbers and characters

• We have to use conversion characters (also called format

specifiers)

Conversion Character Description

%d Integer

%f Floating point

%c Character

%s String

%lf Double

%X Hexadecimal

Example

printf ("%d %f %c\n", 15, -9.54, 'K');

Note: if we don’t specify the number of decimal places, C

automatically puts in 6!

Example

printf ("%f %.3f %.2f %.1f\n", 4.56789, 4.56789, 4.56789, 4.56789);

Note: C rounds to the number of decimal places specified

Escape Sequences
• C uses Escape Sequences a lot to represent characters that can’t

easily be represented in text. They are converted into the correct

character for example when output to screen.

• They are just special characters – we already used \n which gives

us a new line.

• Some other ones are:

\t tab

\\ just a backslash

\” double quote

\’ single quote

\a beep or alarm

Sample Program
• Try out this program yourself

#include <stdio.h>

void main()
{

float grade1, grade2, grade3;
float average = 0.0;

printf("Enter 3 grades separated by spaces: ");
scanf("%f %f %f", &grade1, &grade2, &grade3);

average = (grade1 + grade2 + grade3) / 3.0;

printf("average grade = %.2f", average);

}

How scanf is used

• The first input in scanf is the format text which tells scanf what the text

the user inputs will contain, and how to parse it.

• In this example we are telling scanf that the input text will contain 3

floating point numbers, separated by spaces.

• After you enter the text via the keyboard and press enter, scanf

parses the input to find the 3 floating point numbers.

• It then stores them in the variables which you provide to it.

• Putting the & in front of the variable name gives scanf access to the

address of the variable, so it knows where to put the value it parses

from the input text.

scanf("%f %f %f", &grade1, &grade2, &grade3);

&var gives you the address of var !

• So this code prints out the value of myInt and also the

memory address where it is stored

• See what happens when I run it again – different memory

location used when program is ‘reloaded’

int myInt = 44;

printf("myInt contains the value %d, which is stored at
location %X \n", myInt, &myInt);

So….

• To repeat…when I run this command, I am giving scanf

the addresses of the three variables (grade1, grade2,

grade3) so that it can store values there when it reads

from the input (keyboard)

scanf("%f %f %f", &grade1, &grade2, &grade3);

COMMENTS

What are Comments?

• Comments are non-code text that you can add into your program.

• They are generally used to make the code more readable.

• You should use these to explain what your code is doing.

Using Comments

• In C, you can write a comment using //

• Anything that comes after // will be ignored by the compiler.

• E.g.

Comment Blocks

• In C, you can comment multiple lines of code using /**/

• Anything that comes in between /* and */ will be ignored by the

compiler.

• E.g.

Comments Example

• You can see how comments make the following code easier to

understand:

CODE EXAMPLES

C Program Example

• Lets now look at a C program.

Programming
CT103

Week 2b

Lecture Content

• Last lecture (Week 2a):

• C basic variable types and their size in bytes.

• Naming variables.

• Declaring and initialising variables.

• Comments.

• Today’s lecture (Week 2b):

• Basic maths operators.

• Modulus.

• Else if statements.

• Nested if statements.

MATH OPERATORS

Math Operators

• Addition: +

• Subtraction: -

• Multiplication: *

• Division: /

• Modulus (same as ‘remainder’ in maths): %

• This one is very useful!

Modulus

• Why is modulus % useful?

• The modulus operator allows us to get the remainder

when doing integer division.

• What is the remainder?

• When dividing two numbers that don’t divide evenly, the remainder

is what is left over.

• E.g. 9/4 = 2 with a remainder of 1.

• In C: 9%4 = 1.

Modulus

• I still don’t understand why is modulus % useful?

• Lets say I want you to write a program that tells me if a

number is even or odd.

• How would you do it?

Odd or Even?

• Lets say I want you to write a program that tells me if a

number is even or odd. How would you do it?

• Answer: Use Modulus!

Odd or Even C Program

ORDER OF OPERATORS

Order of operators

• C doesn’t always compute maths operations in the order

you might expect

• For example, is ans = 21 or 11?

ans = 5 + 2 * 3;

• C always does the multiplication before the addition

To be sure to be sure ….

avg = i + j + k + l / 4;

• C computes the division first, which means that

avg = 10 + 2 + 4 + 8/4;

Would be equal to 18…. Not what we want

• Always use parentheses, like:

avg = (10 + 2 + 4 + 8)/4;

Equal to 6

• In effect you are dictating explicitly the order you want operations

evaluated in – much safer!

CHECKING IF NUMBERS

ARE EQUAL

= or ==

• You might have noticed in the previous example of

modulus that we used == in our IF statement.

• Why did you do this? Was this a typo?

= or ==

• Assigning value: A single equals sign (=) assigns a value

to something (e.g. int i = 5;)

• Used when initializing or setting variables.

• Checking equality: Two equals signs together (==) is a

relational operator to check what is on either side of the

operator is the same

• Often used in IF statements and While loops.

• The result is either true or false

• In C, true is 1, and false is 0

Equality Example

• Checking equality:

Testing Data

• The if statement works like:

• If something is true then do A, otherwise do B

• C’s Relational Operators:

Relational Operator Description

== Equal to

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

!= Not equal to

Examples

int i= 5;

int j = 10;

int k = 15;

int l = 5;

• The following are true

i == l j < k k > I j != k

• The following are false

i > j k< j k == l

True vs False

• In standard C there is no Boolean data type, so we

usually use an integer to store a true / false value

• It is very easy, because in C

• True is represented by 1

• False is represented by 0

Example – try it out yourself
int i = 4, j = 7;

int x = (i < j);

printf("the value of x is %d \n", x);

if (x)
{

printf("i is less than j \n");
}

if (i < j)
{

printf("i is less than j \n");
}

So…

• What is in a and b after these lines are executed?:

int a,b;

a = (4 < 10);

b = (8 == 9);

• Put them in a program and see for yourself if you are not

sure

IF, ELSE IF, ELSE

More than one Decision

• Up until now, we have only considered a simple if – else

statement,

• i.e. if (True){// do something} else{//do something different}

• What do we do if we have multiple conditions?

• If the grade > 85, A. If grade > 70, B. If grade > 55, C… etc.

• Will simply using multiple if statements work?

Grade Example

• Will the following code work as we

want?

Grade Example

• Will the following code work as we

want?

• Output:

• The student got a B. Why is the

program also printing C and D?

Else if

• We need to use ‘Else if’

statements!

• Will the new code now work as we

want?

Else if

• Will the new code now work as we

want?

• Output:

• Success!

• ‘Else if’ will not check subsequent

‘If’ statements after a condition is

True.

CHECKING TWO

CONDITIONS

Two Conditions in an If Statement

• Up until now, we have only considered a single condition

in our if statement.

• What if we want to check if two conditions are true?

• For example:

• If there is no rain and it is warm, bring suncream.

• How would we write a program to do this?

Two Conditions in an If Statement

• There are two ways of doing this.

• The first method is to use one if statement within another

if statement. These are called ‘nested’ if statements.

Two Conditions in an If Statement

• The second way to do this is to use Boolean logic.

• This involves using AND, represented by && in C.

• This makes our code shorter.

• We will discuss Boolean logic next Monday in more detail.

PROGRAMMING
CT103

Week 3a

Sign in on Blackboard

• Please sign in on blackboard for CT103.

• I will leave the sign in option open for an hour after the

lecture.

Lecture Content

• Last lecture (Week 2b):

• Basic maths operators.

• Modulus.

• Else if statements.

• Nested if statements.

• Today’s lecture (Week 3a):

• Boolean Logic.

• Switch Statements.

• Characters.

BOOLEAN ALGEBRA

Boolean Algebra

• We introduced Boolean logic last week.

• We saw AND which is && in C.

• We also saw NOT which is ! in C.

Boolean Algebra

• What is Boolean Algebra?

• Definition: Boolean Algebra is a form of algebra in which

all variables are either True or False.

• Boolean operators can then applied to these variables.

George Boole

• Boolean algebra is named after George Boole who first

introduced it.

• George Boole was a Professor in UCC, Cork Ireland.

George Boole
Image from: Wikipedia

Boolean Operators

• The primary Boolean operators are:

• AND (In C: &&)

• OR (In C: ||)

• NOT (In C: !)

• XOR (In C: !=)

Truth Tables

• The following truth table shows how each of these

operators work.

• In C: 1 = True, 0 = False

Source: https://introcs.cs.princeton.edu/java/71boolean/

Boolean Operators in C

• AND

• What will the following code output?

Boolean Operators in C

• OR

• What will the following code output?

Boolean Operators in C

• XOR

• What will the following code output?

Boolean Operators in C

• NOT

• What will the following code output?

SWITCH STATEMENTS

Switch statement

• Switch statements test the value of a variable and

compares it with multiple cases.

• If case match is not found, default statement is executed.

• Benefits of switch statements:

• Switch can be tidier.

• Can be executed faster.

Switch Template

switch (expression)

{

case value1:

// do something

break;

case value2:

// do something else

break;

...

default:

break;

}

• Expression is evaluated.

• Expression must return

an int.

• Expression can be an int.

• Value of expression

compared to each case.

• Break important to avoid

running on and executing the

next case (if you leave it out,

it will!)

Note : not ;

Switch Example in C

• Switch statement that checks if a number is 0 or 1.

Sample Output

• If we run the following statement with num =11, we get the

default response.

Equivalent Program using IF Else

• Below we can compare both programs side by side using

If Else and using Switch.

CHARACTERS

Characters in C

• What are they really?

• How are they stored?

• How do read them in.

• Hanging newline characters in the input

• And how to get rid of them

How are variable values stored

• 1’s and 0’s – everything is stored in binary format.

• That includes characters also. Each character has a

different binary value.

• char c = ’a’;

• Note: Singe quotations for characters. We learnt this last

week…

• Other languages, e.g. python, are less strict with

quotations.

What are the values behind the

characters?
• This is where having a standard character table comes in.

• Enough people in industry got together and decided what the value of

each character should be.

• So for example:

• ‘a’ is stored as the number 97 (binary 1100001)

• ‘A’ is stored as the number 65 (binary 1000001)

• ‘?’ is stored as the number 63 (binary 111111)

• ‘#’ is stored as the number 35 (binary 100011)

• … and so on

• The full set is called a character set, such as the original ASCII (American

Standard Code for Information Interchange) table

• Since superseded by UTF, but UTF includes the basic ASCII English

character set

How to see the value of a character

• The following will show you the value of a character:

EXAMPLE C PROBLEM

Quality Control Program

• You are writing a computer program for a manufacturer to

check if the quality of a product. Write a C program:

1. Begin with the width and height of the product in meters.

2. Convert the width and height to millimetres.

3. Check if the product width is outside of the acceptable region.

Min width = 200mm. Max width = 230mm.

4. Do step 3. twice, first using AND, then using OR.

5. Categorize the height as short, medium, or tall based on the

table below:

PROGRAMMING
CT103

Week 3b

Sign in on Blackboard

• Please sign in on blackboard for CT103.

• I will leave the sign in option open for an hour after the

lecture.

Note on Lab Assignments
• Please make sure to bring your laptop if you can.

• Submit your .c file and .doc file in a zipped up folder.

• Make sure your code in your .c file matches your code in your .doc

file.

• Make sure you do the assignments yourself. It is fine to ask each

other questions or use C code I provide in lectures/tutorials.

• Do not copy another students assignment. Plagiarism is taken

seriously by the university.

• If instances of plagiarism are detected, all students involved will

receive a grade of zero for the assignment and may be subject to

further disciplinary proceedings.

Lecture Content

• Last lecture (Week 3a):

• Boolean Logic.

• Switch Statements.

• Characters.

• Today’s lecture (Week 3b):

• Loops.

• While loops.

• Do while loops.

• Example C program.

WHY DO WE NEED

LOOPS?

Loops

• Up until now we have not actually looked at any C

programs that use loops.

• Loops are useful if we want to do the same task more

than once.

• If we did not have loops, we would have to rewrite the

same code over and over.

• This would be time consuming, unreadable and difficult to change.

Motivating Loops Example

• How would I write a program that would do the following

3 times without using loops.

• Read in two numbers.

• Add them together.

• Print the result.

Motivating Loops Example

• You could do the following:

Motivating Loops Example

• When you run the code, it works and gives the following

output:

Motivating Loops Example

• There are plenty of problems with this:

• The code is longer than it needs to

be.

• What if we want to change it so that

we are subtracting numbers instead of

adding numbers?

• This is doable for repeating this task 3

times, what if we want to do it 100

times? Or 10000 times?

• Loops are a way of solving these

issues!

WHILE LOOPS

While Loops

• The first type of loop we will cover is called the while

loop.

• The while loop will repeat a block of code over and over

while some condition is true.

While Loops Template

• While loops have the following structure:

• We have some condition, e.g. number<10.

• While this condition is True, whatever is inside the curly

brackets {} gets executed.

• This is useful for doing something more than once!

While Loops Example

• Lets look at the following simple while loop.

• This code will print “Hello” to the screen 4 times.

While Loops Example

• See the output of this code:

• Of course don’t forget # include and void main!

Loops Example

• Remember the problem from earlier:

• How would I write a program that would do the following

3 times without using loops.

• Read in two numbers.

• Add them together.

• Print the result.

• How would I now do this using a while loop?

While Loops Example

• You would do

the following:

While Loops Example

• Running the program will give you the following output:

While Loops Example

• This program gives the same output as the previous

example (except I am printing an extra line that shows i).

Solution Comparison

• The solution on the left uses while loops. The solution on

the right does not.

Advantages of While Loops

• Using while loops gives us the

following advantages:

• The code is easier to read.

• If I want to run the same block of code

10000 times, all I need to do is change

the condition to (i<10000).

• If I want to make a change to multiply

numbers together instead of adding them,

I only need to do it once!

Avoid infinite loops!

• An infinite loop is a loop that can never end.

• Therefore be careful with your while condition.

• You must change a variable inside the while loops body

that is used in the condition – otherwise you could end up

in an infinite loop.

• Below are both examples of infinite loops:

DO WHILE LOOPS

Do While Loops

• Do While Loops are a variant of while loops.

• They work in much the same way as while loops.

• Do While Loops have the following structure.

Do While Loops Example

• Print “Hello” 4 times using a do while loop.

Why Use Do While Loops?

• You can use a do while loop if you want to ensure that you

execute a block of code at least once.

“Hello” will be printed at a

minimum of once, irrespective

of what value j has.

Do While Comparison with While

• Both of the following programs with print “Hello” 4 times.

• The program on the left uses a do while loop.

• The program on the right uses a while loop.

EXAMPLE PROBLEM

Example Problem

• Write a program that reads in the users weight in kg and

height in meters.

• Calculate their BMI as: BMI = weight / height2.

• Your program should then give the user an option to go

again or to end the program.

• The user should be able to do as many BMI calculations

as possible.

Example Problem

• Go to C program solution.

BMI C Program

• The following will code will work:

BMI C Program Output

• The code will produce the following output:

PROGRAMMING
CT103

Week 4a

Sign in on Blackboard

• Please sign in on blackboard for CT103.

• I will leave the sign in option open for an hour after the

lecture.

Lecture Content

• Last lecture (Week 3b):

• Loops.

• While loops.

• Do while loops.

• Today’s lecture (Week 4a):

• Recap on while loops.

• For loops.

• Example C program.

WHILE LOOPS RECAP

While Loops

• Last week we learned about while and do while loops.

• The while loop will repeat a block of code over and over

while some condition is true.

While Loops

• See the output of this code:

Do While Loops

• Print “Hello” 4 times using a do while loop.

Another Do While Example

• Write a program that:

• Asks the user if they want to convert a temperature from Celsius to

Fahrenheit or the other way around.

• The program should convert temperature from one unit to the other,

e.g. Fahrenheit to Celsius.

• The user should be able to do as many temperature conversions as

they like.

Another Do While Example

Another Do While Example

Points to Remember

• Loops allow us to repeat a piece of code.

• While loops allow us to keep repeating as long as the

condition is true.

• Avoid infinite loops. Do this by changing “something” in

the body of the loop.

Points to Remember

• Do while loops are similar to while loops except that they

ensure what is in body of loop is executed at least once.

• Loops allow us to have shorter and more readable code.

FOR LOOPS

For Loops

• For loops are useful if we want to repeat some code a

predetermined number of times.

• We saw how we do this with while loops. We use:

• A variable.

• A condition.

• An increment of the variable.

• For loops are a shorter way of doing this!

• So what does a for loop look like?

• A for loop will look something like the following:

For Loop Template

Declare variable initialize variable test variable increment variable

• A for loop can also look as follows:

• We can declare and initialize the variable in the for loop.

For Loop Template

• When we run the program, it outputs “Hello” 4 times:

For Loop Example

• Lets compare the structure of for loops and while loops.

For Loop vs While Loop

For Loop While Loop

• Lets compare the structure of for loops and while loops.

For Loop vs While Loop

Declare variable initialize variable test variable increment variable

For Loop While Loop

• Your choice of loop depends on what you want to do and

how you want to end the loop.

• If you want to repeat a task “x” number of times, you can

use either a for loop or a while loop.

• E.g. If I want to do a calculation 5 times, use a for loop.

• When I want to end the loop is determined by the number of

calculations.

• If you do not know how many cycles the loop will run for,

use a while loop.

• E.g. If my program does BMI calculations, I don’t know how many

calculations the user will want to do.

Which Loop Should I Use?

EXAMPLE PROBLEMS

ATM Problem

• You are working for a bank.

• You must write a program that:

• Create a new bank account with a balance of €100.

• Use a for loop to make 3 ATM withdrawals.

• Update the bank account balance for each withdrawal.

ATM Problem

• Go to C program solution.

ATM Problem

• The following code will work:

ATM C Program Output

• The code will produce the following output:

Airlines Problem

• You are working for a major airline “Brianair”.

• You must write a program that:

• Reads in the number of bags to be checked in as input from the

user.

• Use a for loop to read in the weight of each individual bag.

• Sum up the total weight of the bags and print it to the screen.

• Rewrite the same program as outlined above, now using a while

loop.

Airlines Problem

• Go to C program solution.

Airlines Problem

• The following code will work:

Airlines Problem

• The following code will also work, now with a while loop:

Airline C Program Output

• The code will produce the following output:

PROGRAMMING
CT103

Week 4b

Sign in on Blackboard

• Please sign in on blackboard for CT103.

• I will leave the sign in option open for an hour after the

lecture.

Lecture Content

• Last lecture (Week 4a):

• Recap on while loops.

• For loops.

• Example C program.

• Today’s lecture (Week 4b):

• Arrays

• Arrays and loops

• Arrays example C program

ARRAYS

Array Definition

• What is an array?

• Definition: An array is a data structure consisting of a

collection of elements. Each element can be identified by

an index.

Array Definition

• What are arrays used for?

• An array is used to store a collection of data.

• You can think of an array as a collection of variables of

the same type.

Arrays in C

• You can define arrays of any type as follows:
• E.g. int vals [3];

• E.g. char initials[3];

• You can initialise like this if you want to:
• int vals[3] = {14,5,7};

14

5

7

vals[0]

vals[1]

vals[2]

Arrays in C

• If we have the following array called vals.

• The size of vals is 3.

• The 1st element is at position 0 of the array.

• The 2nd element is at position 1 of the array.

• The 3rd element is at position 2 of the array.

14

5

7

vals[0]

vals[1]

vals[2]

Array Terminology

• Array – a collection of data.

• Element – one of the “items” in the array.

• Index – the position of the element in the array.

• Array size – how many elements in the array.

Initializing an Array

• float prices[3] = {65.56, 45.63, 7.90};

• double salary[2] = {45000.00, 33500.00};

• int grades[5] = {44, 55, 66, 33, 88};

Initializing an Array

• int ages[5] = {6,8,9,11,14}; /* Correct */

• int ages[]; /* Incorrect */

• int ages[] = {6,8,9,11,14}; /* Correct */

• Remember, you must initialise you array properly.

Simple Array Problem Example

• Write a program that does the following:

• Store all of the possible letter grades that a student can

get in an array.

• Print the grade at index 2 to the screen.

Simple Array Problem Example

• The following program creates at array for grade letters.

Common Array Mistakes

• Accessing an index that is equal to or larger than the

size of the array.

• Don’t do this.

Common Array Mistakes

• Setting the value of an array element who's index is

equal to or larger than the size of the array.

• Don’t do this either.

Common Array Mistakes

• I would need to create a larger array.

ARRAYS AND LOOPS

Remember

• The index of the array members always starts with 0, for

example:

• grades[0];

• For an array of length/size n (called myArray):

• The indices range from 0 to n-1.

• The elements range from myArray[0] to myArray[n-1].

Accessing array members

int grades[5] = { 44, 55, 66, 33, 88 };

grades[0] = 48; // easy to access/change any member of an array

printf("second grade is %d\n", grades[1]);

for (int i = 0;i < 5;i++)
{
printf("%d ",grades[i]);

}

[0] [1] [2] [3] [4]

EXAMPLE PROBLEMS

Exercise Tracker App

• You are designing an fitness app. The app allows the user

to track their 5km running times.

• You must write a program that:

• Reads in the number of 5km running times as input from the user.

• Use loop to read in each 5km running time from the user.

• Store these times in an array.

• Print the running times out to the user so they can view them.

Exercise Tracker App

• Go to C program solution.

Exercise Tracker App

• The following code will work:

Exercise Tracker App

• The code will produce the following output:

Cinema Problem

• You are designing software for a cinema. The cinema

wants to record the daily visitors to the cinema over 7

days.

• You must write a program that:

• Reads the number daily cinema goers as input from the user for 7

days.

• Stores the cinema visitor numbers in an array.

• Calculate and print the average number of daily cinema goers.

• Prints out the daily visitor numbers that are below average.

Cinema Problem

• Go to C program solution.

Cinema Problem

• The following code will work:

Cinema Problem

• The code will produce the following output:

• Note: Be careful of rounding. We use integers when

calculating the average here.

PROGRAMMING
CT103

Week 5b

Sign in on Blackboard

• Please sign in on blackboard for CT103.

• I will leave the sign in option open for an hour after the

lecture.

Lecture Content

• Last lecture (Week 4b):

• Arrays

• Arrays and loops

• Arrays example C program

• Today’s lecture (Week 5b):

• Arrays recap

• Arrays in memory

• 2D Arrays

• Example 2D arrays C program

ARRAYS RECAP

Definitions

• Definition: An array is a data structure consisting of a

collection of elements. Each element can be identified by

an index.

• Element – one of the “items” in the array.

• Index – the position of the element in the array.

Arrays in C

• You can initialise like this:
• int vals[3] = {14,5,7};

14

5

7

vals[0]

vals[1]

vals[2]

Declaring an Array

• Very straightforward – you just need to specify variable

(array) type, name and size, e.g.:

• int grades[5];

• To initialise, you can do like so:

• int grades[5] = { 44, 55, 66, 33, 88 };

• You can implicitly dictate the size of the array:

• int grades[] = { 44, 55, 66, 33, 88 }; // size = 5

Simple Array Problem Example

• The following program creates at array for grade letters.

Cinema Problem

• This code from last week will read in daily cinema visitors,

calculate the average and return the days < average.

ARRAYS IN MEMORY

Where/how are arrays stored?

• An array is normally stored in sequential blocks of

memory, i.e. RAM.

• Block size depends on the number of bytes required to

store that type of variable.

• For example, an integer usually requires 4 bytes.

Where/how are arrays stored?

• An array is normally stored in sequential blocks of

memory.

• Functions like scanf() need the address of a variable so that it can store new

values there

• This is why you put & in front of the variable name, which gives scanf() the

variable address rather than the variable’s current value

Try this out

void main()
{
int grades[5] = { 44, 55, 66, 33, 88 };

for (int i = 0; i < 5; i++){
printf("%d stored at address: %X \n", grades[i], &grades[i]);

}

printf("\n\n");
}

Copy an array into another

• Easy to do – just use the same index for the source array

and the target array. Try this out:

#include <stdio.h>

void main()
{
int grades[5] = { 44, 55, 66, 33, 88 };
int marks[5];

for (int i = 0; i < 5; i++){
marks[i] = grades[i];

}

}

Create an array based on another array

• Easy to run through an array with a for loop and also set

the values of another array of the same size

#include <stdio.h>

void main()
{
double nums[4] = { 1.3, 4.5, 5.123, 6.7002 };
double squares[4];

for (int i = 0; i < 4; i++){
squares[i] = nums[i] * nums[i];
printf("square of %.2lf = %.2lf \n", nums[i], squares[i]);

}
}

2D ARRAYS

2 Dimensional Arrays

• Up until now, we have only considered a 1 dimensional

(1D) array.

• E.g. int vals[3] = {14,5,7};

• What if we have 2 dimensional (2D) data that we need to

use in our program?

• We use 2D arrays!

2 Dimensional Arrays

• What do 2D arrays look like?

• The following will create a 2-dimensional array of integers:

• int var[2][2];

• The first index is the row number, the second index is

the column number.

var[0][0] var[0][1]

var[1][0] var[1][1]

Initialise 2D array

• Each row is an individual 1D array

• int var[2][2] = {{11,12},{21,22}};

11 12

21 22

Change element

• How do I change an element in a 2D array?

• var[1][0] = 55;

11 12

55 22

Loop over elements in 2D array
• How do I loop over elements in a 2D array?

• You need 2 loops:

• Outer loop for the rows

• Inner loop for the columns

• In the first part of this example, we use two loops to set the values in a 4x4

array. We use a separate variable (val) for the values in the array.

int x[4][4];
int r, c, val = 0;

// set array values
for (r = 0; r < 4; r++){
for (c = 0; c < 4; c++){
x[r][c] = val;
val++;

}
}

Output the 2D array

• In the second part of the example we use the same

approach to print out the array, using tabs (\t) to space out

the values better

// output array
for (r = 0; r < 4; r++){
for (c = 0; c < 4; c++){
printf("%d\t", x[r][c]);

}

printf("\n");
}

Input an array

int x[3][3];
int r, c;

// set array values
for (r = 0; r < 3; r++){
for (c = 0; c < 3; c++){
printf("Enter x[%d][%d]: ", r, c);
scanf("%d", &x[r][c]);

}
}

And then output the array

printf("\n\nThe Array:\n");

// output array
for (r = 0; r < 3; r++){
for (c = 0; c < 3; c++){
printf("%d\t", x[r][c]);

}
printf("\n");

}

EXAMPLE PROBLEMS

Grades Processing Problem

• You are writing software to process student grades for a

small class with 5 students. Write a program that:

• Reads and stores the semester 1 grades of a subject for 2019 and

2020 classes. Use a 2D array to store these grades. It should look

like the following:

• Create a similar 2D array to store the grades for semester 2. Read

in the grades from the user.

• Create a 3rd 2D array to store the final grade calculated as

(semester 1 + semester 2)/2. Print this final 2D array to the screen.

Grades Processing Problem

• Go to C program solution.

Grades Processing Problem

• The following code will work:

…continue

…continue

Grades Processing Problem

• C Program Output:

Grades Processing Problem

• The previous

solution had 4 for

loops, can we make

our program

shorter?

• Yes!

• This will produce the

same output.

• Could we make our

code shorter again?

PROGRAMMING
CT103

Week 6a

Sign in on Blackboard

• Please sign in on blackboard for CT103.

• I will leave the sign in option open for an hour after the

lecture.

Lecture Content

• Last lecture (Week 5b):

• Arrays recap

• Arrays in memory

• 2D Arrays

• Example 2D arrays C program

• Today’s lecture (Week 6a):

• What is a string in C

• How to initialise a string

• Printing strings

• Scanning strings

• Example C program

STRINGS

String Definition

• A string is a collection of characters, i.e. text.

• Specifically, in C strings are defined as an array of characters.

• Examples of strings include:

• “It’s a nice day!”

• “My name is Fred”

• “The temperature outside is 24 degrees”

Strings

• Creating a string:

• If you wanted to create a string in C, you would do

something like this:

char name[] = "Alex";

Why Use Strings?

• Up until now we have only considered numeric, Boolean

and single character data.

• Strings are necessary because you will often be

manipulating data that consists of text, e.g. names,

addresses, etc.

Start with character arrays

• In C there is no variable type “String”.

• This is the case for many other higher level languages.

• We therefore use an array of characters to store a string.

• char string1[100] = "Hello";

string1[0] string1[1] string1[2] string1[3] string1[4]

string1[100]
‘H' ‘e' ‘l' ‘l' ‘o'

address: 75F7CC 75F7D0 75F7D4 75F7D8 75F7DC

PRINTING STRINGS

Printing Strings

• You could print strings using a for loop as shown below:

Printing Strings

• This will work but it is not recommended.

Strings and Character Arrays

• What is the difference between strings and character

arrays?

• A string is terminated with a special character ‘\0’.

• When you create a string, the character ‘\0’ is

automatically put at the end.

Strings in Memory

• char string1[100] = "Hello";

• Actually results in:

So string[5] will contain ‘\0’ – used to stop processing by

any function that processes this string

string1[0] string1[1] string1[2] string1[3] string1[4] string1[5]

string1[100] 'H' 'e' 'l' 'l' 'o' '\0'

address: 75F7CC 75F7D0 75F7D4 75F7D8 75F7DC 75F7E1

Printing Strings

• Since all strings end with ‘\0’, you could also print the

string using:

Printing Strings

• You should simply use %s to print strings.

SCANNING STRINGS

Scanning Strings

• Up until now, you needed to use ‘&’ when scanning in

data.

• For example, you would type something like the following

for characters (chars):

char c;
scanf("%c", &c);

Scanning Strings

• This is not the case with strings.

• You do not need to use ‘&’ when scanning in strings.

• The reason for this is a bit technical:

• Char array names decay to pointers in C.

• The string name already points to the address of the first element in

the string.

• Therefore we don’t need &.

Scanning Strings

• So how do we scan in strings in C?

• Use the following:

• Note how you need to specify the character array length!

No & symbol!

Scanning Strings

• Lets look at the following example:

Scanning Strings

• This outputs the following:

Scanning Strings

• Scanf_s is limited to one single word by default.

• If you enter a space, it will stop scanning.

Scanning Two Words

• You will can do the following if you want to scan two

words.

Strings with Two Words

• This does not mean that you cannot have a string with

spaces in it.

Scanning Two Words

• If you do want to scan two words into one string, you can

do the following:

• The [^\n] tells scanf to keep reading characters until a

new line is entered (\n).

• The %*c remove the new line from the input buffer.

Scanning Two Words

• Lets see this work in a C program:

EXAMPLE PROBLEMS

Employee Name Scanner

• You are writing software to read in employee names.

Write a program that:

• Reads in employee names as strings.

• The program should stop reading names if the character ‘!’ is

entered.

• Count how many employees have names beginning with ‘b’ or ‘B’.

• Print the answer to the screen.

Employee Name Scanner

• Go to C program solution.

Employee Name Scanner

• The following code will work:

Employee Name Scanner

• C Program Output:

PROGRAMMING
CT103

Week 6b

Sign in on Blackboard

• Please sign in on blackboard for CT103.

• I will leave the sign in option open for an hour after the

lecture.

Lecture Content

• Last lecture (Week 6a):

• What is a string in C

• How to initialise a string

• Printing strings

• Scanning strings

• Example C program

• Today’s lecture (Week 6b):

• Length of a string

• Insert data in a string

• String functions

• Example C program

STRING LENGTH

String Recap

• A string is a collection of characters, i.e. text.

• Specifically, in C strings are defined as an array of

characters.

• You can create a string in C as follows:

char name[] = "Alex";

String Length

• The length of a string is always the number of characters

up to, but not including, the string terminator.

• By string length we really mean the number of characters

actually used.

• The length of the following string is 9:

• “August 10\0”

Size of String

• Any string should be big enough to hold the text you need

to put into it PLUS 1 more for the null character

// can hold up to 3 characters + null character
// size determined by [4]
char str1[4] = "One";

// can hold up to 3 characters + null character
// size determined when it is initialised with “Two”
char str2[] = "Two";

// can hold up to 99 characters + null character
// even though we only use 6 at initialisation
char str3[100] = "Three";

Get Length of String

• We could count the length of the string ourselves:

• Try out this code yourself!

char string1[100] = "This is some random text";

int len = 0;

while (string1[len] != '\0')
{

len++;
}

printf("Length of string = %d \n", len);

• It is much faster if we use the strlen() function to get the

length of the string.

• strlen() does what the previous example does.

• In order to use strlen(), we need to include the “string.h”

library at the beginning of the program.

• This is a library of string functions.

Get Length of String

#include <stdio.h>
#include "string.h"

void main()
{

char string1[100] = "This is some random text";

int len = strlen(string1);

printf("Length of string = %d \n", len);

}

Get Length of String using strlen()

Don’t forget this!

#include <stdio.h>
#include "string.h"

void main()
{

char string1[100] = "This is some random text";

int len = strlen(string1);

printf("Length of string = %d \n", len);

}

Get Length of String using strlen()

Don’t forget this!

Length of a String Summary

• A string is just an array of characters.

• To use a string it must be terminated properly – this means the last

character in the array must be the null character ‘\0’.

• Functions that return the length of a string don’t count the null

character (even though they return it), so you always have to

allocate an array of size 1 more than the number of characters you

want to store.

• The length of the following string is 9:

• “August 10”

• However, you would need to allocate an array of characters of

size 10 to hold it!

• Usually you just allocate plenty !

DATA INTO STRINGS

Putting Data into Strings

• In lecture 6a, we talked about setting strings using

scanf_s, e.g.

• How would we set a string without scanning in text?

• Can I simply write the following?

Putting Data into Strings

• Can I simply write the following?

• No, this won’t work.

• You need to use strcpy_s() from the string.h library that

we mentioned before.

Strcpy_s()

• See the following example that uses strcpy_s()

Strcpy_s()

• Produces the following output:

STRING FUNCTIONS

Common String functions

• Strcpy_s() Copy one string to another (seen already)

• Strncpy_s() Copy n characters from one string to another

• Strcat_s() Link together (concatenate) two strings

• Strncat_s() concatenate n characters from two strings

• strcmp() Compare two strings

• strncmp() Compare n characters from two strings

Strncpy_s()

• Strncpy_s()

• Copy n characters from one string to another.

Strcat_s()

• Strcat_s()

• Strcat_s() Link together (concatenate) two strings

Strncat_s()

• Strncat_s()

• Strncat_s() concatenate n characters from two strings

Strcmp()

• Compare two strings

• Strcmp() will return 0 if both strings are the same.

Strcmp()

• Compare two strings

• Strcmp() will return 0 if both strings are the same.

Strncmp()

• Compare n characters from two strings

• Strncmp() will return 0 if first n chars of both strings are

the same.

Strncmp()

• Compare n characters from two strings

• Strncmp() will return 0 if first n chars of both strings are

the same.

Note on last weeks example

• We used newName[0]!=‘!’

• We could also use strncmp()

Note on last weeks example

• See strncmp()

EXAMPLE PROBLEMS

Employee Name Comparison

• You are writing more software to read in employee

names. Write a program that:

• Reads in 3 employee names as strings.

• Check the first letter against the target name “Bobby”.

• If the name also begins with the letter ‘B’, check and see if the full

names are the same.

Employee Name Comparison

• Go to C program solution.

Employee Name Comparison

• The following

code will work:

Employee Name Comparison

• C Program Output:

PROGRAMMING
CT103

Week 7a

Sign in on Blackboard

• Please sign in on blackboard for CT103.

• I will leave the sign in option open for an hour after the

lecture.

New Lab Groups

• Please note the change in lab groups for weeks 7-12:

• 2pm-4pm lab session: Students with surnames L to Z.

• 4pm-6pm lab session: Students with surnames A to K.

• Please make sure you attend the correct lab session.

Lecture Content

• Last lecture (Week 6b):

• Length of a string

• Insert data in a string

• String functions

• Example C program

• Today’s lecture (Week 7a):

• Constants

• Puts

• Gets

• Sscanf_s

• Example C program

CONSTANTS

Constants

• We talked a lot about variables already and know what

they are.

• E.g.

• We can also create constants.

• Constants refer to fixed values that the program cannot

change during its execution. These are also often called

literals.

Constants

• You would create a constant in C as follows:

Constants

• As the name suggests, you cannot change the value of a

constant.

Can’t do this!

#Define in C

• You can also declare constants using #define.

• These need to be created outside of main.

• Using #define creates what is called a macro.

Macro

• What is a macro?

• A macro is a fragment of code which has been given a

name. Whenever the name is used it is replaced by the

contents of the macro.

• There are two types of macros:

• Object like macros.

• Function like macros (we will ignore these for now).

#Define in C

• What does #define look like in C?

• You can create an object like macro in C using the

following:

#Define in C Example

#Define in C Example

PUTS

Puts

• What is puts?

• Puts is a function for printing strings to the screen.

• You need to include the <stdio.h> library to call puts.

Why Puts Over Printf?

• Puts is simple.

• Puts is less expensive than printf.

• Puts is more secure.

Puts in C

• You would use Puts as follows in C:

Puts in C

• This gives the following output:

GETS

Gets

• What is gets?

• Gets is a function for reading input from the keyboard.

• You also need to include the <stdio.h> library to call gets.

Gets vs Scanf?

• Gets is only used for strings.

• Gets will not stop reading characters, even with

whitespace, until it reaches a newline.

• Gets is easy to use.

Gets in C

• You would use Gets as follows in C:

Gets in C

• This gives the following output:

USING PUTS AND GETS

Puts and Gets

Puts and Gets

SSCANF_S

Sscanf_s

• You may get strings from anywhere, such as files or

databases.

• These may then need to be parsed to extract data.

• What does parse mean?

• Transforming a steam of text into some other form of information.

Sscanf_s

• Sscanf_s is useful for scanning formatted data from a

string.

• IF you know the exact format of the string (and it won’t be

changed), you can read it the same way as you would

read the console input using scanf.

Sscanf_s Example

Sscanf_s Example

EXAMPLE PROBLEMS

Physics Energy Calculator

• You are writing software to calculate physics equations.

Write a program that:

• Defines acceleration due to gravity as a constant.

• Reads in 4 measurements of the following:

• Mass (m), velocity (v) and height (h).

• Calculate the kinetic (KE) and potential (PE) energy of the 4

objects.

• Note:

• KE = 0.5 m v2

• PE = m g h

• g = 9.81 m/s2

Physics Energy Calculator

• Go to C program solution.

Physics Energy Calculator

Physics Energy Calculator

• C Program Output:

PROGRAMMING
CT103

Week 7b

Sign in on Blackboard

• Please sign in on blackboard for CT103.

• I will leave the sign in option open for an hour after the

lecture.

Lab Solution Submissions

• Internet access on Eduroam is available again.

• From week 8 lab onwards, you will have to submit your

lab assignments by the end of the lab.

• i.e. 6pm Tuesday.

• You will not have until midnight to finish your assignment.

• If it is submitted after 6pm, it will be marked as late and

you may receive a penalty.

Lecture Content

• Last lecture (Week 7a):

• Constants

• Puts

• Gets

• Sscanf_s

• Example C program

• Today’s lecture (Week 7b):

• Testing characters

• Character mapping

• Arrays of strings

• Example C program

TESTING CHARACTERS

Character Tests

• There are a number of character tests that we can use

that are useful for analyzing characters.

• We already saw that upper and lower case letters are

different in C.

• There are tests that we can do to check for upper/lower

case letters.

Ctype.h Library

• We will first need to use the ctype.h library.

• This is a library with functions that are useful for testing

and mapping characters.

Character Tests

• Some useful character testing functions:

• isalpha

• isdigit

• isupper

• islower

• isspace

isalpha

• The isalpha function is useful for checking if the

character is alphabetic.

isalpha

• The isalpha function is useful for checking if the

character is alphabetic.

isdigit

• The isdigit function is useful for checking if the character

is a digit.

isdigit

• The isdigt function is useful for checking if the character

is a digit.

isupper

• The isupper function is useful for checking if the

character is an uppercase letter.

isupper

• The isupper function is useful for checking if the

character is an uppercase letter.

islower

• The islower function is useful for checking if the

character is a lowercase letter.

islower

• The islower function is useful for checking if the

character is a lowercase letter.

isspace

• The isspace function is useful for checking if the

character is whitespace.

isspace

• The isspace function is useful for checking if the

character is whitespace.

CHARACTER MAPPING

Character Mapping

• We have looked at useful character testing functions:

• isalpha

• isdigit

• isupper

• Islower

• Isspace

• Very useful functions to convert character case:

• toupper

• tolower

toupper

• The toupper function is very useful as it allows us to

convert letter to uppercase.

toupper

• The toupper function is very useful as it allows us to

convert letter to uppercase.

tolower

• The tolower function is very useful as it allows us to

convert letter to lowercase.

USING CHARACTER

MAPPING

Example C Program

• See C program using character testing and mapping:

Example C Program

• We can swap upper and lower case characters:

Example C Program

• See C program using character testing and mapping:

Example C Program

• Convert all characters to lower case:

Try it yourself

• Try change the program below to convert all characters

to uppercase.

Name Scanner Program

• Remember our name scanner program from a few

weeks ago?

Name Scanner Program

• Could have used tolower when checking for the letter b.

Using ctype.h

ARRAYS OF STRINGS

Arrays of Strings

• We have talked about arrays already.

• In C, Strings are arrays of characters.

• We also covered 2D arrays!

• Next we will discuss arrays of strings.

Arrays of Strings

• Often we need to process lists of strings, such as names.

• As with the other 2D arrays we have seen, we can

create a 2D array of characters.

• Each row (the first index) is a different string.

• Each column is a character.

char names[][20]

names[i][0] names[i][1] names[i][2] names[i][3] names[i][4] names[i][5] names[i][6] names[i][7]

names[0] S m i t h \0

names[1] B u r k e \0

names[2] G e a r y \0

names[3] N e v i l l e \0

• In the following example we create a list of names, called

“names”!

• We can refer to each string using the first index

• So for example names[2] is “Geary”

Arrays of Strings Example

• Array of Strings in C:

Arrays of Strings Example

• Array of Strings in C:

EXAMPLE PROBLEMS

Names Processor

• You are writing software to process a list of names:

• You have an array of names (Strings): "Bob","TIM" ,"SARAH"

,"AlEx" ,"SAMMY"

• Loop through these names and convert all characters to lower

case.

• Display the new array of strings to the screen. Separate each

character by a tab when printing each string.

Names Processor

• Go to C program solution.

Names Processor

Names Processor

• C Program Output:

PROGRAMMING
CT103

Week 8a

Sign in on Blackboard

• Please sign in on blackboard for CT103.

• I will leave the sign in option open for an hour after the

lecture.

Lecture Content

• Last lecture (Week 7b):

• Testing characters

• Character mapping

• Arrays of strings

• Example C program

• Today’s lecture (Week 8a):

• Functions

• Writing functions

• Functions in C

• Example C program

FUNCTIONS

Functions

• What is a function?

• Definition: A function is a piece of code that can be

called whenever we need to execute that code.

Functions

• What functions have we seen so far?

• We have seen many functions in C:

• strlen()

• isalpha()

• isdigit()

• isupper()

• islower()

• isspace()

• These are all examples of pieces of code that we can

call in our program to achieve some task.

Functions

• What is the point of functions?

• Benefits:

• Functions allow us to reuse code, therefore avoid repetition.

• More readable programs.

• Enables us to divide complex problems into simpler ones.

• Easier to make changes to program.

WRITING FUNCTIONS

Function Template

• All functions have the following template:

type name (parameters){

return;

}

• Type = data type returned by the function (can be void).

• Name = function name.

• Parameters = data we are giving to the function (can be

empty).

• Return = what data is returned by the function (can also

return nothing).

Function Type

• Like a variable, a function must have a type

• It can be one of the standard variable types (char,

double, float, int) or it can be void

• The type tells the compiler what type of variable the

function returns

• For example

• getchar() returns a char

• strcmp() returns an int

Why return anything?

• Functions can return a value or answer to some

calculation or query

• E.g. int getEmployeeAge(int employeeID);

• When we have the answer to the calculation or query, we

will likely want to use this somewhere else in our program.

• In order to do this, we need to return that value from the

function.

Naming functions

• Function names can’t contain spaces.

• You should give your function a helpful name that

reflects what it does.

• Each functions is declared with parentheses “()” after the

function name (even if it doesn’t don’t take any

parameters), e.g. void main().

• You can’t name your function using a “reserved word”.

Reserved Words

• You can’t name your function using a “reserved word”.

• What is a reserved word?

• There are 32 reserved words that have predefined meaning in C.

You therefore can’t use these as variable names.

Function Prototypes

• Before your compiler will let you use a function, you have

to give it a prototype.

• We have to do this before we call it, normally before the

main() function, and after any #include or #define

directive.

• The .h files (header files) contain the prototypes for C

library functions we call.

Writing a Function

• We have already actually written a function:

• Every time we wrote our C programs, we wrote our code

inside of a function main().

main()
• main() is the first function called when a program is

executed

• When is finished the program exits

• Main() can return nothing or an integer
int main()

{

return 0;

}

void main()

{

return;

}

• so… the “type” of a function specifies what it returns (void

if nothing)

FUNCTIONS IN C

C Program without Function EG1

• Simple C program that reads in an age and prints it to

the screen.

C Program with Function EG1

• C program that creates a

function to read in an

age.

• Notice how this function

does not read in any

parameters.

Function prototype

Function itself

Main (we should be

familiar with this one)

C Program EG1 Comparison
• These programs do the same thing.

No Function Using a Function

Don’t forget header files here.

C Program without Function EG2

• Get the max number out of 2 numbers:

C Program with Function EG2

• Get the max number out of 2 numbers:

Function prototype

Function itself

Main (we should be

familiar with this one)

C Program EG2 Comparison

• If these programs do the same thing, why would you use

functions? This program is much longer…

No Function Using a Function

C Program with Function Cont.

• Well what if I wanted to do

more than 1 comparison?

• If I use a function, I can

simply call the function

again.

• This is much more scalable

than not using a function.

EXAMPLE PROBLEM

Salary Tax Function Problem

• You are writing software to process employees salaries:

• Write a function called “readSalary”.

• readSalary does not return anything.

• This function should read in a tax threshold in Euro as a parameter.

• The function should ask the user to enter the employee salary.

• The function should then check if the salary is >, <, or = the tax

threshold.

• You should print a message to the console saying which of these is

the situation.

• Test your function by passing in the value of €44,000 as a tax

threshold when you call the readSalary function in main.

Salary Tax Function Problem

• Go to C program solution.

Salary Tax Function Problem

Salary Tax Function Problem

• C Program Output:

PROGRAMMING
CT103

Week 8b

Sign in on Blackboard

• Please sign in on blackboard for CT103.

• I will leave the sign in option open for an hour after the

lecture.

Lecture Content

• Last lecture (Week 8a):

• Functions

• Writing functions

• Functions in C

• Example C program

• Today’s lecture (Week 8b):

• Functions recap

• Local variables

• Global variables

• Functions and strings

• Example C program

FUNCTIONS RECAP

Functions

• A function is a piece of code that can be called whenever

we need to execute that code.

• We have seen many functions in C, e.g. strlen().

• Benefits:

• Functions allow us to reuse code, therefore avoid repetition.

• More readable programs.

• Enables us to divide complex problems into simpler ones.

• Easier to make changes to program.

Function Template

• All functions have the following template:

type name (parameters){

return;

}

• Type = data type returned by the function (can be void).

• Name = function name.

• Parameters = data we are giving to the function (can be

empty).

• Return = what data is returned by the function (can also

return nothing).

C Program with Functions

• Example from Monday: Get max of 2 numbers:

Function prototype

Function itself

Main (we should be

familiar with this one)

LOCAL VARIABLES

Variable Scope

• What do we mean by variable scope?

• Definition: The scope of the variable defines the region

of the program where the variable is visible.

• A variables scope can be either local or global.

Local Variables

• Local variables are variables that are declared inside a

function or code block.

• We will see in the coming slides how the visibility of a

variable is important!

Local Variables

• Here the variable “myInt” is local to the for loop.

• “myInt” is not visible outside of the for loop as this is

outside of its scope.

Local Variables

• Similarily, the variable “i” is also local to the for loop.

• “i” is not visible outside of the for loop as this is outside of

its scope.

Local Variables

• We can change the scope of “i” and “myInt” by declaring

these variables outside of the for loop.

No problems accessing

these variables outside for loop

now

Local Variables

• What will the following code output?

Local Variables

• Why does the code output the following?

Local Variables

• Why does the code output the following?

• Two variables called “myInt” are being created.

• One is local to the main function, the other is local to the for loop.

• This is bad practice.

• Any time you are creating variables, give them a unique name.

Local Variables

• We can see the both “myInt” variables are stored

separately in memory.
%p is for pointers.

You can simply use %X if you wish.

We will not discuss pointers yet.

Local Variables

• Similarly we can create variables local to specific

functions.

• “myInt” is visible in testFunct() but not in main().

Local Variables

• Similar to before, we see in the example below the

different addresses for both “myInt” variables in

testFunct() and main().

GLOBAL VARIABLES

Global Variables

• Global variables are variables that are created outside of

a function.

• These variables can be used anywhere in the program

after it is declared.

• To set up a global variable, simply declare it outside of

any function. It can then be accessed by any function.

We normally declare it before main().

Global Variables

• Lets look at the following example where we declare a

global variable:

Global Variables

• This code outputs the following:

Global Scope

• We have already seen macros that have global scope in

previous lectures (week 7a):

FUNCTIONS AND

STRINGS

Strings and Functions

• We have not yet talked about how to pass a string to and

from a function.

• Unfortunately, it is not as straightforward with strings

since they are arrays of characters…

Returning Strings

• If we want to return a string from a function, we need to

declare the return type as “const char*”:

Returning Strings

• If we want to return a string from a function, we need to

declare the return type as “const char*”.

• What we are actually doing here is returning a pointer (*)

to the first element of the string.

Returning Strings

Passing Strings

• If you want to pass a string to a function, you need to

use “char*”.

• Here we are passing a pointer (*) to the first character of

the string.

• Again, don’t worry about pointers yet.

Passing Strings

EXAMPLE PROBLEM

Bank Account Problem

• You are writing software to process bank accounts:

• Create a global variable that represents the bank account balance.

• Write a function that initializes the balance to €50.

• Write a function that allows the user to make a withdrawal and

update the bank balance.

• Write a function that allows the user to make a deposit and update

the bank balance.

• Write a function that displays the bank balance.

• Test the software by:

• Creating a bank acc.

• Withdraw €10.

• Deposit €60.

• Withdraw €30.

• Display the balance between each transaction.

Bank Account Problem

• Go to C program solution.

Bank Account Problem

Bank Account Problem

• C Program Output:

PROGRAMMING
CT103

Week 9a

Sign in on Blackboard

• Please sign in on blackboard for CT103.

• I will leave the sign in option open for an hour after the

lecture.

Lecture Content

• Last lecture (Week 8b):

• Functions recap

• Local variables

• Global variables

• Functions and strings

• Example C program

• Today’s lecture (Week 9a):

• Conditional operator

• Maths functions

• Example C program

CONDITIONAL OPERATOR

Conditions

• Up until now, if we wanted to check if a condition is true,

we would use an if else statement like this:

Conditional Operator

• Today we will introduce the conditional operator in C!

• This involves using two symbols: ‘?’ and ‘:’

• It is a compact way of representing decision making

statements.

• The conditional operator looks like:

Variable = (test) ? ‘value if true’ : ‘value if false’ ;

• The test will yield a value of true or false which

determines the value which will be put into the variable

on the LHS of the ‘=‘

• The RHS evaluates to either value, depending on

whether the condition is true or false

Conditional Operator

Conditional Operator

• The conditional operator in C looks like this:

• Expression 1 is a Boolean condition.

• Expression 2 will execute if expression 1 is true.

• Expression 3 will execute if expression 1 is false.

Image from:

Javapoint.com

Conditional Operator Example

• Conditional operator in C example:

Tax Rate Calculator

• Take the following example:

Tax Rate Calculator

Tax Rate with Conditional Operator

• Take the following example:

Tax Rate with Conditional Operator

Tax Rate with Conditional Operator

• We are replacing this:

• With this:

• Much shorter!

Another example
void main()
{

int age;
float gift;
printf("how old are you?:");
scanf_s("%d", &age);

if (age < 18)
{

gift = 5.0;
}
else
{

gift = 10.0;
}

printf("your gift is %.2f\n", gift);
}

Can be written ..

void main()
{

int age;
float gift;
printf("how old are you?:");
scanf_s("%d", &age);

gift = (age < 18) ? 5.0 : 10.0;

printf("your gift is %.2f\n", gift);
}

Nice example

void main()
{

int num;
char s;

num = 1;
s = (num == 1) ? ' ' : 's';
printf("You have %d apple%c \n", num, s);

num = 10;
s = (num == 1) ? ' ' : 's';
printf("You have %d apple%c \n", num, s);

}

Going too far ?

void main()
{

int num;

num = 1;
printf("You have %d apple%c \n", num, (num == 1) ? ' ' : 's');

num = 10;
printf("You have %d apple%c \n", num, (num == 1) ? ' ' : 's');

}

• This is even shorter, but perhaps a bit too hard to read!

• This works because C evaluates the conditional operator BEFORE

sending the result to printf

MATHS

Maths in C

• We have done plenty of maths in C until now.

• We have done:

• Addition: ‘+’

• Subtraction: ‘-’

• Multiplication: ‘*’

• Division: ‘/’

• Also modulus (remainder): ‘%’

Modulus Recap

• A quick reminder about modulus (%).

• This allows us to get the remainder when dividing a

number by another number.

• See example:

Maths in C

• There is also the maths library in C that contains lots of

very useful functions for doing mathematical operations!

• You will need to import math.h to use these:

Maths in C

• Math.h has many useful functions:

• A small selection of these that we will talk about today

include:

• floor() – returns the next lowest whole number

• ceil() – returns the next highest whole number

• fabs() – returns the absolute value

Sample Program

Output

EXAMPLE PROBLEM

Payment Processing Problem

• You are writing software to process online shop

payments:

• Read in:

• The number of past customer purchases from the user.

• The current purchase amount in euro.

• The customer payment amount in euro.

• If the customer has made more that 5 previous purchases, round

their bill down to the nearest euro.

• Write a function to check if the customer has over/under paid. Print

the absolute value of the amount to the screen to let the user know.

Payment Processing Problem

• Go to C program solution.

Payment Processing Problem

Payment Processing Problem

• C Program Output:

PROGRAMMING
CT103

Week 9b

Sign in on Blackboard

• Please sign in on blackboard for CT103.

• I will leave the sign in option open for an hour after the

lecture.

Lecture Content

• Last lecture (Week 9a):

• Conditional operator

• Maths functions

• Example C program

• Today’s lecture (Week 9b):

• More maths functions

• Macros

• Example C program

MATHS

Maths in C Recap

• We can use the maths library in C to do mathematical

operations using their functions!

• On Monday we explored:

• floor() – returns the next lowest whole number

• ceil() – returns the next highest whole number

• fabs() – returns the absolute value

Maths in C Recap

MORE MATHS FUNCTIONS

Maths in C

• Math.h has many other use functions other than the

ones we just created:

• Pow() – raise one number to the power of another.

• Sqrt() – Square root of a number.

• Sin() – returns the sine of an angle in radians.

• Cos() – returns the cosine of an angle in radians.

• Tan() – returns the tangent of an angle in radians.

• Exp() – returns the exponent on a value.

• Log() – returns the natural log of a value.

Pow()

• Pow() – raise one number to the power of another.

• E.g. 25 = 32

• We say here that we are raising the number 2 to the

power of 5.

Pow()

• Pow() – raise one number to the power of another.

Not using Pow()

• The alternative would be to do this...

• Much easier to just use pow() instead of this.

Sqrt()

• Sqrt() – Square root of a number.

• E.g. Square root of 9 = 3.

Trigonometry

• Quick refresher on trigonometry:

Sin()

• Sin() – returns the sine of an angle in radians.

• What are radians?

• Radians are another way of measuring an angle.

• To convert angle D from degrees to radians R, you use

the following equation:

• R = D * π / 180

Sin()

• Sin() – returns the sine of an angle in radians.

Cos() and Tan ()

• Cos() – returns the cosine of an angle in radians.

• Tan() – returns the tangent of an angle in radians.

Exp()

• Exp() – returns the exponent on a value.

• E.g. exp(10) = e10 = 22026.

• Where e = 2.71828 (Euler’s number).

Log()

• Log() – returns the natural log of a value.

• E.g. log(10) = loge10 = 2.303.

• Natural log of x is the power that e is raised to equal x.

• I.e. e2.303 = 10

Log()

• Log() – returns the natural log of a value.

MACROS

Macros

• We introduced macros in lecture 7a.

• A macro is a fragment of code which has been given a

name. Whenever the name is used it is replaced by the

contents of the macro.

• There are two types of macros:

• Object like macros.

• Function like macros (we skipped over these).

Object Like Macros in C

Function like Macros

• Today we will cover function like macros.

• Function like macros are pieces of code that are given a

name.

• Unlike object like macros, function like macros contain a

function.

Function like Macros in C

• Function like macro in C:

EXAMPLE PROBLEM

Cost Guard Problem
• You are writing software for the coast guard to track ships in the

ocean:

• There are 2 ships in locations.

• Ship1 - location: x = 0, y = 0. velocity: vx = 0.5 km/hr, vy = 0.5 km/hr.

• Ship2 - location: x = 5, y = 0. velocity: vx = -0.5 km/hr, vy = 0.5 km/hr.

Cost Guard Problem
• You are writing software for the coast guard to track ships in the

ocean:

• There are 2 ships in locations.

• Ship1 - location: x = 0, y = 0. velocity: vx = 0.5 km/hr, vy = 0.5 km/hr.

• Ship2 - location: x = 5, y = 0. velocity: vx = -0.5 km/hr, vy = 0.5 km/hr.

• Write a C program that tracks their movements over 10 hours.

• Write a function to return the Euclidean distance between each ship.

• Write a function to update and return the location of a ship.

• Write a function to display the location of each ship.

• If the ships are within 1.5 km of one another, display a warning.

• If the ships are within 200 meters of one another, the ships have collided. End the

program.

• Will the ships collide? If so, after how many hours?

Cost Guard Problem

• Go to C program solution.

Cost Guard Problem

Cost Guard Problem

• C Program Output:

PROGRAMMING
CT103

Week 10a

Sign in on Blackboard

• Please sign in on blackboard for CT103.

• I will leave the sign in option open for an hour after the

lecture.

Lecture Content

• Last lecture (Week 9b):

• More maths functions

• Macros

• Example C program

• Today’s lecture (Week 10a):

• Passing arrays to functions

• Generating random numbers

• Breakpoints

• Example C program

PASSING ARRAYS TO

FUNCTIONS

Passing Arrays to Functions

• We already mentioned how we can use pointers to pass

in strings, i.e. character arrays.

• We will see in the coming slides how to pass arrays of

other variable types, e.g. ints and floats, to functions.

• We will also see how to pass strings to functions without

using pointers.

Passing Arrays to Functions

• In order to accept arrays as function parameters, we have to specify

its parameters as: type of array variables, an identifier and square

brackets []. E.g:

void procedure (int arg[])

accepts a parameter of type "array of int" called arg. In order to pass

to this function an array declared as:

int myarray [40];

it would be enough to write a call like this:

procedure (myarray);

Example – pass int array
#include <stdio.h>
#include <stdlib.h>

void printarray(int arg[], int length);

void main()
{

int firstarray[] = { 5, 10, 15 };
printarray(firstarray, 3);

}

void printarray(int arg[], int length)
{

for (int n = 0; n < length; n++){
printf("%d ", arg[n]);

}
}

• We can format the output of ints using %xd, where ‘x’ is

the number of characters to print out with the int.

• If int requires 2 characters, e.g. ‘10’, then %3d will print 1

space before 10, i.e. ‘ 10’.

• This works for floats too!

Formatting int display

Pass char array

#include <stdio.h>
#include <stdlib.h>

void printarray(char arg[], int length);

void main()
{

char firstarray[] = { 'a','b','c' };

printarray(firstarray, 3);
}

void printarray(char arg[], int length)
{

for (int n = 0; n < length; n++){
printf("%4c", arg[n]);

}
}

Passing Array Example

Passing Array Example (continued)

Passing Array Example - Output

Pass string as parameter

• A string in C is just a char array

• Here we pass a string to the function puts()

#include <stdio.h>

void main()
{

char string1[] = "My string";

puts(string1);
}

• We saw already how we can pass a string using pointers

from week 8b.

• Here char* is a pointer to the first character in the string

name.

• This is the accepted convention for passing strings to

functions in C.

• You can do it without pointers as we will see next..

Pass String Using Pointers

Passing Strings Without Pointers

#include <stdio.h>

void printStringBackwards(char s[]);

void main(){
char string1[] = "My string";
printStringBackwards(string1);

}

void printStringBackwards(char str[]){
int len = 0, i = 0;

len = strlen(str);
i = len - 1;

while (i >= 0)
{

printf("%c", str[i]);
i--;

}
printf("\n");

}

Passing Strings Example

Passing Arrays with Pointers

• Also, you can use pointers with arrays of ints too…

• Don’t worry about this for now.

• We have not yet covered pointers so this won’t make

much sense until we do.

RANDOM NUMBERS

Random numbers

• Sometime we need to generate random numbers, e.g. for

games.

• To do this we can use the rand() function, which returns a

random number from 0 to 32767 (this upper limit will vary

depending on the system and implementation of the rand

function)

• You will need to include the stdlib.h header file

Rand() Function

#include <stdio.h>
#include <stdlib.h>

void main()
{

int randNum;
int i;

for (i = 0; i < 10; i++)
{

randNum = rand();
printf("%d - %d\n", i,
randNum);

}
}

Dice – random numbers from 1 to 6

#include <stdio.h>
#include <stdlib.h>

void main()
{

int randNum;
int i;

for (i = 0; i < 10; i++)
{

// %6 gives numbers from 0 to 5, so add 1 to get
// numbers from 1 to 6
randNum = rand() % 6 + 1;
printf("%d - %d\n", i, randNum);

}
}

Trouble is…every time you run it –

you get the same numbers!

Increasing randomness

• rand() will repeat the same set of random numbers if

repeated

• Basically it’s an algorithm (has a starting point)

• Programmers often use srand() to generate numbers

that are more random

• Giving the algorithm a different starting point!

• This is called seeding the algorithm

• The trick is to use a different seed every time

• This is usually accomplished by using the current time as the

seed

Increasing randomness

• Programmers often use srand() to generate numbers

that are more random

• Generating truly random numbers is actually non-trivial

and is an active research area.

• Some researchers use physical phenomena, e.g. radioactive

decay to generate truly random numbers.

• Philosophical debate as to whether or not anything is random…

• This is outside of the scope of this course 

• The algorithms used in computer programs are called

pseudorandom number generators.

• Not truly random but good enough for what they are needed for.

#include <stdio.h>
#include <stdlib.h>
#include <time.h>

void main()
{

int randNum;

// this converts a time structure (special C type) to
// a long integer
// lt will contain the number of seconds since 1 Jan 1970, 00:00:00
long lt = time(NULL);

// srand is the seeding function - gives rand() a starting point
srand(lt);

for (int i = 0; i < 100; i++){
randNum = rand() % 6 + 1;
printf("%d - %d\n", i, randNum);

}
}

Random Seed

Breakpoints
• Breakpoints are a useful way of seeing what is happening

in your code:

Breakpoints
• The breakpoint will then look like this:

Use the debugger to check it out
• Use the debugger to stop the code

• Use f10 to step over line 13

• You can see the value of lt from the watch window

EXAMPLE PROBLEM

Coin Toss Problem

• Write software to do 10 games of “coin toss”.

• This game consists of tossing a coin and seeing if it came

up heads or tails.

• Each game should toss the coin 1000 times.

• Record the number of heads and tails in each game.

• What percentage of tosses were heads and what were

tails for each game?

• Is this what you expect?

Coin Toss Problem

• Go to C program solution.

Coin Toss Problem
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#define NUMTOSSES 1000

void main()
{

int coin, i, j;
int totalHeads;
double headsPercent, tailsPercent;

printf("%5s %10s %10s\n____________________________\n", "Run", "Heads %", "Tails
%");

for (i = 1; i <= 10; i++){
srand(i * time(NULL));
totalHeads = 0;

for (j = 1; j <= NUMTOSSES; j++){
/* coin: 1 is heads, 0 is tails */
coin = rand() % 2;
totalHeads += coin;

}

headsPercent = (double)totalHeads * 100.0 / NUMTOSSES;
tailsPercent = 100.0 - headsPercent;
printf("%5d %10.2lf %10.2lf\n", i, headsPercent, tailsPercent);

}
}

Coin Toss Problem

• C Program Output:

Notice anything ?

• What about this line:

• srand(i * time(NULL));

• Because the time take to do 1000 tosses might be less

than 1 second, the time value would not change, so we

multiple it by i to be sure that each round has a different

seed!

Random numbers in a range

• This function will generate a random number between

some lower and upper range (inclusive)

Using it

PROGRAMMING
CT103

Week 10b

Sign in on Blackboard

• Please sign in on blackboard for CT103.

• I will leave the sign in option open for an hour after the

lecture.

CT103 Lab Update

• There will be no more graded assignments in semester 1

for CT103 after the week 10 lab (30/11/21).

• The labs will continue running until and including week 12

(Tuesday 14/12/21). Attendance is optional at week 11

and 12 labs.

• These sessions will be a mix of:

• Q&A where you can ask the instructors about anything you are

unsure of.

• A worksheet (not graded) so you can get more practice.

Lecture Content

• Last lecture (Week 9b):

• Passing arrays to functions

• Generating random numbers

• Breakpoints

• Example C program – We will go through this today.

• Today’s lecture (Week 10a):

• Structures

• Arrays of structures

• Functions and structures

• Example C program

STRUCTURES

Structures

• We can use arrays to hold multiple data items of the

same type, e.g. ints, chars, etc.

• What if we want to hold multiple data items that are of

different types?

• We can use structures!

Structures

• Let’s say you keep several pieces of information about

customers, for example:

• Name

• Account number

• Balance

• Address

• ….

Sheila

O’Brien

Account #

46587698

Balance

+34599.46

No. 5

Spencer

Street

Storing Related Data

• If we only had a bank customer balance to record, we

could use an array:

• We could also create a separate array to store bank

customer IDs:

• This would work fine, we would just need to ensure that

all arrays are ordered in the same way.

Week 10a Example

• The example from

Monday did

exactly this.

• We have 2 arrays

storing related

information about

customers.

Structures

• We can use structures to store this information in a

more organised manner.

• We declare a structure using the keyword struct, as

follows:

struct customer
{

char name[20];
int accountNumber;
float balance;
char address[20];

};

Creating a struct variable

struct customer customer1;

• You reference the members of a struct using the . notation:

strcpy(customer1.name, "Richie Rich");

customer1.accountNumber = 101;

Structure Example
#include <stdio.h>
#include <string.h>

struct customer{
char name[20];
int accountNumber;
float balance;
char address[20];

};

void main(){
struct customer customer1;

strcpy_s(customer1.name,20, "Richie Rich");
customer1.accountNumber = 101;
customer1.balance = 9875234.00;
Strcpy_s(customer1.address,20, "Millionaire Drive");

}

typedef

• This is a bit long-winded:

• struct customer customer1;

• We can use typedef to shorten this.

• typedef is used to create user-defined types.

#include <stdio.h>
#include <string.h>
struct customer{

char name[20];
int accountNumber;
float balance;
char address[20];

};

typedef struct customer customer; // creating new type - customer

void main(){
//struct customer customer1;
customer customer1; // creating variable of type customer

strcpy_s(customer1.name,20, "Richie Rich");
customer1.accountNumber = 101;
customer1.balance = 9875234.00;
strcpy_s(customer1.address,20, "Millionaire Drive");

}

Structures using typedef

This also works
#include <stdio.h>
#include <string.h>

typedef struct customer
{

char name[20];
int accountNumber;
float balance;
char address[20];

} customer;

void main()
{

customer customer1;

strcpy_s(customer1.name,20, "Richie Rich");
customer1.accountNumber = 101;
customer1.balance = 9875234.00;
strcpy_s(customer1.address,20, "Millionaire Drive");

}

As does this
#include <stdio.h>
#include <string.h>

typedef struct
{

char name[20];
int accountNumber;
float balance;
char address[20];

} customer;

void main()
{

customer customer1;

strcpy_s(customer1.name,20, "Richie Rich");
customer1.accountNumber = 101;
customer1.balance = 9875234.00;
strcpy_s(customer1.address,20, "Millionaire Drive");

}

Passing Data into Structures

#include <stdio.h>
#include <string.h>

typedef struct {
char name[20];
int accountNumber;
float balance;
char address[20];

} customer;

void main(){
customer customer1; // creating variable of type customer

printf("Enter customer name: ");
gets(customer1.name);

printf("Enter customer address: ");
gets(customer1.address);

printf("Enter customer account number: ");
scanf_s("%d", &customer1.accountNumber);

printf("Enter customer balance: ");
scanf_s("%f", &customer1.balance);

printf("\n\n%20s\n%20d\n%20.2lf\n%20s\n", customer1.name,
customer1.accountNumber,
customer1.balance, customer1.address);

}

Passing Data into Structures

#include <stdio.h>
#include <string.h>

typedef struct {
char name[20];
int accountNumber;
float balance;
char address[20];

} customer;

void main(){
customer customer1; // creating variable of type customer

printf("Enter customer name: ");
gets(customer1.name);

printf("Enter customer address: ");
gets(customer1.address);

printf("Enter customer account number: ");
scanf_s("%d", &customer1.accountNumber);

printf("Enter customer balance: ");
scanf_s("%f", &customer1.balance);

printf("\n\n%20s\n%20d\n%20.2lf\n%20s\n", customer1.name,
customer1.accountNumber,
customer1.balance, customer1.address);

}

ARRAYS OF STRUCTS

Arrays of Structs

• Just like we can create arrays of integers, we can also

create arrays of structs.

• Lets have a look at how we might do this using the

example from before.

Arrays of Structs

STRUCTS AND

FUNCTIONS

Structs and Functions

• How can I pass structs to functions?

• You can do this similar to how you would pass any other

variable type!

Structs and Functions

Structs and Functions

Structs and Functions

EXAMPLE PROBLEM

Library Software

• Write program to store books in a library:

• A book should be represented as a structure with:

• Author.

• Title.

• Year.

• Value.

• Create a global array to store each of the books in the

library.

• Create a function to add a book to the library.

• Create another function to display the full library.

Library Software

• Go to C program solution.

Library Software

Library Software

Library Software

• C Program Output:

PROGRAMMING
CT103

Week 11a

Sign in on Blackboard

• Please sign in on blackboard for CT103.

• I will leave the sign in option open for an hour after the

lecture.

Lecture Content

• Last lecture (Week 10b):

• Structures

• Arrays of structures

• Functions and structures

• Example C program

• Today’s lecture (Week 11a):

• Enumeration

• Sorting

• Example C program

ENUMERATION

Enumeration

• We often like to use names for common values rather

than numeric values.

• Definition: Enumeration is a user defined datatype in the

C programming language. It is used to assign names to

values. This makes the program more readable.

Enumeration
• For example:

• In an ordering system, status of an order could be:

• Open

• Closed

• Delivered

• Cancelled

• In an alarm system, the system status could be:

• Read

• Asleep

• Maintenance

• In a traffic system, a light could be:

• Red

• Orange

• Green

Enumeration
• Of course underlying those names would need to be actual values

• For example:

• In an ordering system, status of an order could be:

• Open = 101

• Closed = 102

• Delivered = 103

• Cancelled = 104

• In an alarm system, the system status could be:

• Ready = 0

• Asleep = 1

• Maintenance = 2

• In a traffic system, a light could be:

• Red = 1

• Orange = 2

• Green = 3

Enumeration

• How do we use enumeration in C?

• We use the keyword: enum

Enumeration

• Illustration of enum:

Image from: geeksforgeeks.org

Enumeration Example
• Let’s say we want to know the status of an important system, and it

can be in one of the following 4 states:

• { IDLE, BUSY, ASLEEP, MAINTENANCE };

• We just define an enumeration that contains those values:

• enum STATUS { IDLE, BUSY, ASLEEP, MAINTENANCE };

• Underneath, the enum values are associated with specific integer

values, by default starting at 0

• So in fact IDLE = 0, BUSY = 1, ASLEEP = 2 and MAINTENANCE = 3

• Since they are actually integers we can use them in if statements,

switch statements etc.

Enumeration C Example Part 1

Enumeration C Example Part 2

Enumeration C Example Output

Enumeration Part 1 Using Typedef

Enumeration Using Typedef Output

SORTING

Sorting

• Definition: Sorting algorithms are algorithms that put

items in the correct order.

• Most commonly, the order is based on numeric value.

• This can be from smallest to largest, or vice versa.

Sorting

• Why do we need sorting algorithms?

• We need sorting algorithms because data are often not in

any order. Putting the data in correct order is needed for

many applications.

• There are many situations that would require data to be

sorted into the correct order!

Sorting Example
• A customer services department of a business might have

50 customer complaints to deal with on a given day.

• The system stores these complaints alphabetically,

however you want to respond to the complaints that have

been waiting for a response the longest.

Sorting Example
• A customer services department of a business might have

50 customer complaints to deal with on a given day.

• Complaint wait times (hours): [50,2,3,64, …, 14,3,61]

• How do we sort [50,2,3,64, …, 14,3,61] so that it is in the

correct order?

• [88,85,72,64, …, 3,3,2,2,1]

• We use a sorting algorithm!

Sorting Algorithms

• There are many different sorting algorithms:

• Bubble sort.

• Merge sort.

• Insertion sort.

• Quick sort.

• Selection sort.

Bubble Sort

• Straightforward concept – comparing elements to make

the largest move to the right in an array

• Largest elements in array ‘bubble’ to the top (right)

• Not the most efficient sort algorithm, but OK for small

arrays and easy to understand

• Well documented, e.g.

• https://www.programmingsimplified.com/c/source-code/c-program-

bubble-sort

• https://www.youtube.com/watch?v=nmhjrI-aW5o

• https://www.w3schools.in/data-structures-tutorial/sorting-

techniques/bubble-sort-algorithm/

• https://www.geeksforgeeks.org/bubble-sort/

https://www.programmingsimplified.com/c/source-code/c-program-bubble-sort
https://www.youtube.com/watch?v=nmhjrI-aW5o
https://www.w3schools.in/data-structures-tutorial/sorting-techniques/bubble-sort-algorithm/
https://www.geeksforgeeks.org/bubble-sort/

Bubble Sort Illustration

• On Wednesday, we will implement bubble sort in C.

Graphic from: programmingsimplified.com

EXAMPLE PROBLEM

Employment Software
• Write program to record hours worked for each day of the week.

• Create an enum to represent each day of the week.

• Ask the user how many hours were worked each day of the week.

• Print the total hours worked to the screen.

• Write a function to check if the employee should be paid for over time,

i.e. did they work more than 40 hours? Display a message to the

screen if they should be paid for over time.

Employment Software

• Go to C program solution.

Employment Software

Employment Software

Employment Software

• C Program Output:

PROGRAMMING
CT103

Week 12a (11b)

Sign in on Blackboard

• Please sign in on blackboard for CT103.

• I will leave the sign in option open for an hour after the

lecture.

Lecture Content

• Last lecture (Week 11a):

• Enumeration

• Sorting

• Example C program

• Today’s lecture (Week 12a):

• Bubble sort

• Sorting

• Example C program

BUBBLE SORT

Bubble Sort Recap

• Straightforward concept – comparing elements to make

the largest move to the right in an array

• Largest elements in array ‘bubble’ to the top (right)

• Not the most efficient sort algorithm, but OK for small

arrays and easy to understand

• Well documented, e.g.

• https://www.programmingsimplified.com/c/source-code/c-program-

bubble-sort

• https://www.youtube.com/watch?v=nmhjrI-aW5o

• https://www.w3schools.in/data-structures-tutorial/sorting-

techniques/bubble-sort-algorithm/

• https://www.geeksforgeeks.org/bubble-sort/

https://www.programmingsimplified.com/c/source-code/c-program-bubble-sort
https://www.youtube.com/watch?v=nmhjrI-aW5o
https://www.w3schools.in/data-structures-tutorial/sorting-techniques/bubble-sort-algorithm/
https://www.geeksforgeeks.org/bubble-sort/

9 7 1 4 3 5 2 6

Finish here

Start by comparing first two elements

9 7 1 4 3 5 2 6

Finish here

Incorrect order, so need to swap

7 9 1 4 3 5 2 6

Finish here

Swap them

7 9 1 4 3 5 2 6

Finish here

Now compare next two elements

7 9 1 4 3 5 2 6

Finish here

Incorrect order

7 1 9 4 3 5 2 6

Finish here

So swap them

7 1 9 4 3 5 2 6

Finish here

Compare next two elements

7 1 9 4 3 5 2 6

Finish here

Incorrect order

7 1 4 9 3 5 2 6

Finish here

Swap them

7 1 4 9 3 5 2 6

Finish here

Compare next two elements

7 1 4 9 3 5 2 6

Finish here

Incorrect order

7 1 4 3 9 5 2 6

Finish here

Swap them

7 1 4 3 9 5 2 6

Finish here

Compare next two elements

7 1 4 3 9 5 2 6

Finish here

Incorrect order

7 1 4 3 5 9 2 6

Finish here

Swap them

7 1 4 3 5 9 2 6

Finish here

Compare next two elements

7 1 4 3 5 9 2 6

Finish here

Incorrect order

7 1 4 3 5 2 9 6

Finish here

Swap them

7 1 4 3 5 2 9 6

Finish here

Compare next two elements

7 1 4 3 5 2 9 6

Finish here

Incorrect order

7 1 4 3 5 2 6 9

Finish here

Swap them

7 1 4 3 5 2 6 9

Finish here

Go back and start at first element – don’t need to include last element

7 1 4 3 5 2 6 9

Finish here

Incorrect order

1 7 4 3 5 2 6 9

Finish here

swap

1 7 4 3 5 2 6 9

Finish here

Compare next two elements

1 4 3 5 2 6 7 9

Finish here

End so on until largest bubbles to the end

1 4 3 5 2 6 7 9

Finish here

Now go back and start again at first element, finishing one place earlier

Bubble Sort Illustration

• We saw this illustration of bubble sort on Monday.

Graphic from: programmingsimplified.com

BUBBLE SORT IN C

Bubble Sort

• What will our program need?

• Initialize array, indices, etc.

• Outer loop to set stopping point of each pass.

• Inner loop to do each pass.

• If statement to compare values

Bubble Sort Pseudocode

1. Initialize array, indices, etc.

2. For p = 0 up to array length.

3. For i = 0 up to array length – p -1

4. If (item at position i > item at position i + 1)

5. Swap items

Bubble Sort in C
void main() {

int iarray[5] = { 10,2,9,7,1 };
int temp;
int len = 5, pass, i, j;

// loop to control number of passes
for (pass = 0; pass < len; pass++){

//each pass we do one comparison less, as the highest number bubbles to the
// right / top
for (i = 0; i < len - pass - 1; i++){

// compare adjacent elements and swap them if first element is greater
// than second element
if (iarray[i] > iarray[i + 1]){

temp = iarray[i];
iarray[i] = iarray[i + 1];
iarray[i + 1] = temp;

}
// print out the array after each comparison
for (j = 0; j < len; j++) {

printf("%3d", iarray[j]);
}
printf("\n");

}
}

}

Bubble Sort in C Output
void main() {

int iarray[5] = { 10,2,9,7,1 };
int temp;
int len = 5, pass, i, j;

// loop to control number of passes
for (pass = 0; pass < len; pass++){

//each pass we do one comparison less, as the highest number bubbles to the
// right / top
for (i = 0; i < len - pass - 1; i++){

// compare adjacent elements and swap them if first element is greater
// than second element
if (iarray[i] > iarray[i + 1]){

temp = iarray[i];
iarray[i] = iarray[i + 1];
iarray[i + 1] = temp;

}
// print out the array after each comparison
for (j = 0; j < len; j++) {

printf("%3d", iarray[j]);
}
printf("\n");

}
}

}

EXAMPLE PROBLEM

Card Deck Simulator
• Write software to simulate a deck of cards.

• Each card should be represented as a structure with a:

• Face value character, e.g. A, 2, 3, 4…

• Suit defined using an enum.

• Integer card number.

• Write the following functions:

• FillDeck() – This should fill up a global array of cards with 52 cards.

• Shuffle() – This should put the cards in a random order.

• printDeck() – This should display the deck of cards to the screen.

• sortDeck() – This should sort the deck of cards into the order:

• H,D,S,C, and within each suit sort A, 2, 3,4…, J, Q, K.

• Test your code by creating a deck of cards, print it, shuffle it, print it,

sort it, then print it again.

Card Deck Simulator

• Go to C program solution.

Card Deck Simulator

Card Deck Simulator

Card Deck Simulator

Card Deck Simulator

Card Deck Simulator

Card Deck Simulator

Card Deck Simulator

• C Program Output:

PROGRAMMING
CT103

Week 12b

Sign in on Blackboard

• Please sign in on blackboard for CT103.

• I will leave the sign in option open for an hour after the

lecture.

Lecture Content

• Last lecture (Week 12a):

• Bubble sort

• Sorting

• Example C program

• Today’s lecture (Week 12b):

• Revision

REVISION

Data Types

• So we can see that we need different variable types, or

data types, to hold information

• The basic set of C data types is:

• int - this holds an integer

e.g. 10 21 456 -6899

• float – holds a floating point number

e.g. 125.467

• double – holds a very big floating point number

e.g. up to 1.797e+308

• char – holds a character

e.g. ‘A’ ‘c’ ‘%’

• Also strings – holds multiple characters

e.g. ‘hello’

Modifiers

• Short, i.e. smaller (less memory)

• Long, i.e. larger (more memory)

• Signed, i.e. positive or negative

• Unsigned, i.e. non negative

• The amount of storage used for each data type

(+ modifier) is not set in stone

• ANSI has the following rules:

short int <= int <= long int

float <= double <= long double

Modulus

• The modulus operator allows us to get the remainder

when doing integer division.

• What is the remainder?

• When dividing two numbers that don’t divide evenly, the remainder

is what is left over.

• E.g. 9/4 = 2 with a remainder of 1.

• In C: 9%4 = 1.

If Else Statements

• We use an if statement to check if a statement is true.

• If it is false, do what is in the else statement.

• We can also have else if statements for multiple checks.

Boolean Operators

• The primary Boolean operators are:

• AND (In C: &&)

• OR (In C: ||)

• NOT (In C: !)

• XOR (In C: !=)

Truth Tables

• The following truth table shows how each of these

operators work.

• In C: 1 = True, 0 = False

Source: https://introcs.cs.princeton.edu/java/71boolean/

Switch Statement

• We also talked about Switch statements.

While Loops

• The while loop will repeat a block of code over and over

while some condition is true.

Do While Loops

• You can use a do while loop if you want to ensure that you

execute a block of code at least once.

“Hello” will be printed at a

minimum of once, irrespective

of what value j has.

• For loops are useful if we want to repeat some code a

predetermined number of times.

For Loops

• Lets compare the structure of for loops and while loops.

For Loop vs While Loop

For Loop While Loop

• An array is used to store a collection of data.

• You can think of an array as a collection of variables of

the same type.

Arrays

int grades[5] = { 44, 55, 66, 33, 88 };
grades[0] = 48; // easy to access/change any member of an array
printf("second grade is %d\n", grades[1]);

for (int i = 0;i < 5;i++){
printf("%d ",grades[i]);

}

[0] [1] [2] [3] [4]

2D Arrays
• What if we have 2 dimensional (2D) data that we need to use in our

program? We use 2D arrays!

• How do I loop over elements in a 2D array?

• You need 2 loops:

• Outer loop for the rows

• Inner loop for the columns

• In the first part of this example, we use two loops to set the values in a 4x4

array. We use a separate variable (val) for the values in the array.

int x[4][4];
int r, c, val = 0;

// set array values
for (r = 0; r < 4; r++){
for (c = 0; c < 4; c++){
x[r][c] = val;
val++;

}
}

Strings

• A string is a collection of characters, i.e. text.

• Specifically, in C strings are defined as an array of

characters.

• You should simply use %s to print strings.

Common String functions

• Strcpy_s() Copy one string to another (seen already)

• Strncpy_s() Copy n characters from one string to another

• Strcat_s() Link together (concatenate) two strings

• Strncat_s() concatenate n characters from two strings

• strcmp() Compare two strings

• strncmp() Compare n characters from two strings

Constants

• Constants refer to fixed values that the program cannot

change during its execution. These are also often called

literals.

#Define in C Example

Character Tests

• This is a library with functions that are useful for testing

and mapping characters.

• Some useful character testing functions:

• isalpha

• isdigit

• isupper

• islower

• isspace

Arrays of Strings

• As with the other 2D arrays we have seen, we can

create a 2D array of characters.

Function Template

• All functions have the following template:

type name (parameters){

return;

}

• Type = data type returned by the function (can be void).

• Name = function name.

• Parameters = data we are giving to the function (can be

empty).

• Return = what data is returned by the function (can also

return nothing).

C Program with Function

• C program that creates a

function to read in an

age.

• Notice how this function

does not read in any

parameters.

Function prototype

Function itself

Main (we should be

familiar with this one)

Global Variables

• Global variables are variables

that are created outside of a

function.

• Lets look at the following

example where we declare a

global variable:

Conditional Operator

• The conditional operator is a compact way of representing

decision making statements.

Maths in C

• Math.h has many useful functions:

• Pow() – raise one number to the power of another.

• Sqrt() – Square root of a number.

• Sin() – returns the sine of an angle in radians.

• Cos() – returns the cosine of an angle in radians.

• Tan() – returns the tangent of an angle in radians.

• Exp() – returns the exponent on a value.

• Log() – returns the natural log of a value.

Function like Macros

• Function like macro:

#include <stdio.h>
#include <stdlib.h>
#include <time.h>

void main()
{

int randNum;

// this converts a time structure (special C type) to
// a long integer
// lt will contain the number of seconds since 1 Jan 1970, 00:00:00
long lt = time(NULL);

// srand is the seeding function - gives rand() a starting point
srand(lt);

for (int i = 0; i < 100; i++){
randNum = rand() % 6 + 1;
printf("%d - %d\n", i, randNum);

}
}

Random Numbers

Structures

• We can use structures to store information in a more

organised manner.

• We declare a structure using the keyword struct, as

follows:

typedef struct customer
{

char name[20];
int accountNumber;
float balance;
char address[20];

} customer;

Enumeration

• Enumeration is a user

defined datatype in

the C programming

language.

• It is used to assign

names to values.

• This makes the

program more

readable.

Bubble Sort
void main() {

int iarray[5] = { 10,2,9,7,1 };
int temp;
int len = 5, pass, i, j;

// loop to control number of passes
for (pass = 0; pass < len; pass++){

//each pass we do one comparison less, as the highest number bubbles to the
// right / top
for (i = 0; i < len - pass - 1; i++){

// compare adjacent elements and swap them if first element is greater
// than second element
if (iarray[i] > iarray[i + 1]){

temp = iarray[i];
iarray[i] = iarray[i + 1];
iarray[i + 1] = temp;

}
// print out the array after each comparison
for (j = 0; j < len; j++) {

printf("%3d", iarray[j]);
}
printf("\n");

}
}

}

Finally

• Have a good Christmas break 

PROGRAMMING
CT103

Week 13

Sign in on Blackboard

• Please sign in on blackboard for CT103.

• I will leave the sign in option open for an hour after the

lecture.

Course Info Semester 2

• Lectures – 2 hours per week

• Thursday 1pm, IT125.

• Thursday 1pm, MY129 Lecture Theatre 2.

• Attendance will be take at each lecture

• Labs – 2 hours per week

• Tuesday IT106

• Group 1: 2pm-4pm Group 2: 4pm-6pm

• Starts 18th January

• Tutorials

• Wednesday 11am, AC213

• Attendance not mandatory, only if you need extra help.

• Starts 19th January

Lab Groups

• Group 1:

• 2pm to 4pm surnames A to K

• Group 2:

• 4pm to 6pm surnames L to Z

CT103 Semester 2

• I will be lecturing this course until week 6 of semester 2.

• From week 7 until the end of semester 2, Sam will be your

lecturer.

Lecture Content

• Today’s lecture (Week 13):

• Functions Recap

• Recursion

• Fibonacci Sequence

• Example C Problem

• 3D Animated Donut in C

• C Code in Visual Studio

FUNCTIONS RECAP

Functions

• We will be using functions a lot when we learn about

recursion today.

• Let’s do a quick recap on functions.

Functions

• What is a function?

• Definition: A function is a piece of code that can be

called whenever we need to execute that code.

Functions

• What is the point of functions?

• Benefits:

• Functions allow us to reuse code, therefore avoid repetition.

• More readable programs.

• Enables us to divide complex problems into simpler ones.

• Easier to make changes to program.

Function Template

• All functions have the following template:

type name (parameters){

return;

}

• Type = data type returned by the function (can be void).

• Name = function name.

• Parameters = data we are giving to the function (can be

empty).

• Return = what data is returned by the function (can also

return nothing).

C Program with Function

• C program that creates a

function to read in an

age.

• Notice how this function

does not read in any

parameters.

Function prototype

Function itself

Main (we should be

familiar with this one)

RECURSION

What is Recursion?

• Recursion is a method of problem solving where

problems are solved by reducing them to smaller

problems that resemble the form of the original problem.

• Recursion can make your code more readable.

Recursive Functions

• Recursive functions are functions that use recursion.

• A recursive function will call itself within the body of the

function.

• You therefore need to be careful to avoid infinite loops

and running out of memory…

Recursive Function Syntax

• What does a recursive function look like?

#include <stdio.h>

void myFunction();

void main() {
myFunction();

}

void myFunction() {
printf("hi.\n");
myFunction();

}

Function calling itself

Recursive Function Syntax

• Be careful running this code.

• If you run this code it won’t stop

running and printing out “hi.” until

you run out of memory.

• You will get a stack overflow error.

• How do we fix this?

#include <stdio.h>

void myFunction();

void main() {
myFunction();

}

void myFunction() {
printf("hi.\n");
myFunction();

}

Recursive Function V2

• Will this code work?
#include <stdio.h>

void myFunction(int n);

void main() {
myFunction(10);

}

void myFunction(int n) {
for (int i = 0; i < n; i++) {

printf("-");
}
printf("hi.\n");
if (n >= 1) {

myFunction(n - 1);
}

}

Function still

calling itself

Recursive Function V2

• Works perfectly!
#include <stdio.h>

void myFunction(int n);

void main() {
myFunction(10);

}

void myFunction(int n) {
for (int i = 0; i < n; i++) {

printf("-");
}
printf("hi.\n");
if (n >= 1) {

myFunction(n - 1);
}

}

No Recursion Version

• Recursion is not the only way to write the program we

saw on the previous slide.

• We could write a similar program in C without using

recursion.

• Will this code produce

the same output?

• It no longer recursively

calls itself.

No Recursion Version

#include <stdio.h>
void myFunction(int n);

void main() {
myFunction(10);

}

void myFunction(int n) {
int m=n;
for (int k = 0; k <= n;k++) {

for (int i = 0; i < m; i++) {
printf("-");

}
printf("hi.\n");
m -=1;

}
}

• Gives the same output.

No Recursion Version

#include <stdio.h>
void myFunction(int n);

void main() {
myFunction(10);

}

void myFunction(int n) {
int m=n;
for (int k = 0; k <= n;k++) {

for (int i = 0; i < m; i++) {
printf("-");

}
printf("hi.\n");
m -=1;

}
}

Side By Side Comparison

void myFunction(int n) {
int m=n;
for (int k = 0; k <= n;k++) {

for (int i = 0; i < m; i++) {
printf("-");

}
printf("hi.\n");
m -=1;

}
}

void myFunction(int n) {
for (int i = 0; i < n; i++) {

printf("-");
}
printf("hi.\n");
if (n >= 1) {

myFunction(n - 1);
}

}

With Recursion Without Recursion

FIBONACCI SEQUENCE

Fibonacci Sequence

• The Fibonacci Sequence is a sequence of numbers in

which each number is the sum of the two preceding

numbers. The sequence starts from 0 and 1.

• The sequence looks like: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, …

• The Fibonacci Sequence often appears in nature.

Fibonacci Sequence in C

• Next we will look at how you would write a computer

program that will print the Fibonacci Sequence both with

and without using recursion.

Fibonacci Sequence with Recursion

#include <stdio.h>

int fibonacci(int n);

void main() {
int maxN = 8;
for (int i = 0; i < maxN;i++) {

int ans = fibonacci(i);
printf("%d\n", ans);

}
}

int fibonacci(int n) {
if (n<=1) {

return n;
}

return fibonacci(n - 1) + fibonacci(n - 2);
}

Fibonacci Sequence with Recursion

#include <stdio.h>

int fibonacci(int n);

void main() {
int maxN = 8;
for (int i = 0; i < maxN;i++) {

int ans = fibonacci(i);
printf("%d\n", ans);

}
}

int fibonacci(int n) {
if (n<=1) {

return n;
}

return fibonacci(n - 1) + fibonacci(n - 2);
}

Fibonacci Sequence without Recursion
#include <stdio.h>

int fibonacciNoR(int n1, int n2);

void main() {
int maxN = 8;
int curNum = 0;
int prevNum = 0;
for (int i = 0; i < maxN; i++) {

if (i<=1) {
curNum = i;
prevNum = curNum - 1;

}
else {

int tempNum = fibonacciNoR(curNum, prevNum);
prevNum = curNum;
curNum = tempNum;

}
printf("%d\n", curNum);

}
}

int fibonacciNoR(int n1, int n2) {
return n1+n2;

}

Fibonacci Sequence without Recursion
#include <stdio.h>

int fibonacciNoR(int n1, int n2);

void main() {
int maxN = 8;
int curNum = 0;
int prevNum = 0;
for (int i = 0; i < maxN; i++) {

if (i<=1) {
curNum = i;
prevNum = curNum - 1;

}
else {

int tempNum = fibonacciNoR(curNum, prevNum);
prevNum = curNum;
curNum = tempNum;

}
printf("%d\n", curNum);

}
}

int fibonacciNoR(int n1, int n2) {
return n1+n2;

}

Side By Side Comparison

With Recursion Without Recursion

#include <stdio.h>

int fibonacciNoR(int n1, int n2);

void main() {
int maxN = 8;
int curNum = 0;
int prevNum = 0;
for (int i = 0; i < maxN; i++) {

if (i<=1) {
curNum = i;
prevNum = curNum - 1;

}
else {

int tempNum = fibonacciNoR(curNum, prevNum);
prevNum = curNum;
curNum = tempNum;

}
printf("%d\n", curNum);

}
}

int fibonacciNoR(int n1, int n2) {
return n1+n2;

}

#include <stdio.h>

int fibonacci(int n);

void main() {
int maxN = 8;
for (int i = 0; i < maxN;i++) {

int ans = fibonacci(i);
printf("%d\n", ans);

}
}

int fibonacci(int n) {
if (n<=1) {

return n;
}

return fibonacci(n - 1) + fibonacci(n - 2);
}

EXAMPLE C PROBLEM

Example C Problem

• You must write a C program that searches for a

particular number.

• The target number is set randomly.

• The only information you have is the maximum possible

value that the target number can have.

• Write 2 functions to search for this number. One function

must use recursion, the other must not.

C Problem No Recursion Function

int searchNumNoRecur(int n) {
for (int i = 0; i < n;i++) {
if (i == targetN) {

return i;
}

}
}

C Problem Recursion Function

int searchNumRecur(int n) {
if (n== targetN) {
return n;

}
searchNumRecur(n-1);

}

C Problem Solution

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <time.h>

int targetN;
int searchNumRecur(int n);
int searchNumNoRecur(int n);

void main() {
srand(time(NULL));
int maxN = 200;
targetN = rand() % maxN;

int ans1 = searchNumRecur(maxN);
int ans2 = searchNumNoRecur(maxN);
printf("Number %d found using recursion.\n", ans1);
printf("Number %d found without using recursion.\n", ans2);
printf("Target was %d.\n", targetN);

}

int searchNumNoRecur(int n) {
for (int i = 0; i < n;i++) {

if (i == targetN) {
return i;

}
}

}

int searchNumRecur(int n) {
if (n== targetN) {

return n;
}
searchNumRecur(n-1);

}

C Problem Solution
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <time.h>

int targetN;
int searchNumRecur(int n);
int searchNumNoRecur(int n);

void main() {
srand(time(NULL));
int maxN = 200;
targetN = rand() % maxN;

int ans1 = searchNumRecur(maxN);
int ans2 = searchNumNoRecur(maxN);
printf("Number %d found using recursion.\n", ans1);
printf("Number %d found without using recursion.\n", ans2);
printf("Target was %d.\n", targetN);

}

int searchNumNoRecur(int n) {
for (int i = 0; i < n;i++) {

if (i == targetN) {
return i;

}
}

}

int searchNumRecur(int n) {
if (n== targetN) {

return n;
}
searchNumRecur(n-1);

}

Limits of Previous Solution

• In the solution on the previous slide, we searched for a

number with a max value of 200.

• Is there a max value at which our solution will fail?

• Lets try and increase this max value.

Limits of Previous Solution

• We have now increased the maximum value “maxN” to

20,000.

• This results in too many recursive calls and we get a

stack overflow error…

3D SPINNING DONUT USING

DONUT SHAPED C CODE

Try Running the Following C Code

k; double sin()
,cos(); main() {float A =
0, B = 0, i, j, z[1760]; char b[
1760]; printf("\x1b[2J"); for (;;

) { memset(b, 32, 1760); memset(z, 0, 7040)
; for (j = 0; 6.28 > j; j += 0.07)for (i = 0; 6.28
> i; i += 0.02) {float c = sin(i), d = cos(j), e =

sin(A), f = sin(j), g = cos(A), h = d + 2, D = 1 / (c *
h * e + f * g + 5), l=cos(i),m=cos(B),n=s\

in(B),t=c*h*g - f * e;int x=40+30 * D *
(l*h*m -t * n),y = 12 + 15*D*(l* h * n
+t*m), o = x +80*y, N =8*((f*e -c *d* g
) * m - c * d *e-f*g- l *d*n);if (22 > y &&
y > 0 && x > 0 && 80 > x && D > z[o]) {z[o] = D;;; b[o]=
".,-~:;=!*#$@"[N > 0 ? N : 0];}}/*#*************!!-*/
/***/printf("\x1b[H"); for (k = 0; 1761 > k; k++)
putchar(k % 80 ? b[k] : 10); A += 0.04; B +=

0.02;}}/*****##########*******!!=;:~
~::==!!!****************!!!==::-

.,~~;;;============;;;:~-.
..,--------,*/

Don’t forget headers...

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#include <time.h>

#include <math.h>

#include <windows.h>

C Code Output

Similar Code (Not Donut Shaped)
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <time.h>
#include <math.h>
#include <windows.h>

void main() {
float A = 0, B = 0;
float i, j;
int k;
float z[1760];
char b[1760];
printf("\x1b[2J");

while(1<2) {
memset(b, 32, 1760);
memset(z, 0, 7040);
for (j = 0; j < 6.28; j += 0.07) {

for (i = 0; i < 6.28; i += 0.02) {
float c = sin(i);
float d = cos(j);
float e = sin(A);
float f = sin(j);
float g = cos(A);
float h = d + 2;
float D = 1 / (c * h * e + f * g + 5);
float l = cos(i);
float m = cos(B);
float n = sin(B);
float t = c * h * g - f * e;
int x = 40 + 30 * D * (l * h * m - t * n);
int y = 12 + 15 * D * (l * h * n + t * m);
int o = x + 80 * y;
int N = 8 * ((f * e - c * d * g) * m - c * d * e - f * g - l * d * n);
if (22 > y && y > 0 && x > 0 && 80 > x && D > z[o]) {

z[o] = D;
b[o] = ".,-~:;=!*#$@"[N > 0 ? N : 0];

}
}

}
printf("\x1b[H");
for (k = 0; k < 1761; k++) {

putchar(k % 80 ? b[k] : 10);
A += 0.00004;
B += 0.00002;

}
Sleep(10);

}

}

Donut Code Source Material

• Code source - Andy Sloane (https://www.a1k0n.net/).

• If you want to read more about how this code works, see

the following links:

• https://www.a1k0n.net/2011/07/20/donut-math.html

• https://www.dropbox.com/s/79ga2m7p2bnj1ga/donut_deobfuscate

d.c?dl=0

• https://www.youtube.com/watch?v=DEqXNfs_HhY

https://www.a1k0n.net/
https://www.a1k0n.net/2011/07/20/donut-math.html
https://www.dropbox.com/s/79ga2m7p2bnj1ga/donut_deobfuscated.c?dl=0
https://www.youtube.com/watch?v=DEqXNfs_HhY

C CODE

C Code

• Let’s finish today’s lecture by running some C programs

in Visual Studio.

PROGRAMMING
CT103

Week 14

Sign in on Blackboard

• Please sign in on blackboard for CT103.

• I will leave the sign in option open for an hour after the

lecture.

Lecture Content

• Today’s lecture (Week 14):

• Reading in data from file

• Writing to a file

• Structured data and files

• Example C programme

FILE INPUT

File Input

• Up until now, all of the information/data in our programs

has been either:

• “hard-coded” into the program as a variable by the programmer.

• Passed into the program through the console.

• What if we want to use other information/data in our

program that is stored somewhere else on our

computer?

File Input

• What if we want to use other information/data in our

program that is stored somewhere else on our

computer?

• We are able to read in data from other files into our C

program.

• Today we will focus on text (.txt) files.

File Access

• How do we access the file?

• There are two types of file access:

• Sequential access:

• You just start at the beginning and read in the data in a continuous

stream.

• Random access:

• You can jump around the file, reading (and writing) data at different

locations.

• We will start with sequential access.

File Pointers

• In order to read in our file, we need to use file pointers.

• We mentioned pointers a few times in the course so far,

we will cover pointers in depth in the coming weeks.

• Briefly, pointers are variables that are used to store

addresses of other variables.

File Pointers

• What is a file pointer?

• A file pointer is a pointer used to manage and keep

track of the files being accessed.

• The program needs a physical address to read / write

from. For this we use a FILE pointer.

• We open the file to set up the pointer.

• When we are finished with the file we must close it.

File Pointers

• What does a file pointer look like in C?

• You can create one as follows:

• You will need the following library:

FILE* fptr;

#include "stdio.h"

OPENING A FILE

Opening a File

• Lets say you have a file on your machine called

‘temp1.txt’.

• The following C program will open the file ‘temp1.txt’.
#include <stdio.h>
#include <string.h>
#include <stdlib.h>

void main() {
FILE *fptr;
fopen_s(&fptr, "C:\\Users\\Karl\\Desktop\\temp1.txt", "r");

if (fptr == NULL){
puts("Error Opening File \n Exiting");
return;

}
else {
printf("Everything works fine.\n");
char c = fgetc(fptr);
while (c != EOF){

printf("%c", c);
c = fgetc(fptr);

}
}

fclose(fptr);
}

Opening a File

This will be a different file path for you

EOF means ‘End Of File’

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

void main() {
FILE *fptr;
fopen_s(&fptr, "C:\\Users\\Karl\\Desktop\\temp1.txt", "r");

if (fptr == NULL){
puts("Error Opening File \n Exiting");
return;

}
else {

printf("Everything works fine.\n");
char c = fgetc(fptr);
while (c != EOF){

printf("%c", c);
c = fgetc(fptr);

}
}

fclose(fptr);
}

Opening a File Output

• What if the path name is wrong?
#include <stdio.h>
#include <string.h>
#include <stdlib.h>

void main() {
FILE *fptr;
fopen_s(&fptr, "C:\\Users\\Karl\\Desktopp\\temp1.txt", "r");

if (fptr == NULL){
puts("Error Opening File \n Exiting");
return;

}
else {
printf("Everything works fine.\n");
char c = fgetc(fptr);
while (c != EOF){

printf("%c", c);
c = fgetc(fptr);

}
}

fclose(fptr);
}

Opening a File

Incorrect spelling

WRITING STRINGS TO A

FILE

Writing to a File

• In the previous example, we read data in from a file.

• This is useful, however what if we want to store data

generated my our program in a file?

• We will talk about writing to a file next.

Writing to a File

• We used the following line of code to open our file:

File pointer address File location Read indicator

• The “r” indicates we are opening the file for reading only.

• If we want to write to the file, we need to change this

mode.

File Open Modes

• “r”: Opens a file for reading.

• The file must exist.

• “w”: Creates an empty file for writing.

• If a file with the same name already exists, its content is erased and the file is

considered as a new empty file.

• “a”: Appends to a file.

• Writing operations, append data at the end of the file. The file is created if it does

not exist.

• “r+”: Opens a file to update both reading and writing.

• The file must exist.

• “w+”: Creates an empty file for both reading and writing.

• “a+”: Opens a file for reading and appending.

Opening a File to Write

• So in order to write to the file, we would need to do

something like the following:

• This will open a file that we can write to.

• However, after we open the file, how do we actually write

to it?

Writing to a File

• How do we actually write to the file?

• There are “file” versions of most input/output functions

that you would use to input/output with the

keyboard/screen.

• The difference is that you point the input/output to a

particular physical location via the FILE* pointer.

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

void main() {
FILE *fptr;
printf("\nNow writing to a file.\n");

fopen_s(&fptr, "C:\\Users\\Karl\\Desktop\\temp2.txt", "w");

if (fptr == NULL) {
puts("Error Opening File \n Exiting");
return;

}
else {
printf("Everything works fine. Now writing to file.\n");

for (int i = 0; i < 5;i++) {
fprintf(fptr,"Line %d of text.\n",(i+1));

}
}
fclose(fptr);

}

Writing to a File in C

Now writing to a file

‘fprintf’ to print to file

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

void main() {
FILE *fptr;
printf("\nNow writing to a file.\n");

fopen_s(&fptr, "C:\\Users\\Karl\\Desktop\\temp2.txt", "w");

if (fptr == NULL) {
puts("Error Opening File \n Exiting");
return;

}
else {
printf("Everything works fine. Now writing to file.\n");

for (int i = 0; i < 5;i++) {
fprintf(fptr,"Line %d of text.\n",(i+1));

}
}
fclose(fptr);

}

Writing to a File in C Output

Writing to a File

• We can also see on the desktop, the new file ‘temp2.txt’:

• Note: Of course you can create files anywhere you like.

Read the File Temp2

• We can read the file we just created, back into memory if

we like.

• Previously we read in each character using ‘fgetc()’

• We can also read in full lines at a time.

Read the File Temp2

• The easiest way to read the data from the file is to use

fgets() to read it line by line.

• With fgets() you have to specify the maximum length

array you’re reading into.

• If there are less characters on the line than the length of

the array, that’s no problem – fgets() will stop reading

when it gets to the newline character.

• It reads each line as a string.

Read the File Temp2

Read the File Temp2

Debugger

• We can use the debugger that we saw in semester 1 to

see the data read from the file:

“Line 1 of text.\n”

New Lines

• What if we leave the \n out when writing to the file?

“Line 1 of text.\n”

New Lines

• What if we leave the \n out when writing to the file?

• We will end up with this:

fputs

• We used fprintf() to write to a file before.

• We can also use fputs():

End of File

• We already saw feof(fptr).

• This is a C library function that checks the file stream (via

the FILE* pointer) for an ‘end-of-file’ indicator.

• This indicator would be set when a function reading from

the file reaches the end of the file (data stream).

• feof() returns false as long as the end-of-file indicator

has not been set.

WRITING DATA TO FILE

Write Using Data

• Up until now, we have been writing strings to a file.

• Let’s now look at how we can write data organised in

structures to a file.

Structures Recap

• We can use structures to store information in a more

organised manner.

• We declare a structure using the keyword struct, as

follows:

Write Structured Data to File
typedef struct{

char
name[100];
int age;

} person;

Structured Data File

Read Data Back From File

Read Data Back From File

Reading Multiple Data Types

• Awkward to read multiple data types.

• Have to use fixes like we saw in the previous example:

• We will see later on how we can tackle this using the

strtok function to parse strings.

EXAMPLE C PROBLEM

Example C Problem

• You are writing software to keep track of vehicles for a

mechanic.

• Write a struct to organise the information about each car

in your program: make, model, price, etc.

• A file called ‘carsNew.txt’ exists and is used to store all

vehicle information.

• Write a function to read in the data stored in this text file.

• Write another function to add a new vehicle to this text

file.

• Test both functions.

• Here is our text file stored on the desktop:

Text File

Structure

• Here is our structure and function prototypes:

• Here are our functions:

Functions

• Here is main:

Main

C Program Output

• Here is our updated text file:

Updated Text File

Extra Car

C CODE

C Code

• Let’s finish today’s lecture by running some C programs

in Visual Studio.

PROGRAMMING
CT103

Week 15

Sign in on Blackboard

• Please sign in on blackboard for CT103.

• I will leave the sign in option open for an hour after the

lecture.

Lecture Content

• Today’s lecture (Week 15):

• More file reading/writing

• Updating files

• Problems reading in files

• Example C programme

FILE READING/WRITING

File Open Modes

• “r”: Opens a file for reading.

• The file must exist.

• “w”: Creates an empty file for writing.

• If a file with the same name already exists, its content is erased and the file is

considered as a new empty file.

• “a”: Appends to a file.

• Writing operations, append data at the end of the file. The file is created if it does

not exist.

• “r+”: Opens a file to update both reading and writing.

• The file must exist.

• “w+”: Creates an empty file for both reading and writing.

• “a+”: Opens a file for reading and appending.

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

void main() {
FILE *fptr;
printf("\nNow writing to a file.\n");

fopen_s(&fptr, "C:\\Users\\Karl\\Desktop\\temp2.txt", "w");

if (fptr == NULL) {
puts("Error Opening File \n Exiting");
return;

}
else {
printf("Everything works fine. Now writing to file.\n");

for (int i = 0; i < 5;i++) {
fprintf(fptr,"Line %d of text.\n",(i+1));

}
}
fclose(fptr);

}

Writing to a File in C Output

Read Data From File

UPDATING A FILE

Updating a File

• Sequential access is fairly straightforward.

• You can read or write from the beginning or end of the file

• Sequential Access is not usually used to update records in place.
• Why?

• Note: Updating records ‘in place’ refers to reading the records, processing

them, and writing them back to their original position without destroying

other records.

Updating a File

• Why is Sequential Access not usually used to update records in place?

• Imagine the following line in a text file:

• 300 White 0.00

• How would we replace ‘White’ with ‘Washington’ so it looks like the following?

• 300 Washington 0.00

• We would find it very difficult to avoid overwriting the 0.00 using the formatted

input / output because the fields in each record will vary in size.

• Normally if we want to change records in a sequential access file we write out

all records again to a new file.

Updating a File Example

• Lets say you had the following code:

Updating a File Example

• This code will run and produce a text file called ‘temp4.txt’.

Updating a File Example

• What if we wanted to change the text at some point in the middle of the text

file?

• We could use a function called fseek().

Updating a File Example

• Lets see how we use fseek() to update the file:

• Note: We will explain fseek() in the coming slides.

Now r+

Updating a File Example

• This code will run and alter the text file‘temp4.txt’.

Temp4.txt before running above code Temp4.txt after running above code

FSEEK

fseek()

• We saw in the previous example how fseek() can be

used to adjust a portion of the data in a file.

• How does it work?

fseek()

• What is fseek()?

• We use fseek() to move around in a file

• fseek() moves the file pointer so that you can read and

write at different places.

fseek()

• fseek() has the following function signature:

• fseek(filePtr, offset, origin)

• filePtr is the file pointer.

• offset (a long int) is the number of bytes to skip forwards or

backwards in the file.

• It can be positive or negative.

• origin tells fseek() from where to start ‘seeking’.

• We need to select a value for origin.

Possible Origin Values

• You can use any of the three values for origin when

calling fseek().

fseek()

• Once you position the file pointer with fseek() you can

use the file input and output functions to read from and

write to the file.

• Using SEEK_END will act as append if you are writing to

the file.

• If you position the file pointer over existing data, and

then write new data, it will replace the existing data.

• What if we start change the value of the offset from 7?

fseek() example 2

Now 3

• What if we start change the value of the offset from 7?

fseek() example 2

Temp4.txt before running above code Temp4.txt after running above code

• What if we want the origin to be at the end of the file?

fseek() example 3

New offset

and origin

• What if we want the origin to be at the end of the file?

fseek() example 3

Temp4.txt before running above code Temp4.txt after running above code

• Does fseek() work if my text file has multiple lines?

• Lets use the following file ‘temp5.txt’:

fseek() example 4

• Does fseek() work if my text file has multiple lines?

fseek() example 4

• Does fseek() work if my text file has multiple lines?

fseek() example 4

Temp5.txt before running above code Temp5.txt after running above code

FTELL

ftell()

• ftell() is another useful function when reading/writing to

file.

• ftell() allows us to get the current file position of the

stream.

• This can be useful for getting the file size!

ftell()

• ftell() function signature:

long int ftell(FILE* f)

• The function returns a long int.

• The functions name is ftell().

• The function reads in a pointer to the file.

• Lets have a look at an example using ftell().

• Lets use the file temp5.txt from before:

ftell() example

ftell() example

ftell() example

Is this correct?

Temp5.txt Size Right click

Go to properties Size = 22 bytes (same as our code output)

END OF FIRST LECTURE

START OF SECOND

LECTURE

FILE READ ISSUES

Comments on fseek()

• Using fseek is pretty useful if you have a very simple file

structure and you know exactly where in your file you

want to go.

• Unfortunately, life is not that easy – for example, we are

still left with the problem that in most cases the size of

individual fields will vary in records (such as names,

addresses, etc.)

• In those cases we are better off just reading in the file

line by line (sequential access) until we find the data we

want.

• We can then make any changes we want to the data and

write out the entire file again.

Example problem with fseek()

• Recall temp5.txt.

• What if we want to change line two from “BMW” to

“Mitsubishi”?

Example problem with fseek()

• What if we want to change line two from “BMW” to

“Mitsubishi”?

• Would this work?

Example problem with fseek()

• What if we want to change line two from “BMW” to

“Mitsubishi”?

• Did it work? Not how we want it to…

We lost Opel

We replaced BMW

with Mitsubishi

Problems Reading Data Files

• 1. Fields of unpredictable

length / content.

• Multi-word fields make %s

pretty useless.

Problems Reading Data Files

• 2. Choosing an appropriate data structure.

• 3. People with same name or different people?

Problems Reading Data Files

• 4. Unusual / unique / non-standard formats.

Problems Reading Data Files

• 5. Missing / corrupt data or illegal characters

Problems Reading Data Files

• 6. What delimiters were used?

You have to figure

out what

delimiter(s) were

used and if some

characters (e.g. $)

are being to

replace another

one (space)

Delimiters

• Quick note on delimiters.

• What are delimiters?

• Delimiters refer to: one or more characters that

outline the boundary between data.

• These can be: tab, whitespace, new line, comma, etc.

Problems Reading Data Files

• 7. dates – what format was used?

Problems Reading Data Files

• 8. What are the formatting rules? (zip codes, phone

numbers, urls, emails,…)

FRUIT EXAMPLE DATASET

Fruit Example

• Lets look at the ‘fruit.txt’ file.

• How can we scan in data

when some fields have

multiple words and some

don’t?

Fruit Example

• Will this code work?

Fruit Example

• Will this code work? Sort of…

Fruit Example 2

• How about this?

Fruit Example 2

• How about this? Much better

Parsing

• In this solution, we used

parsing.

• Parsing refers to analysing

a string or text into logical

syntactic components.

Fruit Example 3

• Another way of doing it.

Fruit Example 3

• Works perfectly.

atof()

• We used atof() in this

solution.

• atof is a useful function to

convert a string to a float.

• In solution 3 we also used

fgets() to read in a line at a

time.

Side by side comparison

C CODE

C Code

• Let’s finish today’s lecture by running some C programs

in Visual Studio.

PROGRAMMING
CT103

Week 16

Sign in on Blackboard

• Please sign in on blackboard for CT103.

• I will leave the sign in option open for an hour after the

lecture.

Lecture Content

• Today’s lecture (Week 16):

• Memory requirements

• Pointers

• Pointers and arrays

• Pointers and strings

• Pointers and functions

• Example C programme

MEMORY REQUIREMENTS

Memory Requirements

• Different space requirements for different variables:

char c;

short int i;

int j;

long x;

float f;

double d;

puts ("Variable Sizes: ");

printf("Size of char = %d \n", sizeof(c));

printf("Size of short int = %d \n", sizeof(i));

printf("Size of int = %d \n", sizeof(j));

printf("Size of long = %d \n", sizeof(x));

printf("Size of float = %d \n", sizeof(f));

printf("Size of double = %d \n", sizeof(d));

Sizeof()

• sizeof() returns the number of bytes of whatever variable

(including structures and arrays) you give it.

Memory Addresses

• We store variables in memory.

• We access the address of a variable by putting & in front

of it.

• For example:

int x = 4;

printf ("x = %d \n", x);

printf ("addr of x = %d \n",&x);

Decimal Addresses

• %d to see address as decimal

printf("Address of char = %d \n", &c);

printf("Address of short int = %d \n", &i);

printf("Address of int = %d \n", &j);

printf("Address of long = %d \n", &x);

printf("Address of float = %d \n", &f);

printf("Address of double = %d \n", &d);

Hexadecimal Addresses

• %x to see hexadecimal address (lowercase letters)

printf("Address of char = %x \n", &c);

printf("Address of short int = %x \n", &i);

printf("Address of int = %x \n", &j);

printf("Address of long = %x \n", &x);

printf("Address of float = %x \n", &f);

printf("Address of double = %x \n", &d);

Hexadecimal Addresses

• %X to see hexadecimal address (uppercase letters)

printf("Address of char = %X \n", &c);

printf("Address of short int = %X \n", &i);

printf("Address of int = %X \n", &j);

printf("Address of long = %X \n", &x);

printf("Address of float = %X \n", &f);

printf("Address of double = %X \n\n", &d);

Hexadecimal – Numbers Base 16

POINTERS

What are pointers?

• We have seen pointers a few times, e.g.

• When we create file pointers to open a file.

• Definition: A pointer is a variable whose value is the

address of another variable.

Pointers

• %p will print leading zeros

char c;

char *cp = &c;

printf("Address of char = %p \n\n\n", &c);

printf("cp contains %p \n",cp);

Pointers

• The operator * has special purpose also.

• We usually apply it to a memory address.
• It returns the variable which that address points to!

• We have to use pointer variables to hold memory

addresses for the appropriate type of variable

• E.g

int * x; // defines pointer to an integer

float *y; // defines pointer to a float

Print Pointers

• %p will print leading zeros

printf("Address of char = %p \n", &c);

printf("Address of short int = %p \n", &i);

printf("Address of int = %p \n", &j);

printf("Address of long = %p \n", &x);

printf("Address of float = %p \n", &f);

printf("Address of double = %p \n", &d);

POINTERS EXAMPLE

Pointers Example 1

void main(){
int x = 4;
int* addr;

addr = &x;

printf("x = %d \n", x);
printf("addr of x = %p \n", &x);
printf("addr of x = %p \n", addr);
printf("value of x = %d \n", *addr);

}

Remember: A pointer is a variable whose

value is the address of another variable

Remember

• Pointer variables hold the addresses of other variables –

that’s their purpose.

• We don’t know in advance where the program will store

the variables – and normally don’t care.

• Dereferencing

• just means using the pointer to get to the variable!

Dereferencing

• Here we are dereferencing the pointer:

void main(){
int x = 4;
int* addr;

addr = &x;

printf("x = %d \n", x);
printf("addr of x = %p \n", &x);
printf("addr of x = %p \n", addr);
printf("value of x = %d \n", *addr);

}

Dereferencing

• Here we are dereferencing the pointer:

Pointers Example 2

void main(){
int x = 4; // store 4 in memory location given to x
int* a1; // create a variable that can hold the address of an integer

a1 = &x; // store the address of x in our new pointer variable

printf("x = %d \n", x); // print out the value of x (4)

printf("x = %d \n", *a1); // dereference the address stored in a1 and print value found there(4)

*a1 = 7; // store the value 7 in the variable stored at address a1 (which is the address of x)

printf("x = %d \n", x); // print out value of variable of x (should be 7!)
}

Pointers Example 3

void main(){
double d1 = 88.5;
double* p1 = &d1;

*p1 = *p1 * 2.0;

printf("d1 now contains the value: %.2f \n", d1);
}

Do’s and Don’t’s

• Get used to pointers.

• Use the & to get the address of a variable.

• Use * to define a pointer variable and to dereference a

pointer variable.

• Only use pointer variables with the correct variable data

type.

• E.g. an integer pointer must point to an integer

POINTERS AND ARRAYS

Pointers and Arrays

• So far today, we have looked at pointers for variables like

integers, floats, chars, etc.

• Next we will look at using pointers for arrays.

Pointers and Arrays

The pointer ‘ip’ will point to

the 0th element of array1

Pointers and Arrays

• Could I dereference ‘ip’ and pass that into printArray?

• i.e. would this work?

Pointers and Arrays

• Could I dereference ‘ip’ and pass that into printArray?

• i.e. would this work? No.
The pointer ‘ip’ will point to

the 0th element of array1.

We need to point to the full array.

Pointers and Arrays

• We would need to point to the full array.

Pointers and Arrays

• We would need to point to the full array.

Pointers and Arrays

• Can we reset array pointers?

• i.e. would this work?

Pointers and Arrays

• Can we reset array pointers?

• i.e. would this work? Yes.

END OF FIRST LECTURE

START OF SECOND

LECTURE

POINTERS AND STRINGS

Pointers and Strings

• Let’s now have a look at pointers and strings.

• Which of the following are correct?

void main(){
char string1[] = "Food & Drink";
puts(string1);

char* cp;
cp = string1;
puts(cp);
printf("cp = %p.\n",cp);

cp = &string1;
puts(cp);
printf("cp = %p.\n", cp);

cp = &string1[0];
puts(cp);
printf("cp = %p.\n", cp);

}

Pointers and Strings

• Which of the following are correct? All of them.

• Why?

void main(){
char string1[] = "Food & Drink";
puts(string1);

char* cp;
cp = string1;
puts(cp);
printf("cp = %p.\n",cp);

cp = &string1;
puts(cp);
printf("cp = %p.\n", cp);

cp = &string1[0];
puts(cp);
printf("cp = %p.\n", cp);

}

Pointers and Strings

• Which of the following are correct? All of

them.

• Why?

• An array name often evaluates to a

pointer.

• This is referred to as an array ‘decaying’ to a

pointer.

• Next cp points to ‘F’ in string

• Remember 0th element.

• A pointer to an array is the same as a

pointer to its first element

void main(){
char string1[] = "Food & Drink";
puts(string1);

char* cp;
cp = string1;
puts(cp);
printf("cp = %p.\n",cp);

cp = &string1;
puts(cp);
printf("cp = %p.\n", cp);

cp = &string1[0];
puts(cp);
printf("cp = %p.\n", cp);

}

Pointers and Strings

• Puts() will start printing the characters from the address

you give it:

void main(){
char string1[] = "Food & Drink";
puts(string1);

char* cp = &string1[5];

puts(cp);
}

Incrementing Pointers

void main(){
char string1[] = "Food & Drink";

char* cp = string1;
for (int i = 0; i < 10;i++) {

puts(cp);
cp++;

}
}

Incrementing Pointers with Ints

Be Careful Incrementing Pointers

No warnings or errors and no

crash, so these bugs can be hard

to find and cause serious

problems if giving the wrong data

POINTERS AND

FUNCTIONS

Pointers and Functions

• We already saw earlier how we can pass pointers to full

arrays into functions.

• Here printArray() expects an array:

Pointers and Functions

• We can see here how

printArray() expects a

pointer:

Pointers and Functions

• Will this work?

• Since printArray()

expects a pointer..

Pointers and Functions

• Will this work?

• Yes!

• Since printArray()

expects a pointer..

• Why?

• Arrays decay to pointers.

Incrementing Pointers

• When we increment a pointer,

we are not simply adding one to

the address.

• We are adding the size in

bytes of whatever data type the

pointer points to.

• However, chars are of size 1

byte. So in this case we are

actually adding 1 to the

address…

void printString(char* cptr);

void main(){
char string1[] = "C Programming";
printString(string1);

}

void printString(char* cptr){
int i = 0;
while (*(cptr + i) != '\0'){

printf("%c", *(cptr + i));
i++;

}
printf("\n");

}

C CODE

C Code

• Let’s finish today’s lecture by running some C programs

in Visual Studio.

PROGRAMMING
CT103

Week 17

Sign in on Blackboard

• Please sign in on blackboard for CT103.

• I will leave the sign in option open for an hour after the

lecture.

Question from last week:

• Someone at the end of last week’s lecture asked:

• ‘Does the line of code [below] dereference the pointer and then

add 4?’

• You were correct! The line should have been:

• This will increment the pointer by 4 blocks of memory and

then dereference it.

Lecture Content

• Today’s lecture (Week 17):

• Memory requirements

• Strcpy_s function

• Structure pointers

• Linking structures

• Example C programme

MEMORY REQUIREMENTS

Characters

void main() {
char string1[] = "Visual Studio 2019";
int i = 0;

while (string1[i] != '\0'){
printf("%d %c\n", &string1[i], string1[i]);
i++;

}
}

Difference is sizeof(char) = 1

Integers

void main() {
int array1[] = { 4,56,-10,11,323 };
int i = 0;

while (i<5)
{

printf("%d %d\n", &array1[i], array1[i]);
i++;

}
}

Difference is sizeof(int) = 4

Doubles

void main() {
double array1[] = { 1.5, 3.3, -76.5, 0.04, -1.3 };
int i = 0;

while (i < 5){
printf("%d %.2lf\n", &array1[i], array1[i]);
i++;

}
}

Difference is sizeof(double) = 8

Characters (Using Pointers)

void main() {
char string1[] = "Visual Studio 2019";
char* cp = string1;
int i = 0;

while (*cp != '\0'){
printf("%d %c\n", cp, *cp);
cp++;

}
}

Difference is sizeof(char) = 1

Integers (Using Pointers)

void main() {
int array1[] = { 4,56,-10,11,323 };
int *ip = array1;
int i = 0;

while (i < 5){
printf("%d %d\n", ip, *ip);
ip++;
i++;

}
}

Difference is sizeof(int) = 4

Doubles (Using Pointers)

void main() {
double array1[] = { 1.5, 3.3, -76.5, 0.04, -1.3 };
double* dp = array1;
int i = 0;

while (i < 5){
printf("%d %.2lf\n", dp, *dp);
dp++;
i++;

}
}

Difference is sizeof(double) = 8

DIY STRCPY_S FUNCTION

Strcpy_s Function

• Remember strcpy_s() from when we learned about

strings in semester 1.

• This function overwrites one string with another.

• Let’s see how we can write a function ourselves

using pointers to do the same thing.

myStringCopy()

void myStringCopy(char* target, char* source);

void main(){
char t[100]; // target string
char s[] = "Here is the string."; // to copy from
myStringCopy(t, s);
printf("%s",t);

}

void myStringCopy(char* target, char* source){
while (*source != '\0'){

*target = *source;
target++;
source++;

}
*target = '\0';

}

myStringCopy()

• How would we modify the new function we wrote to

also return the array pointer?

Will this work?

char* myStringCopy(char* target, char* source);

void main(){
char t[100]; // target string
char s[] = "Here is the string."; // to copy from
char * tPtr = myStringCopy(t, s);
printf("%s",tPtr);

}

char* myStringCopy(char* target, char* source){
while (*source != '\0'){

*target = *source;
target++;
source++;

}
*target = '\0';
return target;

}

Will this work?

char* myStringCopy(char* target, char* source);

void main(){
char t[100]; // target string
char s[] = "Here is the string."; // to copy from
char * tPtr = myStringCopy(t, s);
printf("%s",tPtr);

}

char* myStringCopy(char* target, char* source){
while (*source != '\0'){

*target = *source;
target++;
source++;

}
*target = '\0';
return target;

}

Unfortunately not.

Why?

myStringCopy()

• We need to return the pointer to the original address

of the start of the target string

• But in myStringCopy we have kept incrementing this

value as we copied characters

• So we need to fix this

It works

char* myStringCopy(char* target, char* source);

void main(){
char t[100]; // target string
char s[] = "Here is the string."; // to copy from
char * tPtr = myStringCopy(t, s);
printf("%s",tPtr);

}

char* myStringCopy(char* target, char* source){
char* origTarget = target;
while (*source != '\0'){

*target = *source;
target++;
source++;

}
*target = '\0';
return origTarget;

}

We kept the original pointer

We returned this instead

STRUCTURE POINTERS

Structures
typedef struct{

int day, month, year;
} date;

typedef struct{
int id;
char firstName[21];
char surname[21];
double balance;
date lastTransDate;

} account;

void displayAccount(account acc1);

void main(){
account myAccount = { 101, "Bob", "Smith", 801.94, {18,5,2021} };
displayAccount(myAccount);

}

void displayAccount(account acc1){
printf("Account ID\tFirst Name\tSurname\tBalance\tLast
Transaction\n%10d\t%10s\t%10s\t%7.2lf\t%d/%d/%d \n\n",
acc1.id, acc1.firstName, acc1.surname, acc1.balance, acc1.lastTransDate.day,
acc1.lastTransDate.month, acc1.lastTransDate.year);

}

Account Structure Memory

Structure Pointers

Structures – With Pointers
typedef struct{

int day, month, year;
} date;

typedef struct{
int id;
char firstName[21];
char surname[21];
double balance;
date lastTransDate;

} account;

void displayAccount(account* accptr);

void main(){
account myAccount = { 101, "Bob", "Smith", 801.94, {18,5,2021} };
displayAccount(&myAccount);

}

void displayAccount(account* accptr){
printf("Account ID\tFirst Name\tSurname\tBalance\tLast
Transaction\n%10d\t%10s\t%10s\t%7.2lf\t%d/%d/%d \n\n",
(*accptr).id, (*accptr).firstName, (*accptr).surname, (*accptr).balance,
(*accptr).lastTransDate.day, (*accptr).lastTransDate.month,
(*accptr).lastTransDate.year);

}

Differences Structure Example

1. We send the address of the structure to the function
displayAccount

2. The function receives the value of the address which

it uses to initialise the (local) variable accptr

3. To access the contents of a structure via a pointer, we

dereference the pointer first.

4. lastTransDate is not a pointer, so we use the . to access

it’s members.

Dereferencing Structure Pointers

• We could have used the ‘->’ symbol with our structure as

follows:

• This works the same as what we had originally:

->

• We could have used the ‘->’ symbol with our structure as

follows:

• -> will dereference the structure pointer and access the

data member within the structure.

• E.g. accptr-> id is the same as (*accptr).id

C Code

• We will finish the first half of the lecture by running some

C code in Visual Studio.

END OF FIRST LECTURE

START OF SECOND

LECTURE

LINKING STRUCTURES

Linking Structures

• Pointing to structures is a powerful tool in C.

• When used with dynamic allocation, we can build chains

of linked data structures of unlimited size on the fly.

• You will learn more about dynamic memory allocation

later on in the course.

• Briefly, it is the process of allocating memory during run time.

Structures – With Pointers

Structures – With Pointers

Structures – With Pointers

EXAMPLE PROBLEM

Example C Problem

• You are writing software for a software company to organise the various

employment positions at the company, i.e. the management structure.

• Create a structure for an employee type that holds the title of the position

and a pointer to their manager.

• The company has 5 different levels of seniority:

1. Junior developer.

2. Senior developer.

3. Lead developer.

4. Director of software engineering.

5. CEO.

• Write a function that will display the management structure of the

company.

C Code

• Go to Visual Studio.

Problem solution

• Employee struct

Problem solution

• Creating employees:

Problem solution

• Function to display structure:

Problem solution

• Full solution

Problem solution

• Code output:

PROGRAMMING
CT103

Week 18

Sign in on Blackboard

• Please sign in on blackboard for CT103.

• I will leave the sign in option open for an hour after the

lecture.

Lecture Content

• Today’s lecture (Week 18):

• Strtok_s

• Reading CSV Files

• Strtok_s and CSV Files

STRTOK_S

Remember the problem of parsing a string or file

record, where a field can contain more than 1 word?

• In this situation fscanf_s using %s is no use to

us.

• For example you have a file like this:

Name Age Occupation Birth Date

David Vose 46 Risk Analyst 13/10/1974

Mary Smith

Burke 57

Software

Engineer 01/09/1963

So the data line looks like:

• It depends on the delimiter used.

• If it is tab delimited, a line will look like this:

Mary Smith Burke\t57\tSoftware Engineer\t01/09/1963\n

So how to parse this?

• We have seen how you can copy from the line

into temporary strings, stopping at the delimiter

(\t in this case):
• Repeating this then for each field.

• Converting to doubles, ints, etc. as needed using functions
like atoi().

• This definitely works, no problem.

Example From Week 15

• Scanning strings with spaces.

Another approach

• We could also replace the delimiters with ‘\0’ s

• Effectively splitting the source (line) string into sub-

strings.

• All you need then is the starting point for each sub-

string, which you can store in a char* pointer.

• We can use strtok() for this!

Replace delimiters with ‘\0’

and save pointers to start of substrings

STRTOK_S Example

STRTOK_S Example

Be Careful with Strtok_s

• Strtok_s is destructive

Next substring

• Next time you call strtok_s, it will replace the second

delimiter with ‘\0’ and return the pointer to the second

field.

• However you must now pass in NULL as the first

argument instead of a string:

• This is how it knows you are still parsing the same string.

Subsequent Strings

Subsequent Strings

CSV FILES

Scanning from file

• Up until now, we have only considered reading data

from .txt files.

• E.g.

Scanning from file

• What if our data is in another file format?

• For example: CSV files

• CSV = Comma Separated Value

CSV Files

CSV Files
Has .csv file

extension

Scanning CSV files

• How can we read in CSV files?

Scanning CSV files

Much the same as before!

New file extension

Scanning CSV files

Sort of works…

How about this?

Use fgets?

How about this?

Works great!

Scan Names Only

• Can we use strtok_s to get just the names from our csv

file?

Scan Names Only

Will this work?

Scan Names Only

We can easily separate

names and ages

C CODE

C Code

• Let’s finish today’s lecture by running some C programs

in Visual Studio.

CT103 Programming
Semester 2 Week 7

Revision: Loops, Arrays, File Handling

Dr. Sam Redfern
Discord Server: the same one we're using for CT1114

Exercise

• Write a C program which asks the user for a positive integer, and then
(using a loop) determines and displays the minimum number of terms
needed in the summation
• 1 + 3 + 5 + 7 + 9 + …
• for the sum to exceed the user's integer.
• Questions:

• What's the best kind of loop to use here?
• What work do we want each loop iteration to do?
• What variables do we need?

Arrays
Allows a program to store multiple variables under the same name
A first example of a data structure or collection
Declaration:

type arrayName [arraySize];
e.g.:

double balance[5];

Declare and initialising at the same time:
double balance[] = {1000.0, 2.0, 3.4, 7.0, 50.0};

Access members of an array (for read or write):
double b = balance[0];
double b = balance[i];

Arrays are random access data structures: you can access any element at any
time without needing to access preceding elements first. This is very useful.

Example

07_CountLetters.cpp
• Counting upper case letters
• Random access FTW!
• Also makes clever use of char-as-int in

the C language (in C, char variables
store ASCII values as 1-byte integers)

#include <stdio.h>
#include <ctype.h>

int main(void) {
int c, i, letter[26];

for (i = 0; i < 26; ++i)
letter[i] = 0;

while ((c = getchar()) != '\n') {
if (isupper(c))
letter[c - 'A']++;

}

for (i = 0; i < 26; i++) {
if (i % 6 == 0)
printf("\n");

printf("%4c:%3d", 'A' + i, letter[i]);
}
printf("\n\n");

return 0;
}

fsdfsdfJKHHJKHJHJHJJKHBHKJ

A: 0 B: 1 C: 0 D: 0 E: 0 F: 0
G: 0 H: 7 I: 0 J: 7 K: 4 L: 0
M: 0 N: 0 O: 0 P: 0 Q: 0 R: 0
S: 0 T: 0 U: 0 V: 0 W: 0 X: 0
Y: 0 Z: 0

Generating Random Numbers in a range
/* Generate random numbers within a range. */
#include <stdio.h>
#include <stdlib.h>
#include <time.h>

int rnd(int lower, int upper);

int main(void) {
srand(time(0));
printf("Here's some random numbers between 1 and 10:\n");
for (int i=0; i<20; i++)

printf("%d ", rnd(1,10));
}

int rnd(int lower, int upper) {
int range = (upper-lower)+1;
return (rand()%range) + lower;

}

Exercise (Arrays)

• Write a program which generates an array of 10000 random integers,
each in the range 0-100
• The program should then identify which of the numbers occurred

most often
• How might we do this…? What data do we need?
• We need an array to store the frequencies of each possible value (0-100)
• The frequency array is therefore of size 101
• Loop for each of the 10000 random numbers

• .. For each number, increment the frequency array at the appropriate index
• Another loop, after the first one, for each of the values 0-100

• Check each to see if it's the most frequent (pattern: find the largest value in a list of
values).

Nested Loops

• Example: times tables

/* Display times tables using nested loops */

#include <stdio.h>

int main(void) {
for (int y=1; y<=12; y++)

printf("%4d", y);
printf("\n");

for (int x=1; x<=10; x++) {
printf("\n");
for (int y=1; y<=12; y++) {

printf("%4d", x*y);
}

}
printf("\n");

return 0;
}

1 2 3 4 5 6 7 8 9 10 11 12

1 2 3 4 5 6 7 8 9 10 11 12
2 4 6 8 10 12 14 16 18 20 22 24
3 6 9 12 15 18 21 24 27 30 33 36
4 8 12 16 20 24 28 32 36 40 44 48
5 10 15 20 25 30 35 40 45 50 55 60
6 12 18 24 30 36 42 48 54 60 66 72
7 14 21 28 35 42 49 56 63 70 77 84
8 16 24 32 40 48 56 64 72 80 88 96
9 18 27 36 45 54 63 72 81 90 99 108

10 20 30 40 50 60 70 80 90 100 110 120

Exercise (Nested Loops)
Please enter a positive integer: 6
*
**

*
**

Please enter a positive integer: 9
*
**

*
**

Exercise: Number guessing game

• Write a program which generates a random number between 1 and 100
• The player has to guess the number in as few guesses as possible
• After each guess, the program tells them if they're too high or too low
• After the correct guess, they're told how many guesses it took.
• Questions:

• What's the best kind of loop to use here?
• What work do we want each loop iteration to do?
• What variables do we need?

Reading from File

• A text file is a collection of ASCII characters
• Text files also contain the newline character - signifying the end of a

line
• A simple way to read a file line-by-line is to use fgets()
• See next slide

#include <stdio.h>

#define MAXSTRING 100

int main() {
// fopen requests a file to be opened obtains a FILE pointer to access it
FILE *file_ptr;
file_ptr = fopen("dictionary.txt", "r"); // open for reading

if (file_ptr == NULL)
printf("Could not open dictionary.txt");

else {
char txt[MAXSTRING]; // string for reading each line into
int lines = 0;
while (fgets(txt, MAXSTRING-1, file_ptr)!=NULL) {

lines++;
}
printf("dictionary.txt contained %d lines.", lines);
fclose (file_ptr); // don't forget to close the file

}

return 0;
}

Exercise: Read a file and display each line
which contains an 's' in it
• (I will supply the file – it's a dictionary)
• Question: how do we find out whether a string contains 's' ?

Lab Assignment: Word guessing game

• Write a C program which reads the supplied dictionary file into an
array of strings (make sure the array is big enough for all the words..
100000 is plenty)
• The program should reject words from the file which have less than 4

or more then 7 letters
• It should then randomly pick a word and the user must guess letters

in the word and try to get the whole word in as few guesses as
possible (a politically incorrect person might call the game 'Hangman')
• Make appropriate use of functions
• For required output, see next slide

Loaded 30409 suitable words from the dictionary.

Guess 1.

Guess a letter >i

Guess 2.

Guess a letter >a

Guess 3.
a-----
Guess a letter >e

Guess 4.
a--e--
Guess a letter >m

Guess 5.
a--e--
Guess a letter >t

Guess 6.
atte-t
Guess a letter >s

Well done, that took you 6 guesses to find attest!

Stack and Heap considerations..
• Declaring a very large array inside a function could cause the program to fail with an error, e.g.

• char dictionary[100000][50];

• It depends on your compiler whether this happens
• The issue is that some compilers put a severe limit on the allowable memory used by the Stack
• If you move your very large array outside of the function, making it global, that should fix it because now it will be allocated on the

Heap
• The Stack is for short-term working memory within a function, the Heap is for longer-term memory that your program needs to

allocate for longer
• See:

• https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2015/code-quality/c6262?view=vs-
2015&redirectedfrom=MSDN

• https://www.guru99.com/stack-vs-heap.html

https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2015/code-quality/c6262?view=vs-2015&redirectedfrom=MSDN
https://www.guru99.com/stack-vs-heap.html

CT103 Programming
Semester 2 Week 8

More String Handling, File Handling, and Binary Search

Dr. Sam Redfern
Discord Server (the same one we're using for CT1114)

Separating words in a string (with some pangrams)

• "The quick brown fox jumps over the lazy dog"
• "How vexingly quick daft zebras'... jumpers... jump!"
• "Pack my box... with five dozen, liquor jugs"
• "Jack's ' dawn loves...my big\t\t sphinx, , of quartz."

• What rules are needed to robustly separate words in all these cases?
• Alphabetic letters
• Apostrophes
• White-space? Dots? Tabs? Commas? Exclamations?

• When we have identified the rules, what's the general process for
displaying each word on a separate line?

An approach (example)
• Declare a string to use to build the current word into, e.g.: char word[50];
• Iterate through each letter in the user-supplied string
• Check the letter using isalpha() from <ctype.h>

• If it's alphabetic, add it to the end of word[]
• How can we ‘add to the end’ of a string in C?

• If it's not alphabetic, then print out word[] on a new line (if it has anything in) and reset
word[] to empty

• Special treatment of apostrophes? They may be internal or external to a word

• Sample solution: 08_WordsToLines.cpp

Spellchecking (exercise)

• We can use the dictionary.txt file again
• Load in dictionary.txt as we did in the hangman game
• Ask the user for a word
• Is the word in the dictionary?
• Consider Lowercase vs. Uppercase letters?
• Use tolower() on from <ctype.h> on each character in turn

• How to search the dictionary.. linear search?
• 08_Spellcheck_Linear.cpp

Binary Search
• If our data is stored in sorted sequence, we can

use Binary Search rather than Linear Search
• Two variables are needed to record the region

of search space still to be considered:
• Low
• High

• Each iteration involves checking the Middle
item in the remaining search space, with 4
possibilities:
• Too Low?
• Too High?
• Item Found?
• Failed?

• Each iteration halves the remaining size of the
search space

• Solution to previous exercise, now done this
way: 08_Spellcheck_Binary.cpp

strtok() - split strings into tokens

• A function for splitting strings, where you supply the delimiter which separates your tokens
• Similar to the .split() method of strings in Javascript
• #include <string.h>

char* strtok (char* str, const char* delimiters);

• A sequence of calls to this function splits str into tokens, which are sequences of contiguous
characters separated by any of the characters that are part of delimiters.

On a first call, the function expects a C string as argument for str, whose first character is used as
the starting location to scan for tokens. In subsequent calls, the function expects a null pointer and
uses the position right after the end of the last token as the new starting location for scanning.

• See: http://www.cplusplus.com/reference/cstring/strtok/
• https://www.tutorialspoint.com/c_standard_library/c_function_strtok.htm

http://www.cplusplus.com/reference/cstring/strtok/
https://www.tutorialspoint.com/c_standard_library/c_function_strtok.htm

strtok() example
#include <string.h>

#include <stdio.h>

int main () {

char str[80] = "This is - www.tutorialspoint.com - website";

const char s[2] = "-";

char *token;

/* get the first token */

token = strtok(str, s);
/* loop through other tokens */

while(token != NULL) {

printf(" %s\n", token);

token = strtok(NULL, s);

}
}

Exercise: Some more fun with files
• 3 files, with the 1000 most common surnames, male forenames, and female forenames from a US

county census (see next slide):
• surnames.txt
• forenames_male.txt
• forenames_female.txt

• See sample data from them on the next slide: not just names, but names and cumulative
frequencies

• What character is being used as delimiter here?

• Exercise: write a program to:
• open surnames.txt
• read its contents into an array of strings
• Remove the cumulative frequency from each name by using strtok
• Print out one of the surnames, selected randomly from the array

My sample solution (08_random_names.cpp) will:
• read all 3 files in line by line, separating the name from the frequency number, and storing them into 3 arrays

of strings
• generate 10 random male names and 10 random female names. It doesn’t worry about the frequencies yet

(other than removing them upon reading).. We’ll explore their use next week.

Zachary Dartaghan is as common as Mary
Smith??
• What is the cumulative frequency data and how we can use it..?
• We’ll see a solution next week, using arrays of structs to keep the

names and their frequency data neatly together

Graded Assignment: Flesch Readability Index
• Write a program which reads all the text in a file and computes the Flesch Readability Index for it.

• The Flesch Readability Index was invented as a simple tool for determining the legibility of a
document without linguistic analysis. It may be implemented using the following 4 steps:

1. Count all words. A word is any sequence of characters delimited by white space.
2. Count all syllables in each word. Each group of adjacent vowels (a, e, i, o, u, y) counts as one

syllable (for example, the "ea" in "real" contributes one syllable, but the "e..a" in "regal" counts
as two syllables). However, an "e" at the end of a word doesn't count as a syllable. Also, each
word has at least one syllable, even if the previous rules give a count of 0.

3. Count all sentences. A sentence is ended by a full stop, colon, semicolon, question mark, or
exclamation mark.

4. The index is computed by the following formula:

Index
syllables
words

words
sentences

= - -206835 84 6 1015. . * . *
Starting code: 08_LAB_START_Flesch.cpp

What are the steps for solving this?

• Separate words
• Then…?

Starting code: 08_LAB_START_Flesch.cpp

CT103 Programming
Semester 2 Week 9

Practice with Structs and Arrays (and Pointers, and Files).

Dr. Sam Redfern
Discord Server (the same one we're using for CT1114)

Recall from last week: names with cumulative
frequencies
• Zachary Dartaghan is as common as Mary Smith??

• What is the cumulative frequency data and how we can use it..?

• Example: updating the previous solution to use frequencies, and
produce statistically believable sets of names:
• 09_random_names_with_freq.cpp

• My solution uses linear search.. could it use binary search?

Structs for soccer teams and games

typedef struct {
char name[30];
int won, lost, drew;
int goalsFor, goalsAgainst;

} team;

typedef struct {
char team1name[30];
char team2name[30];
int goals1, goals2;

} game;

soccer_teams.txt (newline-delimited strings)

Manchester City
Manchester United
Leicester City
West Ham
Chelsea

soccer_results.txt (a mix of strings and
integers, delimited by tabs and newlines)

Manchester City 2 Manchester United 1
Leicester City3 West Ham 1
Chelsea 0 Manchester City 2
Manchester United 1 Leicester City1
West Ham 2 Chelsea 1

sscanf() is one way of parsing strings
delimited by miscellaneous characters
• i.e. we want Manchester City to be read as one string, not two
• Explanation of the fscanf codes
• See: https://stackoverflow.com/questions/10908668/how-do-you-

read-tab-delimited-strings-from-a-txt-file-and-put-them-into-variable

https://stackoverflow.com/questions/10908668/how-do-you-read-tab-delimited-strings-from-a-txt-file-and-put-them-into-variable

09_SoccerStructs.cpp

• Functions:
• FILE* openFileForReading(char* filename)

• a helper function for opening a file
• bool readInTeams()

• Reads team names in from soccer_teams.txt, and populates an array of teams (with other team struct data
zeroed)

• int readInResults()
• Reads in and parses data from soccer_results.txt, and updates the data of appropriate teams identified in each

game
• team* findTeamByName(char* name)

• A helper function which searches the array of teams for one with name matching the argument (returns NULL
on failure)

• int getPoints(team* t)
• A helper function which calculates the points of a team (i.e. 3*won + drew)

• int getSortValue(team* t)
• A helper function which returns a value for a team, which is suitable for sorting teams into a league table

Exercise

• Modify 09_SoccerStructs.cpp so that it displays the teams in a league
table format (but not yet sorted)

Exercise

• Modify the previous program so that it now sorts the league table

• Suggested ‘sortvalue’ calc: 1000*points + GF - GA

"Colossal Cave Adventure"

• Written in FORTRAN for
the PDP-11 mainframe

• We can play it here:
https://grack.com/dem
os/adventure/

https://grack.com/demos/adventure/

Colossal Cave: Some Commands

HELP
N, S, E, W, IN, OUT
TAKE [OBJECT]
DROP [OBJECT]
EXAMINE [OBJECT]
INVENTORY
LOOK
QUIT

• You will implement the above over 2 weeks of labs

adventure_locations.txt
ID N S E W IN OUT Description

1 5 4 6 7 2 0 On the NUIG campus, beside the CS building.

2 0 0 0 0 3 1 In the Computer Science Building, beside a computer lab.

3 0 0 0 0 0 2 In a computer Lab.

4 1 0 8 7 9 0 On the Salthill prom. The sea looks inviting (but cold).

5 0 1 6 7 0 0 In Newcastle.

6 0 8 0 1 0 0 In Terryland.

7 0 0 1 0 0 0 In Knocknacarra.

8 1 0 0 4 0 0 On Quay Street. Everywhere is shut (stupid pandemic).

9 0 0 0 0 0 4 In the Sea. It's freezing!

This file is tab-delimited
Note the presence of the two header lines at the start of the file, which you'll need to deal with

Exercise

• Write a program which defines a struct suitable of storing the
locations defined in adventure_locations.txt
• Now have the program read adventure_locations.txt into

an array of these structs

• (09_AdventureA_ReadLocations.cpp)

Exercise

• Modify your previous program so that it displays each location (after
reading them all in), including where each location leads to if you
travel North from it.
• Sample output:

Lab Assignment

• Using the file adventure_locations.txt, implement the
movement commands (N, S, E, W, IN, OUT) as well as LOOK,
HELP and QUIT
• Display the description of each location as the player moves to it
• You can start with the code from the previous exercise (your own

code, or my sample solution).
• See sample input/output on next slide

CT103 Programming
Semester 2 Week 10

Command-Line Arguments
and Fun with Calendars

Dr. Sam Redfern
Discord Server (the same one we're using for CT1114)

Command Line Arguments

• You can set the inputs
(command line
arguments) for your .exe
in the option
• Project Properties
• Configuration Properties

• Debugging
• Command Arguments

Or alternatively, run from a command prompt
• Open the folder

containing your solution
• There should be a Debug

folder – open it
• It should contain the

.exe

Visual Studio can open a command prompt at
the correct folder for you
• File

• > Open Command Prompt
• > In this Debug folder

• Now you can run the .exe by typing in the full name of the executable,
followed by the arguments

On the Mac

• In Xcode
•Product
• Scheme
• Edit Scheme
• Run
• Arguments
• + (add arguments)

On the Mac (without
Xcode)
• Right click the folder that contains

your executable
• Select “New Terminal at Folder”
• Type the name of your

executable, with “./” in front of it,
and command line args as desired

Reading Command Line
Arguments in your code#include <stdio.h>

int main (int argc, char *argv[]) {
int count;

// argc is the number of command-line args (including exe name)
// argv[0] is the exe name (including path)
printf ("This program was called with \"%s\".\n", argv[0]);

if (argc > 1) {
// argv[1], argv[2] etc. are the "actual" arguments
for (count = 1; count < argc; count++)
printf("argv[%d] = %s\n", count, argv[count]);

}
else {
printf("Called with no command-line arguments.\n");

}

return 0;
}

Exercise

• Add together all of the numbers supplied at the command-line
• You can convert a string to a number using atoi() or atof() from

<stdlib.h>
• int atoi(const char *str)
• double atof(const char *str)

Some Exercises with
Calendars

A function that returns the number of days in
a month

int no_of_days(int year, int month) {
if (month == 9 || month == 4 || month == 6 || month

== 11)
return 30;

if (month != 2)
return 31;

// but what about February?
}

Exercise: Leap Years

• Write a C function which receives a year number as an
argument.

• The function should return 1 if the year is a leap year, and
return 0 if it is not.

• Start with the code provided on the next slide
• When you have finished, modify the program so that it receives

the year number as a command-line argument rather than
using scanf()

#include <stdio.h>

int is_leap(int year);

int no_of_days(int year, int month);

int main() {

int y;

printf("Enter a year number > ");

scanf(" %d", &y);

if (is_leap(y)==1)

printf("It's a leap year!");

else

printf("It's not a leap year!");

printf(" ... and February has %d days.",

no_of_days(y,2));

}

int no_of_days(int year, int month) {

if (month == 9 || month == 4 || month
== 6 || month == 11)

return 30;

if (month != 2)

return 31;

return 28 + is_leap(year);

}

int is_leap(int year) {

return 1;

// to do: change this so that leap
years return 1

// and others return 0

}

What day of the week does a month start on?

• Fact: January 1st, 1900 was a Monday

• So, what day of the week was February 1st, 1900?
• And how do we calculate that?

• What day of the week was May 1st, 1900?
• And how do we calculate that?

• What about May 1st, 1901?

Exercise

• Write a command-line-driven
program which accepts a year
number as an argument, and
one or more month numbers as
subsequent arguments
• The program should print out

calendars for the specified
months
• See starting code:
10_CommandLineCalendarsStart.cpp

.\calendars.exe 2021 3 4

3/2021

Sun Mon Tue Wed Thu Fri Sat
1 2 3 4 5 6

7 8 9 10 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30 31

4/2021

Sun Mon Tue Wed Thu Fri Sat
1 2 3

4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30

Assignment

• In this assignment, you will be adding some more features to the text adventure
game which you started last week
• You may use your own code or my sample solution from last week as a starting

point for this week

HELP
N, S, E, W, IN, OUT
TAKE [OBJECT]
DROP [OBJECT]
EXAMINE [OBJECT]
INVENTORY
LOOK
QUIT

• The 4 commands you're adding this time all relate to objects
which may be picked up from one location and dropped in
another

• When displaying the description of a location, also tell the
players which objects (if any) are there

• 'INVENTORY' lists the objects currently being carried by the
player

• 'EXAMINE' displays an object's description – but only if it's
being carried or in the current location

• For TAKE, EXAMINE, and DROP you can have the player enter
the command and then them ask for the object – this is easier
than trying to separate them from one string

adventure_objects.txt
Name Location Description

--

USB Drive 3 A small USB drive which holds a whopping 1TB

Ice Cream 4 An ice cream, inexplicably found on Salthill Prom

This file is tab-delimited
Note the presence of the two header lines at the start of the file, which you'll need to deal with

On the Salthill prom. The sea looks inviting (but cold).

Objects here: Ice Cream

> take

Take what? > Ice Cream

You take Ice Cream.

> inventory

You are carrying: USB Drive, Ice Cream

> w

In Knocknacarra.

Objects here: nothing

> drop

Drop what? > Ice Cream

You drop Ice Cream.

CT103 Programming
Semester 2 Week 11

Dynamic Memory Allocation

Recursion

Introduction to some more Data Structures

Dr. Sam Redfern

Discord Server (the same one we're using for CT1114)

Static vs. Dynamic memory allocation

• Static arrays – size defined at compile time
• Memory stored on the stack (if declared inside a function) or the heap (if declared globally)
• Stack grows when entering new blocks (branches, loops, functions)
• Stack shrinks when leaving blocks

• Dynamic array – size defined at run time
• Memory stored on the heap
• Stays available until removed

• In C – removed manually with function calls
• In Java, or C#, or Javascript – removed automatically with garbage collection => no risk of memory leak

• Why have dynamic memory?
• Input of unknown size
• Data structures that require dynamic memory allocation

• Linked lists, trees, etc.

• Flexibility and Efficiency of memory consumption

sizeof

• The sizeof operator will return the number of bytes reserved for a
variable or data type.

• Determines:
• The byte length of a simple data type (int, float, char etc.)

• Number of bytes required for a structure (user defined type)

• Byte length of an array

sizeof example

#include <stdio.h>

struct {

int a;

int b;

float d;

} myStruct;

int main() {

char myString[20];

printf("An int uses %d bytes\n", sizeof(int));

printf("A float uses %d bytes\n", sizeof(float));

printf("A char uses %d bytes\n", sizeof(char));

printf("myStruct uses %d bytes\n", sizeof(myStruct));

printf("myString uses %d bytes\n", sizeof(myString));

}

As expected, myStruct is reported at 12 bytes

Why is this happening?

struct {

int a;

int b;

char c1;

float d;

} myStruct;

struct {

int a;

int b;

char c1, c2;

float d;

} myStruct;

This is reported at 16 bytes (.. but 13 was expected?)

And this is also 16 bytes! (.. why?)

Dynamic memory functions in <stdlib.h>
• malloc()

• Allocate a memory block

• free()
• De-allocate a previously allocated memory block

• calloc()
• Allocate space for an array

• realloc()
• Change the size of a previously allocated memory

• Each function is used to initialize a pointer with memory from the heap’s
free store (a section of memory available to all programs)

malloc

• The function malloc() will allocate a block of memory that is size x bytes large. If
the requested memory can be allocated a pointer is returned to the beginning of
the memory block.

• Note: the content of the received block of memory is not initialized.

• malloc() prototype:
• void * malloc (size);

• Parameters:
• Size of the memory block in bytes.

• Return value:
• If the request is successful then a pointer to the memory block is returned.
• If the function failed to allocate the requested block of memory, a null pointer is returned.

malloc usage

int *ptr = (int*) malloc(sizeof (int));

• Note that malloc() does not know what the memory will be used for,
it only knows how many bytes (contiguously allocated) are required

• Therefore, the return type is void* and you will need to cast it to the
correct type e.g. int*

At what value for numInts does this fail, and
why?
#include <stdio.h>

#include <stdlib.h>

int main() {

int* buffer;

int numInts = 1;

while (true) {

int bytesRequired = numInts * sizeof(int);

buffer = (int*) malloc (bytesRequired);

if (buffer==NULL) {

printf("Failed to allocate %d bytes.\n", bytesRequired);

return 0;

}

else {

free(buffer);

printf("Succeeded in allocating %d bytes.\n", bytesRequired);

numInts *= 10;

}

}

}

11_malloc_huge.cpp

Dynamically Allocated Arrays

• Allows you to avoid declaring array size at declaration.

• Use malloc to allocate memory for array when needed:

int *dynamic_array;
dynamic_array = malloc(sizeof(int) * 10);
dynamic_array[0]=1;

Question: explain why we can declare an int* and then treat it like an
array, with square-bracket access to elements?

Exercise

• Write a program which asks the user for a number (call it x)

• It then uses malloc to create an array of size x, containing floats

• It should populate each array entry with a random float between 1
and 1000

• Finally, it calculates and displays the average of these values

Deallocation of memory

• As already seen, free(void*) is used to release memory back to the heap
• The operating system knows how large the block of allocated memory is

• But what if we forget to do that?
int *ptr;
ptr = (int *)malloc(sizeof(int));
ptr = (int *)malloc(sizeof(int));

• This is a "Memory Leak"
• This is one of the things that garbage collectors in more modern languages

avoid
• Note: after using free() you should set the pointer to NULL, otherwise it

will still be pointing to the same address, which your program no longer
owns
• Modern operating systems will stop programs from accessing memory they don’t

own (it will crash them instead)

Recursion

• A recursive function is one which calls itself

• This gives an alternative to loops

• Generally recursion is less efficient than loops, but certain types of
problem are much easier to write using recursion
• We'll use recursion a bit later on, when loading and saving a binary decision

tree

• Question: why might recursion be less efficient than loops?

Recursion Example: sum of 1-N

#include <stdio.h>

int sum(int n);

int main() {

int number, result;

printf("Enter a positive integer: ");

scanf("%d", &number);

result = sum(number);

printf("sum = %d", result);

}

int sum(int n) {

if (n != 0)

return n + sum(n-1);

else

return n;

}

There is no benefit to using recursion in this specific case;
it's just a simple example

Infinite recursion should be avoided (just the same as
infinite loops)

Too many recursive calls leads to 'Stack Overflow’
• Any ideas what this means, precisely?

• Structs that contains a pointer to a struct of the same type

• Can be linked together to form useful data structures such as lists,
queues, stacks and trees

• Terminated with a NULL pointer (0)
struct node {

int data;
node *nextPtr;

}

• nextPtr
• Points to an object of type node

• Referred to as a link
• Ties one node to another node

Self-referential structs

1015

Linked Lists

• Linked list
• Linear collection of self-referential struct objects, called nodes
• Connected by pointers
• Accessed via a pointer to the first node of the list ('head')
• Subsequent nodes are accessed via the link-pointer member of the current node
• Link pointer in the last node is set to NULL to mark the list’s end

• Strengths vs. arrays:
• Good for collections of data which grow and shrink at runtime
• Excellent for efficient insertion or deletion at any point in the middle of the list (just

needs some changing of pointers: see next slide) – e.g. if you want to keep a sorted
list

• Weakness vs. arrays:
• Linked lists are sequential access (not random access), i.e. to get to element number

10000 you have to read through the preceding 9999 items

Linked Lists

A linked list with 3 nodes a, b, c

Inserting a new node d between b and c

Removing node b

Trees

• Tree nodes contain two or more links (pointers) to other nodes

• Binary trees are a particular (very useful) type of tree
• All nodes contain two links

• None, one, or both of which may be NULL

• The root node is the first node in a tree.

• Each link in the root node refers to a child

• A node with no children is called a leaf node

• Recursion is a very natural way of operating

on trees

Pointer to root

root

Binary search tree
• Data is inserted in a particular way to facilitate rapid searching

• Values in left subtree are less than parent’s value

• Values in right subtree are greater than parent’s value

• Question: this is similar to using an array with binary search.. but is a
binary search tree superior in any way?

'Guess the Animal' game

• The player thinks of an animal and the computer has to try to guess it through a
series of yes/no questions

• This data structure is called a 'Decision Tree'

• When a leaf node is met, this is the computer's guess

• If the guess is wrong, the player is
asked for the animal they were
actually thinking of, plus a yes/no
question to differentiate between
the (incorrect) guess and that animal

• See sample on next slide

Non-leaf nodes
are questions

Leaf nodes are
animals

Think of an animal. I will amazingly guess your animal!

Press any key to start >

Were you thinking of: dog?

n

Oops. What animal were you thinking of? >cat

Please give me a question to distinguish dog from cat.
>is it mean?

For cat, would the answer be Yes or No? >y

Thank you! Now I know another animal

Do you want to play again? >y

Think of an animal. I will amazingly guess your animal!

Press any key to start >

is it mean? >y

Were you thinking of: cat?

n

Oops. What animal were you thinking of? >snake

Please give me a question to distinguish cat from snake. >is it furry?

For snake, would the answer be Yes or No? >n

Thank you! Now I know another animal

Do you want to play again? >n

node

// binary decision tree node for the Animal game

struct node {

char txt[100];

node* yes;

node* no;

};

The Binary Tree after adding dog, cat, snake

Is it mean?

Is it furry?

cat snake

dog

yes no

yes no

root

11_GuessTheAnimal_START.cpp

• This is the full game without loading and saving

• It restarts each time with just one node in the tree (i.e. one animal
and zero questions)

Using recursion to free() all the nodes that were
allocated using malloc() in GuessTheAnimal game..
This is initially called with root as the argument, and cleans up all nodes

void destroynode(node* n) {

if (n->yes!=NULL)

destroynode(n->yes);

if (n->no!=NULL)

destroynode(n->no);

free(n);

}

Sequence:

• ROOT: destroynode(Is it mean?)
• Y: destroynode(is it furry?)

• Y: destroynode(cat)
• Cat destroyed

• N: destroynode(snake)
• Snake destroyed

• Is it furry? destroyed
• N: destroynode(dog)

• Dog destroyed
• Is it mean? destroyed

Saving the data in a binary search tree

• How can we save the data stored in the Guess the Animal game?
• Here's some pseudocode for a recursive function:

savenode(n) {
write n->txt to file
write a value indicating whether n->yes is NULL or not
if n->yes is not null, then call savenode(n->yes)
write a value indicating whether n->no is NULL or not
if n->no is not null, then call savenode(n->no)

}

Data file: dog, cat, snake

is it mean?

NOTNULL

is it furry?

NOTNULL

cat

NULL

NULL

NOTNULL

snake

NULL

NULL

NOTNULL

dog

NULL

NULL

(‘is it mean’ node, txt)

(‘is it mean’ node, is ‘yes’ pointer null?)

(‘is it furry?’ node, txt)

(‘is it furry?’ node, is ‘yes’ pointer null?)

(‘cat’ node, txt)

(‘cat’ node, is ‘yes’ pointer null?)

(‘cat’ node, is ‘no’ pointer null?)

(‘is it furry?’ node, is ‘no’ pointer null?)

(‘snake’ node, txt)

(‘snake’ node, is ‘yes’ pointer null?)

(‘snake’ node, is ‘no’ pointer null?)

(‘is it mean’ node, is ‘no’ pointer null?)

(‘dog’ node, txt)

(‘dog’ node, is ‘yes’ pointer null?)

(‘dog’ node, is ‘no’ pointer null?)

Loading the data in a binary search tree

• Use recursion to load back a tree as saved above

• Pseudocode:

readnode(n) {

read n->txt from file

read the value which indicates whether n->yes is NULL or not

if the n->yes is not NULL then instantiate a new node to hold the next piece of
data, assign it to n->yes and call readnode(n->yes)

read the value which indicates whether n->no is NULL or not

if the n->no is not NULL then instantiate a new node to hold the next piece of
data, assign it to n->no and call readnode(n->no)

}

Example

• Adding load and save to 'Guess the Animal' game
• Starting point discussed in class: 11_GuessTheAnimal_START.cpp

• Loading and saving of the data in the binary search tree, allows a
more fun database of questions and animals to be built up each time
you play

