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What is Cybersecurity?

0 Computer security, cybersecurity or information
technology security (IT security) is the protection of
computer systems and networks from the theft of or
damage to their hardware, software, or electronic data,
as well as from the disruption or misdirection of the
services they provide (Wikipedia), i.e.:

0 Protection from cybercrime of
0 data (from theft or manipulation)

0 services (from disruption or misuse)

0 This protection can be on a personal, organisational or
government level



States of Data
B

0 Data at rest

O Rest refers to data stored in memory or on a permanent
storage device such as a hard drive, solid-state drive or

USB drive

0 Data in process

O Processing refers to data that is being used to perform an
operation such as updating a database record

0 Data in transit

O Transmission refers to data traveling between information
systems, e.g. data transfer over a network via TCP/IP



How to provide Protection?
N

0 Awareness, training and education are the measures put in place by an
organisation to ensure that users are knowledgeable about potential security
threats and the actions they can take to protect information systems

o Technology refers to the software and hardware-based solutions designed to
protect information systems such as firewalls, which continuously monitor your
network in search of possible malicious incidents

o Policy and procedure refers to the administrative controls that provide a
foundation for how an organization implements information assurance, such as
incident response plans and best practice guidelines



Defense in Depth
B

0 Defense in Depth (DiD) is an approach to cybersecurity in
which a series of defensive mechanisms are layered in
order to protect assets

0 If one mechanism fails, another one steps up immediately

to thwart an attack \ %
b
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European Union Agency for

Czbersecuri’rz ‘ENISA:
e

0 ENISA is the Union's agency dedicated to achieving a high
common level of cybersecurity across Europe

0 https://www.enisa.europa.eu/

0 ENISA threat landscape report:
https: / /www.enisa.europa.eu /topics /cyber-threats /threat-
landscape

0 ENISA has also issued a 2024 report providing policy makers
at EU level with an evidence-based overview of the state of
play of the cybersecurity landscape and capabilities at the EU,
national and societal levels, as well as with policy
recommendations to address identified shortcomings and
increase the level of cybersecurity across the Union current
threat landscape (see also Canvas)


https://www.enisa.europa.eu/
https://www.enisa.europa.eu/topics/cyber-threats/threat-landscape
https://www.enisa.europa.eu/topics/cyber-threats/threat-landscape

The big Picture — RFC2828

N =
0 RFC2828, Internet Security Glossary
0 https:/ /tools.ietf.org /html/rfc2828
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https://tools.ietf.org/html/rfc2828

What is a Threat Agent/Actor?
N

0 The term threat agent or threat actor is used to indicate an
individual, thing or a group that can manifest a threat

O In computer security, a threat is a potential negative action or event
facilitated by a vulnerability that results in an unwanted impact to a
computer system or application

0 Threat actors include:

O Non-target specific, e.g. computer viruses, worms, trojans and logic
bombs.

O Employees, e.g. disgruntled staff or contractors

O Organized crime and criminals

o Corporations, e.g. partners or competitors

O Human, unintentional (including accidents and carelessness)
O Human, intentional

o Natural, e.g. flood, fire, lightning, meteor, earthquakes



Hackers
I

0 Threat actors that break into computer systems or networks to
gain access:

O White hat hackers break into networks or computer systems to identify
any weaknesses so that the security of a system or network can be
improved. These break-ins are done with prior permission and any
results are reported back to the owner

O Black hat hackers take advantage of any vulnerability for illegal
personal, financial or political gain

O Gray hat hackers may set out to find vulnerabilities in a system
without prior permission of the owner. When they uncover weaknesses,
they do not exploit them, rather they report them, but they may
demand payment in return

0 Unskilled hackers are called script kiddies; they use scripts or
programs developed by others, primarily for malicious purposes



Hacktivists

0 Hacktivists make political statements to create
awareness about issues that are important to them

0 In 2022, a significant increase in hacktivist activity
has been observed, especially since the start of
Russia-Ukraine conflict

0 Target organisations through DDoS attacks,
defacements and data leaks

0 Some of the major Hacktivist groups include

Anonymous, TeamOnerFirst, GhostSec, Against the
West, NB65, KILLNET, XakNet, and The Red Bandits



Timeline of selected Hacktivist Events

2022

FEBE.

giant Transneft

Source: IBM Security X-Force Threat Intelligence Index 2023
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Cyber Criminals
N

0 Cyber criminals are usually highly sophisticated and
organised

0 Main interest in attacks that usually lead to ransomware
deployment, coin mining, stealing cryptocurrency, or
stealing credentials

0 They may even provide cybercrime as a service to other
criminals, aka hacker-for hire within the 'Access-as-a-
Service' (Aaa$S) market



State Sponsored Threat Actors

0 State-sponsored attackers gather intelligence or commit
sabotage on behalf of their government

0 They are usually highly trained and well-funded

0 Their attacks are focused on specific goals that are
beneficial to their government

0 Mostly involved in destructive or disruptive operations

0 Example: Since the start of the Russia-Ukraine conflict,
widespread use of wiper malware attacks to destroy
and disrupt networks of governmental agencies and
critical infrastructure entities have been observed



Cyber Warfare

0 Cyberwarfare is the use of technology to penetrate
and attack another nation’s computer systems and
networks to cause damage or disrupt critical
services

0 The main reason for resorting to cyberwarfare is to
gain advantage over adversaries

o Industrial and military espionage e.g. steal defence
secrets and gather information about technology

O Impact infrastructure e.g. power grid

0 Example Stuxnet



- Some Case Studies



Background: Industrial Control Systems

ICS
e

0 An ICS is an electronic control system
and associated instrumentation used
for industrial process control

0 Control systems can range in size
from a few modular panel-mounted
controllers to large interconnected
and interactive distributed control
systems (DCSs) with many thousands
of field connections

0 Control systems receive data from
remote sensors measuring process
variables (PVs), compare the
collected data with desired setpoints
(SPs), and derive command functions
that are used to control a process
through the final control elements
(FCEs), such as control valves

| PLC1 could e.g. Compare

| setpoint, controls the pump
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| flow to setpoint.
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Cyberattacks on ICS

A SRR
0 Traditionally relatively “niche”, but potentially high-impact
attacks on critical infrastructure
O Power generation
0 Chemical plants
O Steel mills
O Transport systems
o Oil pipelines
0 A summary of some recent high-profile attacks can be
found here:

O https: //www.makeuseof.com/cyberattacks-on-industry-
hackers/



https://www.makeuseof.com/cyberattacks-on-industry-hackers/
https://www.makeuseof.com/cyberattacks-on-industry-hackers/

Attacking Critical Infrastructure (Water
Suppl
_—

O https://edition.cnn.com /2021 /02 /08 /us/oldsmar-florida-hack-water-
poison/index.html2utm source=twCNN&utm term=link&utm medium=social&utm content=20

21-02-09T02%3A55%3A27

Someone tried to poison a Florida city by hacking into
the water treatment system, sheriff says

By Amir Vera, Jamiel Lynch and Christina Carrega, CNN
® Updated 0407 GMT (1207 HKT) February 9, 2021

FINELLAS COUNTY SHERIFF'S OFFICE

Pinellas County Sheriff Bob Gualtieri speaks at a press conference on Monday, February 8, about the
attempted hacking of the city of Oldsmar's water treatment system.

(CNN) — A hacker gained access into the water treatment system of Oldsmar, Florida, on Friday
and tried to increase the levels of sodium hydroxide -- commonly referred to as lye -- in the city's
water, officials said, putting thousands at risk of being poisoned.


https://edition.cnn.com/2021/02/08/us/oldsmar-florida-hack-water-poison/index.html?utm_source=twCNN&utm_term=link&utm_medium=social&utm_content=2021-02-09T02%3A55%3A27
https://edition.cnn.com/2021/02/08/us/oldsmar-florida-hack-water-poison/index.html?utm_source=twCNN&utm_term=link&utm_medium=social&utm_content=2021-02-09T02%3A55%3A27
https://edition.cnn.com/2021/02/08/us/oldsmar-florida-hack-water-poison/index.html?utm_source=twCNN&utm_term=link&utm_medium=social&utm_content=2021-02-09T02%3A55%3A27

Cyberattacks on Industrial
Infrastructure

19|
German Steel Plant Suffers Significant O https://www.ir
Damage from Targeted Attack endmicro.com/
S vinfo /fr /securit
y /news/cyber-
attacks/germa
n-steel-plant-
e e e sutfers-

controls to fail, resulting in an unregulated furnace, which then caused physical damage to the H H f H -I-
steel plant. Slgnl |an

The individual or group responsible for the attack was able to infiltrate the system using spear d q m G q e - f ro m -

phishing and social engineering techniques. These two methods are proven ways by which
threat actors lure their victims using emails or social media links that appear to come from a

legitimate source but can actually introduce threats for attackers to get inside the network. 1-0 r q eTe d -

An unknown number of attackers knowledgeable in IT
security and industrial control systems (ICS) processes have
caused massive damage to a German steel plantin 2014.
The incident has been confirmed by the Federal Office for
Information Security (BSI) of the German government in an
IT security report.

A number of news reports have dubbed this the second cyber attack to ever cause physical k
damage since the highly sophisticated Stuxnet malware wreaked havoc to the Natanz uranium CI 1-1- O C
enrichment plant in Iran. However, attacks affecting real-world operations of facilities have been



https://www.trendmicro.com/vinfo/fr/security/news/cyber-attacks/german-steel-plant-suffers-significant-damage-from-targeted-attack
https://www.trendmicro.com/vinfo/fr/security/news/cyber-attacks/german-steel-plant-suffers-significant-damage-from-targeted-attack
https://www.trendmicro.com/vinfo/fr/security/news/cyber-attacks/german-steel-plant-suffers-significant-damage-from-targeted-attack
https://www.trendmicro.com/vinfo/fr/security/news/cyber-attacks/german-steel-plant-suffers-significant-damage-from-targeted-attack
https://www.trendmicro.com/vinfo/fr/security/news/cyber-attacks/german-steel-plant-suffers-significant-damage-from-targeted-attack
https://www.trendmicro.com/vinfo/fr/security/news/cyber-attacks/german-steel-plant-suffers-significant-damage-from-targeted-attack
https://www.trendmicro.com/vinfo/fr/security/news/cyber-attacks/german-steel-plant-suffers-significant-damage-from-targeted-attack
https://www.trendmicro.com/vinfo/fr/security/news/cyber-attacks/german-steel-plant-suffers-significant-damage-from-targeted-attack
https://www.trendmicro.com/vinfo/fr/security/news/cyber-attacks/german-steel-plant-suffers-significant-damage-from-targeted-attack
https://www.trendmicro.com/vinfo/fr/security/news/cyber-attacks/german-steel-plant-suffers-significant-damage-from-targeted-attack
https://www.trendmicro.com/vinfo/fr/security/news/cyber-attacks/german-steel-plant-suffers-significant-damage-from-targeted-attack

Attacking Critical Infrastructure (Energy

st’rems! - Sznchroscoge
R

0 In an electrical grid, power generators and distribution networks
must be synced with regard to AC power frequency and phase

0 Connecting two unsynchronized AC power systems together is likely
to cause high currents to flow, which will severely damage any

equipment




The AURORA Cyberattack

]
0 Experiment conducted by U.S. Department of Energy’s

|daho laboratory

0 A hacker gained remote access to a Diesel genera’ror’s
control system, see Video, B !!W(m

. . 1
o rapidly open and close a diesel generator’s [l "f | &

circuit breakers, causing it to become out of

sync with the transmission network

Test

O thereby subjecting the engine to abnormail generstr

torques and ultimately causing it to explode %E—EH—EH-@

® high electrical torque translates

to stress on the mechanical shaft Test E
breaker
of the rotating equipment

Utility tie



https://www.youtube.com/watch?v=fJyWngDco3g

Example Stuxnet
T

0 Stuxnet was a powerful computer worm designed by
U.S. and Israeli intelligence around 2009 designed to
disable a key part of the Iranian nuclear program

0 It targeted the “air-gapped” nuclear facility at Natanz

0 Stuxnet was designed to destroy the centrifuges Iran
was using to enrich >
uranium as part of its
nuclear program




Stuxnet

Software
Sabotage

How Stuxnet
disrupted
Iran's uranium

the computer system'="=
which Is normally cut off
from the outside wol

at the uranium enrieh
facllity In Natanz via@
removable USB memo
stick.

2 The virus Is controlled from servers In Denmark
and Malaysla with the help of two Internet
addresses, both registered to false names. The virus
Infects some 100,000 computers around the world.

3 Stuxnet spreads
through the system untll
It finds computers
running the Slemens
control software Step 7,
which Is responsible for
regulating the rotational
speed of the centrifuges.

4 The computer worm
varles the rotatlonal
speed of the centrifuges.
This can destroy the
centrifuges and Impalr
uranium enrichment.

5 The Stuxnet attacks start In June
2009. From this point on, the number
of Inoperative centrifuges Increases

sharply.

if=— | \— Iranian
‘/4-—-—2“ / ) centrifuges
) for uranium

enrichment

Feb.1, May31 Aug. 12 Nov. 2 Jan, 29, May 24
Source: IAEA, ISIS, FAS, World Nuclear Assoclation, FT research 2009 2010




Stuxnet Anatomy

UFPDATE FROM SOURCE b
@
|
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1. infection 2. search 3. update
Stuxnet enters a system via a USB stick and Stuxnet then checks whether a given If the system isn't a target.
proceeds to infect all machines running machine is part of the targeted indus- Stuxnet does nothing; if itis,
Microsoft Windows, By brandishing a digital trial control system made by Siemens. the worm attempts to
certificate that seems to show that it comes Such systems are deployed in Iran to access the Internet and
from a reliable company, the worm is able to run high-speed centrifuges that help download a more recent
evade automated-detection systems. to enrich nuclear fuel. version of itself.

—»_-bn

4. compromise 5. control 6. deceive and destroy
The worm then compromises the In the beginning, Stuxnet spies on the Meanwhile, it provides false feed-
target system'’s logic controllers, operations of the targeted system. Then it back to outside controllers, ensur-
exploiting “zero day" vulnerabilities- uses the information it has gathered to ing that they won't know what'’s
software weaknesses that haven't take control of the centrifuges, making going wrong until it's too late to do

been identified by security experts. them spin themselves to failure. anything about it.



Cyberattacks on Connected Cars
I

0 https://www.darkreading.com/attacks-breaches/cybercriminals-take-aim-at-connected-car-
infrastructure

0 DEF CON 27: Car Hacking Deconstructed: https://www.youtube.com/watch?v=gzav1K5KS|4

Robert Lemos
Contributing Writer October 29, 2021

Data/Privacy breach | 30%
—
—
s |
o |
N—
Location tracking | b
policy violation |

P

Impact of attacks on automakers over the past decade

Source: Upstream’s "Global Automotive Cybersecurity Report 2021°


https://www.darkreading.com/attacks-breaches/cybercriminals-take-aim-at-connected-car-infrastructure
https://www.darkreading.com/attacks-breaches/cybercriminals-take-aim-at-connected-car-infrastructure
https://www.youtube.com/watch?v=gzav1K5KSI4

Cyberattacks on Medical Devices
N

0 Many medical devices are connected to the Internet, or have a wireless interface

0 This allows remote attacks, see for example
O

Hacker Shows Off Lethal Attack By
Controlling Wireless Medical Device

BY JORDAN ROBERTSON

FIRecommend < 366 W Tweet - 250 ﬁ Share 89 Q)74 Emai Print

Barnaby Jack uses a mannequin equipped with an insulin pump to show the vulnerabilties of wireless medical devices



What is a Vulnerability?

I I ———

O

A weakness which can be exploited by a threat actor/agent (an
attacker) to cross privilege boundaries (i.e. perform unauthorised
actions) within a computer system (Wikipedia)

A flaw or weakness in a system's design, implementation, or
operation and management that could be exploited to violate the
system's security policy (RFC2828)

A weakness in the computational logic (e.g., code) found in
software and some hardware components (e.g., firmware) that,
when exploited, results in a negative impact to confidentiality,
integrity, OR availability ( )

Vulnerabilities can be researched, reverse-engineered, hunted, or
exploited using automated tools or customized scripts

An exploitable vulnerability is one for which at least one working
attack or exploit exists


https://cve.mitre.org/

Hardware Vulnerabilities
N

0 Hardware vulnerabilities are usually the result of hardware
design flaws

0 Example DRAM:

o DRAM memory requires one capacitor per bit (a capacitor is a
component which can hold an electrical charge)

O Modern DRAM chips have a very high memory capacity (4 — 32
gigabits) resulting in those capacitors being positioned installed very
close to one another

O However, it was discovered that due to their close proximity, changes
applied to one of these capacitors could influence neighbouring
capacitors

O Based on this design flaw, an exploit called Rowhammer was created

O By repeatedly accessing (hammering) a row of memory, the
Rowhammer exploit triggers electrical interferences that eventually
corrupt the data stored inside the RAM



Software Vulnerabilities

0 Software vulnerabilities are usually introduced by errors in
the operating system or application code

0 Bug: An error that can be rooted to the source code, e.g.

O Incorrect implementation of a security protocol

0 Buffer Overflow: When a program writes more data to a buffer
than it can hold, potentially leading to arbitrary code execution

®m Example TLS Heartbleed (will be covered later and in an assignment)

0 Flaw: An error at a much deeper level, particularly in the
design, and likely in the code level, which may be very
difficult and costly to correct; e.g.

O Lack of security features, i.e. data encryption, to protect sensitive
application data from unauthorised access



Example: Apple’s ‘goto fail;’ Bug in TLS 1.0 and

TLS 1.1 (2014)
oo f

0 Affected iOS and Mac OS X operation systems

0 This vulnerability allowed attacks on TLS connections

if ((err = ReadyHash (&SSLHashSHAl, &hashCtx)) != 0)
goto fail;

if ((err = SSLHashSHAl.update (&hashCtx, &clientRandom)) != 0)
goto fail;

if ((err = SSLHashSHAl.update (&hashCtx, &serverRandom)) != 0)
goto fail;

if ((err = SSLHashSHAl.update (&hashCtx, &signedParams)) != 0)

goto fail;
goto fail;

1f ((err = S5LHashSHAl.final (&hashCtx, &hashout)) = 0)
goto fail;

err = sslRawVerify(ctx,
ctx->peerPubKey,

dataToSign, /* plaintext */
dataToSignlen, /* plaintext length */
signature,
signaturelen);
if (exrxr) {
sslErrorLog ("SSLDecodeSignedServerReyExchange: sslRawVerify "

"returned %d\n", (int)err):
goto fail;

fail:
SSLFreeBuffer (&signedHashes);
SSLFreeBuffer (&hashCtx);
return err;



The Common Vulnerabilities and

ExEosures ‘CVE: Database
o]

0 CVE (https://cve.mitre.org /) is a central repository of all
the reported security vulnerabilities associated with a
specific software system

0 Each CVE entry has a unique identifier which is commonly
used by many commercial vulnerability management
systems to refer to a specific software vulnerability, e.g.,
0 Heartbleed, CVE-2014-0160

o “goto fail;”, CVE-2014-1266
0 CVE ID Syntax: CVE prefix + Year + Arbitrary Digits


https://cve.mitre.org/

The Common Weakness Enumeration

sCWEt Database
a2

0 CVE is complemented by CWE (htips://cwe.mitre.org/)

0 It provides a formal list of software weakness types that
serve as a common language for describing software
security weaknesses in architecture, design, or code, for
example:

O Unrestricted upload of files
O Improper input validation
0 Out-of-bound writes (in arrays)
0 CWE describes a generic vulnerability, while CVE has to

do with the specific instance within a product or system not
the underlying flaw


https://cwe.mitre.org/

Exploit (Wikipedia)

0 An exploit is a piece of software, data, or a sequence of
commands that takes advantage of a vulnerability to cause
unintended or unanticipated behaviour to occur on computer
software or hardware

0 Such behaviour frequently includes things like gaining control of a
computer system, allowing privilege escalation, or a denial-of-
service attack

0 A remote exploit works over a network and exploits the security
vulnerability without any prior access to the vulnerable system

0 A local exploit requires prior access to the vulnerable system and
usually increases the privileges of the person running the exploit
past those granted by the system administrator

0 A zero-day exploit takes advantage of a vulnerability in
software, hardware, or firmware that is unknown to the vendor and
for which no patch or fix is available



Heartbleed Exploit Extract (Python
Code

O https://qist.github.com/eelsivart/10174134

Heartbleed (CVE-2014-0160) Test & Exploit Python Script

E heartbleed.py Raw

#!1/usr/bin/python

Modified by Trawis Lee
Last Updated: 4/21/14

Version 1.16

-changed output to display text only instead of hexdump and made it easier to read

-added option to specify number of times to connect to server (to get more data)

-added option to send STARTTLS command for use with SMTP/POP/IMAP/FTP/etc...

-added option to specify an input file of multiple hosts, line delimited, with or without a port specified (host:port)

#

#

#

#

#

7

#

#

# -added option to have verbose output
# -added capability to automatically check if STARTTLS/STLS/AUTH TLS is supported when smtp/pop/imap/ftp ports are entered and automaticall
# -added option for hex output

# -added option to output raw data to a file

# -added option to output ascii data to a file

# -added option to not display returned data on screen (good if doing many iterations and outputting to a file)

# -added tls version auto-detection

# -added an extract rsa private key mode (orig code from epixoip. will exit script when found and enables -d (do not display returned data «
7

-requires following modules: gmpy, pyasnl

4

Quick and dirty demonstration of (VE-2014-8168 by Jared Stafford (jspenguin@jspenguin.org)

Wk

The author disclaims copyright to this source code.

import sys
import struct
import socket
import time
import select

import re


https://gist.github.com/eelsivart/10174134

Attack Surface and Attack Vector
T

0 An organisation’s attack surface is the sum of all its attack
vectors, i.e., vulnerabilities, pathways and methods, that
hackers can use to gain unauthorised access to a network or
sensitive data, or to carry out a cyberattack

0 The smaller the attack surface, the easier it is to protect the
system (obviously)

0 We distinguish between the
o digital attack surface,
O physical attack surface (e.g. malicious insiders or device theft),

O social engineering attack surface (e.g. phishing)



The Digital Attack Surface
T

o This includes:

0 Weak passwords, i.e., passwords that are easy to guess
or easy to crack via brute-force attacks

O Misconfiguration, e.g., improperly configured network
ports or wireless access points

O Software, operating system and firmware
vulnerabilities

o Outdated or obsolete devices, data, or applications



Social Engineering (Recall CT255)
B

0 Social engineering is the manipulation of people into

performing certain actions or revealing confidential
information

0 That information might be a password, credit card
information, personally identifiable information,
confidential data, or anything that can be used for
fraudulent acts like identity theft

0 There are different types of social engineering attacks:
O Pretexting
O Phishing
O Smishing
O Vishing
O Tailgating



Pretexting
O

0 This is when an attacker calls an individual and lies

to them in an attempt to gain access to privileged

data

0 Example:

A fraudster
impersonates a
trusted authority
and crafts a scenario
to reach out
to their victims.

The victim
believes the
scenario and shares
any information
the ‘trusted’
authority requests.

P
3. =

The fraudster
gains valuable
information
from their victim
and often uses
it maliciously. Source: Norton



Phishing

0 Phishing involves sending malicious emails from supposed
trusted sources to as many people as possible, assuming a

low response rate (shotgun method)

0 In spear phishing the perpetrator
is disguised as a trusted individual
(boss, friend, spouse)

0 Whaling uses deceptive email
messages targeting high-level
decision makers within an organisation,
such as CEOs and other executives,
who have access to highly valuable
information

Subject: Shhh it’s a surprise!
Clare,

We’re planning a virtual baby shower
for Amy in financial services and are in
a time crunch. Could you buy the gift?
Please share your banking information
and we can transfer the money over.

Thanks,
Larry Scamington, HR director



Smishing

0 Smishing is phishing by SMS or text messaging

0 This can be a trusty avenue for pretexting attackers
to connect with victims since texting is a more

intimate form of communication

Text Message

Thu, 31 Aug, 12:57

AIB: Due to unusual activity,
your card has been placed on
hold. Please visit aibinfo8.com

and follow the on-screen
instructions to re-activate.

Text Message
Wed, 20 Sep, 10:18

AnPost: Your package has a
€2.38 pending fee. To pay this
visit: anpost-post-
servicecharge.com If this is not
paid the package will be
returned to sender.

Text Message
Thu, 21 Sep, 12:05

AnPost: You've missed our
delivery, for the redelivery of
your parcel please visit:
anpost-delivery-notice.com
and confirm the settlement of
€2.38

Text Message
Sat, 23 Sep, 19:31

MyGov: Pre-approved 2023
tax repayment available. Follow
https://
incometaxcreditrevenue-
mygov.comfie to verify
information. Review may take
up to 14 days.




Vishing
T

0 It is the voice counterpart to phishing, e.g.
O An email message asks the user to make a telephone call
O Victims receive an unsolicited call

0 Fraudsters might spoof, or fake caller IDs or use Al
generated deepfakes to convince victims they are a trusted
source and, ultimately, get victims to share valuable
information over the phone

0 Many different variations, see for example
O https://www.youtube.com/watch23v=PWVN3Rg4gzw
O https: / /www.youtube.com /watch?v=Ic7scxvKQOo



https://www.youtube.com/watch?v=PWVN3Rq4gzw
https://www.youtube.com/watch?v=lc7scxvKQOo

Tailgating

0 This is when

O an attacker quickly follows an authorized person into a

secure, physical location

O fraudsters pose in real-life as someone else to gain

An “internet service provider” shows up on your doorstep for a
routine check. Once inside, they have free reins to snoop through
your devices and valuable information.

access to restricted or
confidential areas where
they can get their hands on
valuable information

TIP
If a service provider
arrives without an
appointment, don't
just let them inside.
Verify their legitimacy
by asking questions
about your plan.

e ———



Quid Pro Quo

0 “Get something for doing something” (latin: quid pro
quo)

0 This is when an attacker requests personal information
from a person in exchange for something, like a free
gift

Congratulations, Steve!

You’re eligible for a $5,000 gift card.

To redeem, please share your banking
information for wire transfer and also your
home address.

Sincerely,
Notareal Co.



SEO Poisoning

[l

[l

Search engine optimisation (SEQ) is about improving an
organisation’s website visibility in search engine results

Search engines such as Google present a list of web
pages to users based on their search query. These web
pages are ranked according to the relevancy of their
content.

SEO poisoning is a technique used by threat actors to
increase the prominence of their malicious websites,
making them look more authentic to consumers

The most common goal of SEO poisoning is to increase
traffic to malicious sites that may host malware or
attempt social engineering



Typosquatting
L
0 Typosquatting targets users who might open their

0 browser and input a website address that has an
inadvertent typo or click on a link with a misspelled URL

0 § To exploit these minor user errors, attackers register
domain names similar to legitimate ones

q download notepad++ X

Ad - https://www.notepoad-plus-plus.com/download

Editor - Noteped ++

Text and source. Code editor.




Attack (RFC2828, Internet Security

Glossa rm
e

0 An attack is an assault on system security that derives from an
intelligent threat, i.e. a deliberate attempt

0 An "active attack” attempts to alter system resources or affect their
operation (e.g., a ransomware attack on a file server)

0 A "passive attack” attempts to learn or make use of information
from the system, but does not affect system resources (e.g.,
eavesdropping on an unprotected network connection)

e T + + - - - - F F - == - - - - - - - +
| An Attack: | |Counter- | | A System Resource: |
| i.e., A Threat Action | | measure | | Target of the Attack |
[ —— : | I SE———
| | Attacker |<===s==ss==s=========||{========= | |
|| i.e., |  Passive | | | | | vulnerability | |
| | A Threat |<s==s==ss==s========3||{========> | |
| | Agent | or Active | oo [ ]------- + |
| - +  Attack | |
| | |



Common Attack Types
I

0 Malware

o E.g., in a ransomware attack, an adversary encrypts a victim’s data and
offers to provide a decryption key in exchange for a payment

0 Denial-of-Service (DoY)

O A malicious, targeted attack that floods a network with false requests in
order to disrupt business operations

0 Phishing

O A type of cyberattack that uses email, SMS, phone, social media, and
social engineering techniques to entice a victim to share sensitive
information

0 Spoofing

O A technique through which a cybercriminal disguises themselves as a
known or trusted source

0 Code injection attacks

O An attacker injecting malicious code into a vulnerable computer or
network to change its course of action (e.g. XSS and SQL injection)



Countermeasures (RFC2828, Internet

Securi’rz Glossa rm
“as |

0 An action, device, procedure, or technique that
O ... reduces a threat, a vulnerability, or an attack
O ... by eliminating or preventing it,
O ... by minimising the harm it can cause, or
O

... by discovering and reporting it so that corrective
action can be taken

0 For example, a firewall filters unsolicited network
traffic



Threat Consequences

_ 4 P
0 Threat consequences (as a result from an attack) include
O disclosure of information
O deception,
O disruption of services

O usurpation, e.g. unauthorized control of some part of a
system

O Cybercrime: it's all around us
= Posing a major threat to personal and organizational data and even national security

° o ]
) 553 AR

Personal level Organizational level Government level

Your identity, data, and  Reputation, data and National security, economy
computing devices customers and the safety of citizens

Source: CISCO Networking Academy



Vulnerability Testing
N

0 Vulnerability testing is a process of evaluating and
identifying security weaknesses in a computer system,
network, or software application

0 It involves systematically scanning, probing, and
analyzing systems and applications to uncover potential
vulnerabilities, such as coding errors, configuration
flaws, or outdated software components

0 The main goal of vulnerability testing is to discover and
address these security gaps before they can be
exploited by attackers



Vulnerability Testing
I

0 Network-based scanning: Used to scan networks for open ports, misconfigurations, and
other security weaknesses

0 Web application scanning: Identify vulnerabilities in web applications, such as SQL
injection, cross-site scripting (XSS), and broken authentication

0 Static application security testing (SAST): Analyse source code or compiled code to
identify potential security vulnerabilities without executing the application

0 Dynamic application security testing (DAST): Interact with running applications to
identify security weaknesses during runtime

0 Fuzz testing: Generate and send malformed or unexpected inputs to applications to
identify vulnerabilities related to input validation and error handling

0 Database vulnerability assessment: Scan the database management systems for any
potential security weaknesses, misconfigurations, or other vulnerabilities that could be
exploited

0 Configuration management and compliance assessment: Assess system and
application configurations against established security best practices or compliance
standards

0 Container and cloud security assessment: Focus on identifying vulnerabilities and
misconfigurations in cloud-based environments and containerized applications



Vulnerability Testing Steps

Asset Vulnerability Vulnerability Vulnerability
discovery scanning assessment remediation
____________ J— PR A e T e e e
Detect and manage local and Spot all OS vulnerabilities, Understand the impact of Deploy automatically
remote endpoints, roaming third-party vulnerabilities, and threats, and prioritize correlated patches to seal
devices, and closed network zero-day vulnerabilities. vulnerabilities based on vulnerabilities, and leverage
(DMZ) devices severity, age, exploit code alternative mitigation
disclosure, patch availability, measures if no patch is
and various infographics for available.

timely risk reduction.

https://www.manageengine.com/vulnerability-management/vulnerability-assessment.html



xample Nessus: An automatic Network
ulnerability Scanner

e ! | adrmin 0

Basic network Scan

Configure Audlt Trail Repaort: Expor: ¥
4 Back to My Scans

B My Scans r
B sllscans o o

Hosts 112 Vulnerabilities 272 Remediations 500 WPR Top Threats ‘:'?
. Trash 1

Filter = 112 Hosts
ﬂ Policies Host Vulnerabilities = 0 Notice: This sean has been updated with
B rlgin Rules Live Results, Launch & rew scan to canfiem

¢ 192.165.1.46 R R I T S these fncings or remove trem.

B Customized Reports

192.168.1.83 BT s wm Scan Details
152168110 KN s [ poly Basic Network Scan
Sratus: Irmported
192,168,153 22 Seveity Base: CVSS V3.0
Modified: April 1 at 1200 #M (Live Rasults)
192.166:1.04 N
192.166.1.66 EX N T e —

®  Critical

Vulnerabilities

& Medium
192.168.1.40 T N (e s s
192.168.1.56 T T T e e
192.168.1.11 I | s ———
192.168.1.12 5] 5 [
data tehgeek.local Il. —

sshsvr.tehgeek local [ 26 BRI



Outlook Assignment 1
T

0 In assignment 1 you will be doing a manual (non-
automated) vulnerability analysis of a VM target, using
Metasploit, focusing on a small number of exploits

0 Metasploit is a

O widely-used open-source framework for developing, testing, and
executing exploits against target systems

O powerful tool for penetration testing, enabling security
professionals to identify and exploit vulnerabilities in networks,
systems, and applications

0 This assignment will reinforce your understanding of
pentesting tools, vulnerabilities and exploits



Vulnerability Scanning versus

Penetration Testin
m*

0 Both are essential components of a comprehensive
cybersecurity strategy, but they serve different purposes
and involve different methodologies

0 The primary goal of vulnerability scanning is to identify
known vulnerabilities in systems, applications, and networks; it
provides an automated way to check for security weaknesses

o0 The primary goal of penetration testing is to simulate real-
world attacks to assess the security posture of a system,
application, or network, thereby determining the impact and
the effectiveness of existing security measures
m Pentesters use a combination of automated tools and manual

techniques (e.g. social engineering) to find and exploit
vulnerabilities by mimicing the actions of real attackers



Vulnerability Disclosure Options
T

0 Tell no one (No disclosure)
0 Report in full to public immediately (Full disclosure)
00 Report to vendor only and potentially receive bug bounty!

Amazon Vulnerability Research Program S SaeantintEn]
L Critical $10,000 - $20,000
https://www.amazon.com
_ High $1,500 - $5,000
Reports resolved Assets in scope Average boun ty
746 3 Medium $350 - $500
Low $150

0 Report to vendor, wait for fix, report to public (Responsible
disclosure)

0 Sell vulnerability to middleman and don’t report to vendor

0 Develop fully weaponized malware and distribute on black
market
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Recap: RFC2828

BEN s
0 RFC2828, Internet Security Glossary

0 https:/ /tools.ietf.org /html/rfc2828

R T T i T T e &
An Attack: Counter- & 5System Resource:
i.e., A Threat Action measure Target of the Attack
fo--mmmm o - e s

Attacker |{==================||{========= |
i.e., Pazsive | Vulnerability |
A Threat |<=================3||{========3 |
Agent or Active $o--mm - - +

L +  Attack VW
Threat Consequences

R T S S S R


https://tools.ietf.org/html/rfc2828

Recap: Threat Consequences

T
0 Threat consequences (as a result from a threat action)
include
O disclosure of information
O Deception (i.e. pretending to be another entity)
O disruption of services

O usurpation, e.g. unauthorized control of some part of a
system

O Cybercrime: it's all around us
= Posing a major threat to personal and organizational data and even national security

° o ]
) 553 AR

Personal level Organizational level Government level

Your identity, data, and  Reputation, data and National security, economy
computing devices customers and the safety of citizens

Source: CISCO Networking Academy



The CIA Triad

4
0 The three letters in "CIA triad" stand for
o Confidentiality
o Integrity, and
O Availability

0 It is a model that forms the basis for the
development of security systems

INFORMATION

2 SECURITY 3

INTEGRITY CONFIDENTIALITY




CIA Triad: Confidentiality

0 “Preserving authorized restrictions on information access
and disclosure, including means for protecting personal
privacy and proprietary information”

0 In layman's terms: Keeping things secret that are meant
to be secret

0 Protecting data at rest, in transit, and during

p roceSSing / Use O Cybercrime: it's all around us

= Posing a major threat to personal and organizational data and even national security

) iﬁt e?-—g-é e

Personal level Organizational level Government level

Your identity, data, and  Reputation, data and National security, economy
computing devices customers and the safety of citizens

Source: CISCO Networking Academy




Recall GDPR: Personal Data

0 Any information relating to an identified or identifiable
natural person ('data subject’)

0 An identifiable natural person is one who can be
identified, directly or indirectly, in particular by
reference to an identifier such as a name, an
identification number, location data, an online identifier
or to one or more factors specific to the physical,
physiological, genetic, mental, economic, cultural or
social identity of that natural person”



Recall GDPR: Sensitive Personal Data
e

0 This includes
O Racial origin
Political opinions
Religious or philosophical beliefs
Trade Union membership
Genetic data (e.g. biological samples)
Biometric data (e.g. fingerprints)
Data concerning health

Data concerning a person's sex life or sexual orientation

0 GDPR requires explicit consent to process special categories
of personal data



Compromising Confidentiality

T
0 Confidentiality can be compromised by various
attacks, including:
O Man-in-the-middle (MitM) attack
O Escalation of privileges
0 Human error (weak password, sharing credentials etc.)

O Insufficient security controls

0 Can you identify situations where any of those attacks
would apply?



Technologies used to ensure

Confidentialit
n—

0 These include:
O Encryption (obviously)
O Access Control (e.g. multi-factor authentication)

0 Secure network protocols

0 Can you name a technology /
protocol / algorithm that ensures
confidentiality?

National titute of | .
NIST == ] ot www.nist.gov



CIA Triad: Integrity
N

0 “Guarding against improper information modification or
destruction, and includes ensuring information non-repudiation and
authenticity”

O Non-repudiation ensures that a party cannot deny having sent or
received a message or transaction

O Authenticity ensures that information and communication come from a
trusted source; this includes protecting against impersonation, spoofing
and other types of identity fraud

0 In layman’s terms: keeping information accurate, complete, and
protected from unauthorised modification

0 Integrity makes sure that data is trustworthy and not tampered with

0 Think of Revolut; can you provide an example for an attack on
data integrity?



Technologies to protect Integrity
N

1 These include:

O Network protocols that validate all data exchanged
between end points

o Digital signatures
o0 Data hashes
O Backup and data recovery strategies

O Version control, to prevent the accidental change or
deletion of information



CIA Triad: Availability

0 “Ensuring timely and reliable access to and use of
information”

0 If data is kept confidential and its integrity maintained
but it is not available to use, then it is often useless

0 Availability can be compromised by various attacks,
including:

O (Distributed) Denial-of-service (DoS) attacks
0 Ransomware
o Server overload

O Physical incident such as a power outage or natural disaster



Technologies to provide Availability

HE T
0 These include:
O RAID — Redundant Array of Independent Disks
O Load balancers

O Business continuity and disaster recovery plans, e.g.,
redundancy, failover, etc.

RAID 1 RAID 5

ar ap @ ap ap ae
3 —

Al 4 AL AL g A2 N A3 A
A2 A2 Bl 4 B2 4 N B 4 | B3 /
A3 A3 Cl 4 G 4 G2 4 L C3
A4 AG De 4 (D1 4 D2 D3
—— e N N N S

Disk 0 Disk 1 Disk O Disk 1 Disk 2 Disk 3



Load Balancers
B

0 Load balancers are server-side gateways that distribute client
traffic between multiple backend (e.g., web-) servers

0 They require load-balancing cookies on the client side that associate
a client session with a particular server, aka session stickiness

0 A load balancer creates an affinity between a client and a specific
network server for the duration of a session using a cookie with a
random and unique tracking id

0 Subsequently, for the duration of the session, the load balancer
routes all of the requests of this client to a specific backend server
using the tracking id

1 GDPR allows the unsolicited use of such cookies via the
communications exemption



Load Balancers
—

¢ Top image:
m No load balancing at all

¢ Bottom image:

m The LB generates and returns a
tracking cookie back to a client
when its first session is initiated

m This cookie is tagged to every
subsequent client request and
allows the LB to forward the
request to always the same server
(therefore the stickiness)

Without Session Stickiness

T Y

Load Balancer

With Session Stickiness

= @y

Load Balancer




Data Breaches
T

0 Despite the best of intentions and all the safeguards one
can put in place, protecting organisations from every
possible cyber attack may not be feasible

0 There is an on-going "arms-race” with cybercriminals
constantly finding new ways to attack systems and, very
often, they will succeed

0 “A data breach is defined as any breach of security leading
to the accidental or unlawful destruction, loss, alteration or
unauthorised disclosure of or access to personal data
transmitted, stored or otherwise processed” (article 4.12

GDPR).



CIA Triad Dependencies
N

0 Each element connects with the others, and when you

implement measures to ensure the protection of one, you
must consider the ramifications it has elsewhere

0 Example:

O As a result of the recent cyberattack UoG implemented multi-
factor authentication to access all services (email, student
records, etc.)

O Doing so protects the confidentiality of sensitive data, making it
harder for unauthorised actors to compromise an employee’s
login credentials and view information using their account

O However, without their mobile phone at hand, an employee can'’t
complete the authentication process

O This hampers therefore the availability of UoG services



Risk Assessment

0 1ISO 27001 certification, GDPR compliance and
other frameworks require the adoption of the CIA
triad within an organisation

0 All these standards mandate that organisations
analyse their operations to measures the risks,
threats and vulnerabilities in their systems that could
compromise sensitive information

0 This process is called risk assessment

0 We may cover risk assessment at a later stage...



n Appendix / Revision
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Mass-Storage Redundancy via RAID

Background: Hard disks are relatively slow (i.e. seek time +
rotational latency) and as mechanical devices may fail

Redundant Array of Independent Disks (RAID) is a data storage
virtualisation technology that combines multiple physical

disk drive components into one or more logical units for the
purposes of data redundancy and / or performance
improvement

Data blocks are distributed across the drives in one of several ways, referred to as
RAID levels, depending on the required level of redundancy and performance

Many RAID levels use a parity-based error protection scheme (see RAID-4), example
(with 12 bit / block):

o Block 1: 010001101001
o Block 2: 110011011010
o Block 3: 000100100101
o P Block: 100111010110 (bitwise EXOR, equivalent to even parity)



Mass-Storage Redundancy via RAID

0 RAID storage systems require a dedicated RAID
controller, that supports the required RAID level

O See also the diagram on the next slide

0 Normally such controllers are not shown in RAID diagrams

RAID O RAID 1 RAID 5
D > ap a» G aO»
AL A2 AL AL AL A2 A3 A
Sac B I N B (A2 (A2 Bl | (B2 f | B, | | B3 |
AS 1 AE A3 A3 Cl 1 G 4 N C2 4\ C3
A7 | 28 A NAY D 4 (DL 4 (D24 K\ D3
— N/ —_ — N N S

Dislc 0 Disk 1 Disk O Disk 1 Disk 0 Disk 1 Disk 2 Disk 3



RAID O

Hardware filesystem

0 Block-level striping without parity or mirroring

O data striping is the technique of segmenting logically ¢
sequential data, such as a file, so that consecutive RAID 0 controller
segments are stored on different physical storage — o=
devices

e ° /—\N A4
0 2 or more drives (n) required el O

Disk 0 Disk 1

0 No redundancy, but up to n-times R /W
performance increase




RAID 1

RAID 1
_ . . . . . ° /m\
0 Block-level mirroring without parity or striping T
. . AL AL
0 2 or more drives (n) required A2 | | A2
A (A
0 (n — 1) drive failures can be compensated; here A AL

each disk can

O diagnose catastrophic failures (e.g. head crash)

O detect (but not correct) sector-wise bit errors on platters

0 No increase in R/W performance




RAID 4

]
RAID 4
0 Block-level striping with single parity disk > o
Gl SACI B S I N
0 Single catastrophic drive failure can be a | e el e
compensated (any drive can fail) T B B
0 RAID 4 provides good performance of random ) ) L

Disk O Disk 1 Disk 2 Disk 3

reads, while the performance of random writes
is low due to the need to write all parity data to a single disk (Disk
3 in the diagram above)

0 Minimum of 3 drives required



Drive Hot-Swapping in RAID
—

0 In RAID a defect drive will be (ASAP)

O manually swapped for a new drive (hot-swap), or

O replaced by an idle drive (hot-spare) already in the system

0 The new drive’s content is rebuild by the RAID controller while the
disk set is still operational RAID 4

0 Example RAID 4 with Disk O swapped: Y (Y D

o A1 = A2 EXOR A3 EXOR AP Bl B2 4 B3 4 L Be

L ) |(_c2 c3

Cp
o B1 = B2 EXOR B3 EXOR B, o (o] [ (]
o C1 = C2 EXOR C3 EXOR C,
o D1 = D2 EXOR D3 EXOR D,

\._._._.-J*--._._._.-J\-q_._._.f

Disk O Disk 1 Disk 2 Disk 3



RAID 5

0 Similar to RAID 4, but: RAID 5

O Block-level striping with distributed parity ;j“—lt \__% im iAp

o Distributed parity evens out the stress of a \*-2—%/ \%2*/ %/ %/

N = A N P N - N -

dedicated parity disk among all RAID . De | (D1 |_D2 | |_D3 J
members

O Write performance is increased since all - . J . J

RAID members participate in the serving of Disk0  Diskl  Disk2  Disk3

write requests

0 Minimum of 3 drives required



RAID 6

RAID 6
RAID 6 extends RAID 5 by adding another £33 £ 3 £ £
parity block e e e [T e
D | D I | nzl : D3
O thus, it uses block-level striping with two parity - -
blocks distributed across all member disks oo oma o ows o

Double catastrophic drive failures can be
compensated (any two drives can fail)

Minimum of 4 disks required

Second parity involves EXOR function (as
seen before) and a bit shift function



Other RAID Levels

RAID D+1
o RAID O+1 (RAID 01) A
O 4 drives minimum
A3 | ae
O Some double catastrophic drive failures can be =

compensated '
5 RAID 1+0 (RAID 10)

0 4 drives minimum

RAID 1+0
RAID 0

O Some double catastrophic drive failures can be
compensated

O Best throughput (apart from RAID 0), so preferable RAID
level for |/O-intensive applications




Other RAID Levels: RAID 5+0 (RAID 50) and
RAID 6+0 (RAID 60)

0 Some triple catastrophic [ - ]
drive failures can be RAID S RAIDS Al
compensated b L [ | e 2l

A n Ao EA M Ap A A6 Ap
o o o Sy - [ m Ep » -c: [ = : : -“v,g

0 Rebuild-time after drive - e ) e e e e e
swap reduced because of % % % R R oM owe owy e
controller hierarchy

RAID 0
O Faster turnaround time to e I .
restore full 1/O capacity [ I I ] [ l ‘
O Shorter vulnerqble.perio.d — i é —T .ﬁ :3
where a second drlvc.a failure & e Te e — B
would be catastrophic Disk0  Disk1  Disk2  Disk3 Disk4  Disk5  Disk6  Disk7

Mx?2



Summary RAID O — RAID 3

Lewvel Description Minimum # Space Fault Tolerance Read Write
P of disks Efficiency Benefit | Benefit
RAID 0 Elln_ck-level. st.rlplng without 5 1 0 tnons) Y o
parity or mirraring.
Raip 1 Mimering without - parity - or 2 1n n-1 disks nX 1%
striping.
O Bit-lewvel striping with 1= 1. RAID 2 can recover from 1 disk failure or repair corrupt
RAID 2| dedicated Harnrning-code 3 | 1 data or parity when a corrupted bit's corresponding data
parity. 0gz(n-1) and parity are good.
O RAID 3 Elytn.a—level .strlpmg weith 3 1 1in 1 disk
dedicated parity.




Summary RAID 4 — RAID 6

Lovel D i Minimum # Space Fault Tol Read Write |
eve escripticn dal olerance maije
P of disks Efficiency Benefit | Benefit J

RAID 4 Ellnu.:k—level .strlplng with 5 1 1m 1 disk

dedicated parity.

Block-level  striping  with . )
RAID & st et 3 1=1/n 1 disk (n=17% | wvariable

Block-level  striping  with .
RADE double distributed parity. 4 1= 2 2 disks

Disk 0 sk 1 Dk sk 3 Dk 4







General Data Protection Regulation
—

0 GDPR is a binding regulation in EU law on data protection in the EU
and the European Economic Area (EEA), that became enforceable on
25 May 2018

0 It also addresses the transfer of personal data outside the EU and
EEA areas

0 The GDPR's primary aim is to enhance individuals' control and
rights over their personal data and to simplify the regulatory
environment for international business

0 The regulation contains provisions and requirements related to
the processing of personal data of individuals who are located in
the EEA, and applies to any enterprise—regardless of its location
and the data subjects’ citizenship or residence—that is processing
the personal information of individuals inside the EEA



GDPR in Ireland
N

0 GDPR applies to the majority of personal data
processing tasks, but further rules on certain issues (for
example the reasons for, and extent to which, data
subject rights may be restricted) are set out in the Data
Protection Act 2018

0 Further on, the Law Enforcement Directive concerns the
processing of personal data by law enforcement, i.e,.
the prevention, investigation, detection or prosecution of
criminal offences or the execution of criminal penalties



What is Data Protection?
B

0 Data protection is about an individual’s fundamental
right for privacy

0 When an individual gives their personal data to any
organisation, the recipient has the duty to keep the
data safe and private

0 Data protection legislation
O governs the way we deal with personal data / information

O provides a mechanism for safeguarding privacy rights of
individuals in relation to the processing of their data

o0 upholds rights and enforces obligations



Recall GDPR: Personal Data

0 Any information relating to an identified or identifiable natural
person ('data subject’)

0 An identifiable natural person is one who can be identified,
directly or indirectly, in particular by reference to an identifier
such as a name, an identification number, location data, an online
identifier or to one or more factors specific to the physical,

physiological, genetic, mental, economic, cultural or social identity
of that natural person”



Recall GDPR: Sensitive Personal Data
e

0 This includes
O Racial origin
Political opinions
Religious or philosophical beliefs
Trade Union membership
Genetic data (e.g. biological samples)
Biometric data (e.g. fingerprints)
Data concerning health

Data concerning a person's sex life or sexual orientation

0 GDPR requires explicit consent to process special categories
of personal data



Recap Cookies
T

O

An (HTTP) cookie is a small piece of data stored on the
user's computer by the web browser while browsing a
website

Cookies were designed to be a reliable mechanism for
websites to remember stateful information (such as items
added in the shopping cart in an online store) or to record
the user's browsing activity

They can also be used to remember pieces of information
that the user previously entered into form fields

Authentication cookies are the most common method used by
web servers to know whether the user is logged in or not,
and which account they are logged in with



Cookie Implementation
N

0 Cookies are arbitrary pieces of data (i.e. large random
strings), usually chosen and first sent by the web server,
and stored on the client computer by the web browser

0 The browser then sends them back to the server with
every request

0 Browsers are required to:
0 support cookies as large as 4,096 bytes in size
O support at least 50 cookies per domain (i.e. per website)

o support at least 3,000 cookies in total



Setting a Cookie - Example
—

0 A browser sends its first request for the homepage of
www.example.org, resulting in the GET request

GET Sindex.html HTTP/1.1
Host: www.example.org

0 The server responds with

HTTP/1.8 268 OK

Content-type: text/html

Set-Cookie: theme=light

Set-Cookie: sessionToken=abcl23; Expires=ked, 89 Jun 2821 18:18:14 GMT

0 Later client requests to this server will contain these cookies:

GET /fspec.html HTTP/1.1
Host: www.example.org
Cookie: theme=light; sessionToken=abcl23



http://www.example.org/

Cookie Structure
B 5

0 A cookie consists of the following components:
O Name
o Value

O Zero or more attributes (name /value pairs)
Attributes store information such as the cookie's
expiration, domain, and flags (such as Secure and

HttpOnly)

HTTP/1.8 268 0K

Content-type: text/html

Set-Cookie: theme=light

Set-Cookie: sessionToken=abcl23; Expires=Wed, 8% Jun 2821 18:18:14 GMT




Session Cookies

00 A session cookie (aka in-memory cookie, transient
cookie or non-persistent cookie) exists only in
temporary memory while the user navigates its
website

0 Web browsers normally delete session cookies when
the user closes the browser

0 Session cookies do not have an expiration date
assigned to them, which is how the browser knows to
treat them as session cookies

0 Example: “theme” cookie on previous slide



Persistent Cookie
B

0 A persistent cookie expires at a specific date or after a specific length of
time
0 For the persistent cookie's lifespan set by its creator, its information will be

transmitted to the server every time the user visits the website that it
belongs to

O ... or every time the user views a resource belonging to that website from
another website (such as an advertisement).
For this reason, persistent cookies are sometimes referred to as tracking
cookies because they can be used by advertisers to record information
about a user's web browsing habits

0 However, they are mainly used for legitimate reasons, such as keeping
users logged into their accounts on websites, to avoid re-entering login
credentials at every visit

0 Example: “sessionToken” cookie in the previous example



Session Management via Persistent Cookies

HTTP HTTP

Client Server
Login
POsT
pemame=dayid —
erdanin Login successful? SESSION ID
1. create session id Sessionid
2. return session id in cookie Username
3. store session id in database createDate
expireDate
lastAccessDate

-t

Set-Cookie: SESSIONID=66C530ACAF44DB05588619ECBOCTITC
HTTF is Stateless

Databasa
Cookie: SESSIONID=66C530ACAF44D16D55388610ECBOCTITC

o

Lookup Session ID
1. session match a username?
2. session still valid?

Content for ‘david'

-
N




Cookie Attributes
N

0 Consider the following response header sent by a webserver that contains 3
persistent cookies:

HTTP/1.8 288 0K

Set-Cookie: LSID=DQAAAK..Eaem v¥g; Path=/accounts; Expires=Wed, 13 Jan 2821 22:23:81 GMT; Secure; HttpOnly
Set-Cookie: HSID=AYQEVn.DKrdst; Domain=.foo.com; Path=/; Expires=Wed, 13 Jan 2821 22:23:81 GMT; HttpOnly
Set-Cookie: S55ID=ApdP..GTEq; Domain=foo.com; Path=/; Expires=Wed, 13 Jan 2821 22:23:81 GMT; Secure; HttpOnly

0 The Domain and Path attributes define the cookie’s scope

0 The Secure attribute makes sure that the cookie can only be transmitted over an
encrypted connection (i.e. HTTPS = later), making it a secure cookie

0 The HittpOnly attribute directs browsers not to expose cookies through channels
other than HTTP / HTTPS requests
This means that this HtpOnly cookie cannot be accessed via client-side scripting
languages (notably JavaScript)



GDPR and Cookies

0 Generally, a user’s consent must be sought before a cookie is installed
in a web browser

We value your privacy e
Accept All Cookies
By clicking “Accept All Cookies™, you agree to the storing of cookies on your

device to enhance site navigation, analyze site usage, and assist in our
marketing efforts. por more information see our Cookie Policyl

This website uses cookies Allow all cookies
We use cookies to ensure that this website functions properly and to measure and improve the performance of our site, to measure the

effectiveness of our campaigns and to analyze traffic. To learn more about how we use cookies, have a look at the cookies section of our
Privacy Policy.

Use necessary cookies only
D Necessary c Preferences O Statistics O Marketing o Show details >

O The communications exemption

Cookies Settings ‘

Allow selection

O The strictly necessary exemption



The Communications Exemption
—

0 This applies to cookies whose sole purpose is for carrying
out the transmission of a communication over a network,
for example to identify the communication endpoints

0 Example: load-balancing cookies that distribute network
traffic across different backend servers, aka session
stickiness

® Here a load balancer creates an affinity between a client and a specific
network server for the duration of a session using a cookie with a random
and unique tracking id

m Subsequently, for the duration of the session, the load balancer routes all of
the requests of this client to a specific backend server using the tracking id



Session Stickiness
_

¢ Top image:

Without Session Stickiness

m No load balancing at all

¢ Bottom image: 8: “ g

m The LB generates and returns a

Load Balancer

tracking cookie back to a client

when its session is initiated , o
With Session Stickiness

m This cookie is tagged to every

subsequent client request and @ e “ — %
allows the LB to forward the Q e o S %
Load Balancer

request to always the same server
(therefore the stickiness)




The strictly necessary Exemption
N

0 Must be linked to a service delivered over the internet,
i.e. a website or an app

0 This service must have been explicitly requested by the
user (i.e. typing in the URL) and the use of the cookie
must be restricted to what is strictly necessary to
provide that service

0 Note that cookies related to advertising are not strictly
necessary and must be consented to



Example for the strictly necessary

Exemﬁﬁon
1

0 A website uses session cookies to keep track of items
a user places in an online shopping basket

O Assuming this cookie will be deleted once the session is
over

0 Cookies that record a user’s language or country
preference



Data Processing
-

0 Performing any operation on personal data, manually
or by automate means, including:
o Obtaining
O Storing
O Transmitting
O Recording
o Organising
O Altering
O Disclosing
O Erasing



Entities in GDPR

S
0 GDPR distinguishes between:
o0 The Data Subject
o The Data Protection Officer (DPO)
o0 The Data Controller

0 The Data Processor



The Data Subject
N

0 This is the (living!) person to whom the data relates

0 Under GDPR, businesses have a legal obligation to keep their data
up-to-date, which means that, theoretically, data of deceased should
be removed

0 Deceased persons, who predate the introduction of GDPR, may be

covered by national legislation active at the time of death (e.g. the
Data Protection Acts 1988 and 2003 in Ireland)

0 Access by a next-of-kin to the personal data (e.g. emails) of a
deceased person may be possible under Irish Freedom of
Information laws



The Data Protection Officer (DPQO)

0 The primary role of the DPO is to ensure that her organisation
processes the personal data of its staff, customers, and other data
subjects in compliance with the applicable data protection rules

0 It is a mandatory role within three different scenarios:
O When the processing is undertaken by a public authority or body

O When an organisation’s main activities require the frequent and large-scale monitoring
of individual people

0 Where large scale processing of special categories of data or data relating to
criminal records forms the core activities

0 The Data Protection Officer is required to be an expert within this
field, along with the requirement for them to report to the highest
management level.

O With this being a challenging aspect of GDPR compliance for smaller organisations,
there is the option to make an external appointment of a third-party



The Data Controller
N

00 The Data Controller is the company or an individual who
has overall control over the processing of personal data

00 The Data Controller takes on the responsibility for GDPR
compliance

0 A Data Controller needs to have had sufficient training
and be able to competently ensure the security and
protection of data held within the organisation



The Data Processor
N

0 The Data Processor is the person who is responsible for
the processing of personal information

0 Generally, this role is undertaken under the instruction of
the data controller
O This might mean obtaining or recording the dataq, it’'s adaption
and use. It may also include the disclosure of the data or making
it available for others
0 Generally, the Data Processor is involved in the more
technical elements of the operation, while the
interpretation and main decision making is the role of the
Data Controllers



Cloud Services and GDPR
N

0 A Cloud Service Provider will be considered a Data
Processor under GDPR if it provides data processing
services (e.g. storage) on behalf of the Data
Controller even without determining the purposes and
means of processing

0 A Cloud Service Provider that offers personal data
processing services directly to Data Subjects will be
Data Controller



Some Key Benefits for Data Subjects
B

0 More information must be given to data subjects (e.g. how
long data will be kept, right to lodge a complaint)

0 Must explain and document legal basis for processing
personal data

0 Tightens the rules on how consent is obtained (must be
distinguishable from other matters and in clear plain
language)

0 Must be as easy to withdraw consent as it is to give it

0 Mandatory notification of security breaches without undue
delay

O To data protection commissioner within 72 hours



Personal Data Security Breaches
N

0 Disclosure of confidential data to unauthorised individuals

0 Loss or theft of data or equipment on which data is
stored

0 Hacking, viruses or other security attacks on IT
equipment/ systems / networks

0 Inappropriate access controls allowing unauthorised use
of information

0 Emails containing personal data sent in error to wrong
recipient

0 Applies to paper and electronic records



Some Key Benefits for Data Subjects
B

0 Right of Access (copy to be provided within one month)
0 Right to erasure (i.e. right to be forgotten)
0 Right to restriction of processing

0 Right to object to processing

0 Right not to be subject to a decision based solely on
automated processing



GDPR Key Principles
—

0 The GDPR sets out several key principles:
1. Lawfulness
2. Fairness and transparency
3. Purpose limitation
4. Data minimisation
5. Accuracy
6. Storage limitation
7. Integrity and confidentiality (security)

8. Accountability



GDPR Principle: Lawfulness

0 You must identify valid grounds under the GDPR (known
as a ‘lawful basis’) for collecting and using personal data

0 Processing shall be lawful only if and to the extent that at
least one of the following applies:
o Consent
0 Necessary for the performance of a contract
O Necessary for compliance with a legal obligation

O Necessary to protect the vital interests of the data subject or
another person

O Necessary for the performance of a task carried out in the public
interest

0 Necessary for the purpose of the legitimate interests



GDPR Principle: Fairness and

Transparenc
-b

0 You must use personal data in a way that is fair; this means you
must not process the data in a way that is unduly detrimental,
unexpected or misleading to the individuals concerned

0 You must be clear, open and honest with people from the start
about how you will use their personal data

0 At the time personal data is being collected from data subjects,
they must be informed via a "Data Protection Notice"



Data Protection Notice
N

0 A data protection notice entails the following:

O The identity and contact details of the data controller
O The contact details of the data protection officer

O The purpose of the processing and the legal basis for the
processing

O The recipients or categories of recipients of the data

O Details of any transfers out of the EEA, safeguards in place and
the means by which to obtain a copy of them

O The data retention period used or criteria to determine same

O The individual's rights (access, rectification and erasure, restriction,
complaint)



GDPR Principle: Purpose Limitation
—

0 You must be clear about what your purposes for
processing are from the start

0 You need to record your purposes as part of your
documentation obligations and specify them in your
privacy information for individuals

0 You can only use the personal data for a new
purpose if either this is compatible with your original
purpose, you get consent, or you have a clear basis in
law



GDPR Principle: Data Minimisation
—

0 You must ensure the personal data you are processing
is:

O adequate — sufficient to properly fulfil your stated
purpose

O relevant — has a rational link to that purpose

O limited to what is necessary — you do not hold more than
you need for that purpose



GDPR Principle: Accuracy
N

0 You should take all reasonable steps to ensure the
personal data you hold is not incorrect or misleading
as to any matter of fact

0 You may need to keep the personal data updated,
although this will depend on what you are using it for

0 If you discover that personal data is incorrect or
misleading, you must take reasonable steps to correct
or erase it as soon as possible

0 You must carefully consider any challenges to the
accuracy of personal data



GDPR Principle: Storage Limitation
—

0 You must not keep personal data for longer than you need it

0 You need to think about — and be able to justify — how long you keep
personal data; this will depend on your purposes for holding the data

0 You need a policy setting standard retention periods wherever possible,
to comply with documentation requirements

0 You should also periodically review the data you hold, and erase or
anonymise it when you no longer need it

0 You must carefully consider any challenges to your retention of data;
individuals have a right to erasure if you no longer need the data

0 You can keep personal data for longer if you are only keeping it for
public interest archiving, scientific or historical research, or statistical
purposes



GDPR Principle: Accountability and

Governance
I

0 Accountability is one of the data protection
principles - it makes you responsible for complying
with the GDPR and says that you must be able to
demonstrate your compliance

0 You need to put in place appropriate technical and
organisational measures to meet the requirements
of accountability



GDPR Principle: Accountability and

Governance
I

0 Accountability requires controllers to maintain records
of processing activities in order to demonstrate how
they comply with the data protection principles, i.e.

O Inventory of personal data
O Providing assurance about compliance

0 Need to document
® Why it is held

m How it is collected
B When it will be deleted

® Who may gain access to it



GDPR Principle: Integrity and

Confidentialit
-—

0 A key principle of the GDPR is that you process personal data
securely by means of ‘appropriate technical and organisational
measures’ — this is the ‘security principle’

0 Doing this requires you to consider things like risk analysis,
organisational policies, and physical and technical measures

0 Where appropriate, you should look to use measures such as
pseudonymisation and encryption

0 Your measures must ensure the ‘confidentiality, integrity and
availability’ of your systems and services and the personal data
you process within them

0 The measures must also enable you to restore access and
availability to personal data in a timely manner in the event of a
physical or technical incident



N
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Lecture Outline and Motivation
N

0 Recap: Technologies used to ensure confidentiality:
O Encryption (obviously)
0
0

0 Therefore, this lecture provides: armeacror ]
O A summary of terms linked to
cryptography
O An overview of historic cryptographic
algorithms (recap CT255)

0 Some context for the next topic,
modern cryptography

[LOGGED IN:|
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Basic Terminology
N

0 Cryptography
O The art of encompassing the principles and methods of
transforming an intelligible message into one that is
unintelligible, and then retransforming that message back
to its original form

® Intelligible means “able to be understood” or comprehensible



Basic Terminology
N

0 Plaintext
O The original intelligible message, e.g. “THIS IS A SECRET MESSAGE”

0 Ciphertext
O The transformed message, e.g. “XPHDSYUEGSD68G4AS8AG56”
0 Cipher
O An algorithm for transforming an intelligible message into one that is
unintelligible
0 Key

O Some critical information used by the cipher, known only to the sender
& receiver

O Selected from a keyspace K (i.e., a set of all possible keys)



Basic Terminology
N

0 Encipher (encode)

O The process of converting plaintext to ciphertext using a cipher
and a key

0 Encryption

0 The mathematical function E, () mapping plaintext P to ciphertext
using the specified key K:

C = Ex(P)



Basic Terminology
N

0 Decipher (decode)

O The process of converting ciphertext back into plaintext using a
cipher and a key

00 Decryption:

0 The mathematical function E, () mapping ciphertext C to
plaintext P using the specified key K:

P=E*(C)



Basic Terminology

N I —
0 Cryptanalysis

O The study of principles and methods of transforming an
unintelligible message back into an intelligible message
without knowledge of the key

0 Cryptology

O The field encompassing both cryptography and
cryptanalysis



Model of Conventional Cryptosystem
—

Secure Channel

Y = E((X), X = E(Y)




Classical Cryptography

0 Ancient ciphers have been in use for over 5,000 years
0 Already used by ancient Egyptians, Hebrews and Greeks
0 Normally they would follow the following scheme:
Secret key shared by Secret key shared by
sender and recipient sender and recipient
- )
3 3
Transmitted
8 ciphertext '
P
Plaintext 7 Plaintext
:1“1;“? Encryption algorithm Decryption algorithm ::::;}:::

(e.g., DES)

(reverse of encryption
algorithm)




Caesar Cipher

0 2000 years ago, Julius Caesar used a simple substitution
cipher, now known as the Caesar cipher

0 First attested use in military affairs (Gallic Wars)

0 Replace each letter by 3rd letter on, e.g.
L FDPH L VDZ L FRQTXHUHG ->
| CAME | SAW | CONQUERED

0 We can describe this mapping (or translation alphabet) as:
Plain: ABCDEFGHIJKLMNOPQRSTUVWXYZ
Cipher: DEFGHIJKLMNOPQRSTUVWXYZABC



Generalised Caesar Cipher
N

0 More generally can use any shift from 1 to 25, i.e. replace
each letter of message by a letter a fixed distance away

0 Specify key letter as the letter a plaintext A maps to,

O e.g. a key letter of F means
AmapstoF,BtoG,...YtoD,ZtoE
e.g. shift letters by 5 places

0 Hence have 26 (25 useful) ciphers

0 Note that with this and all other historic ciphers punctuation
and spaces are ignored and all text is converted to capital
letters



How to break the generalised Caesar

Cipher
B

0 Try all 25 possibilities

PHHW PH DIWHU WEH WRJD SDUWB
KEY
° 1 oggv og chwvgt vjg vgic rctva
until you recover some s mteu nf bgues wic uphb ghsus
3 meet me after the toga party
° 4 ldds ld zesdg sgd snfz czgsx
meanlngful text 5 keor ke ydrep rfc rmey nyprw
[ jbbg jb mxcgbo geb gldx muogw
7 iaap ia wbhpan pda pkeow lwnpu
a hzzo hz wvaczm ocz ojbv kvmot
=] gyvyn gy uznyl nby niau julns
10 fxxm f£x tymxk max mhzt ithkmr
11 ewwl ew sxlwij lzw lgvs hsjlg
1z dvvk dv rwkvi kyv kfxr grikp
13 cuuj cu gvijuh jxu jewg fghijo
14 btti bt puitg iwt idvp epgin
15 assh as othsf hvs houo dofhm
16 zrrg =zr nsgre gur gbtn cnegl
17 vggqf vg mrigd fitg fasm bmdflk
1e xppe xp lgepc esp ezrl alcoej
19 wood wo kpdob dro dygk zkbdi
20 vnno vn jocna ogn oxpj yjach
21 ummb um inbmz bpm bwoi xizbg
22 tlla t1 hmaly acl awvnh whyaf
23 skkz sk glzkx znk =zumg wvgxze
24 rijy rij fkyjw ymj ytlf ufwyd
25 giix gi ejxiv xli xske tewvxc




The Mono-Alphabetic (or simple)

Substitution Cipher
-h

0 In the mono-alphabetic (or simple substitution) cipher each letter of the plain text is
replaced with another letter of the alphabet

0 It uses a fixed key which consist of the 26 letters of a “shuffled alphabet”.

0 Example:
O Plaintext alphabet (obviously): ABCDEFGHIJKLMNOPQRSTUVWXYZ

o Ciphertext alphabet (i.e. the key): ZEBRASCDFGHIJKLMNOPQTUVWXY

O Plaintext message:
FLEEATONCEWEAREDISCOVERED

O Ciphertext message:
SIAAZQLKBAVAZOARFPBLUAOAR

0 This ciphers allows for 26! (= 4.0329146e+26) possible key combinations ...

O This is too many combinations for a brute force attack where the attacker tries every
single possible key!

m This of course assumes that the attacker can identify the correctly decoded cyphertext (e.g., a text
written in English)

0 Is this cipher therefore unbreakable?



Non-trivial Cryptanalysis Attacks

Aqgainst Substitution Ciphers
ni

0 Frequency Analysis:
This attack relies on the fact that certain letters or symbols occur
more frequently in the English language than others. By analysing
the frequency of characters in the ciphertext, one can make
educated guesses about the substitutions made in the cipher,
ultimately revealing the plaintext
See also next slides

0 Pattern Recognition:
Cryptanalysts may also exploit patterns in the ciphertext to deduce
information about the key. Recognisable patterns, such as common
word endings or repeating character sequences, can provide
valuable clues about the substitutions used in the cipher

0 Known-Plaintext Attack:
See next slides



Cryptanalysis via Letter Frequency Analysis

0 In most written languages, letters are
not equally commonly used

0 For example, in the English language:  °*;

o Eis by far the most common letter 0.12 -

followed by T,R,N,I,O,A,S

o Other letters like Z,J,K,Q,X are fairly
rare

o See frequency table on the right

Relative frequency

0 There are tables of single, double &
triple letter frequencies for all
common languages

0 There is an example for the
cryptanalysis of a ciphertext via

letter frequency analysis at the end
of this slide deck

Ll THL

......
abcdefaghijkI!Imnopgrstuvwixy?z
Letter



C-Program for Letter Frequency

Analysis
e

if ((fp = fopen(argv[1], "r")) == NULL)

#Hinclude <stdio.h>
return(-2);

#Hinclude <string.h>

#include <ctype.h> while (Ifeof(fp))
{
int main(int argc, char *argv(]) c = toupper(fgetc(fp));
{
FILE *fp; if ((c>="A) && (c Z :-I"Z-i'-))
int data[26]; } datale - G
char c;
int i; for (i = 0; i < 26; i++)
printf("%c: %i\n", i + 65, datali]);
memset(data, O, sizeof(data));
fclose(fp);

if (arge 1= 2) return(1);

return(-1);




Known Plaintext Attacks
N

0 The known-plaintext attack (KPA) is an attack model

for cryptanalysis where the attacker has access to
both

O (some of) the plaintext (this is called a crib),

O and its encrypted version

0 See the example on the next slide



Example: Combined known-Plaintext

_ and Pattern Recogni’rion Attack

0 You are presented with the following ciphertext which is based
on a substitution cipher:

JEPOUMIWFIFSFCVUNZIPNFJTNZDBTUMFGVMMTUPQ

0 You know the original plaintext message consists of capital letters

only (no spaces) and contains the following plaintext crib:
MYHOMEISMYCASTLE N

0 How could you tackle this? _

abcdefghijklImnopagrstuvwixyz



Playfair Cipher

0 Not even the large number of keys in a monoalphabetic
substitution cipher provides security!

0 One approach to improving security was to encrypt
multiple letters at once

0 The Playfair Cipher is an example for such an approach

0 Algorithm was invented by Charles Wheatstone in 1854,
but named after his friend Baron Playfair



Playfair Cipher

0 How it works: /T |R E L A
O Create a 5x5 grid of letters; insert the N D B C K
keyword as shown, with each G H K M O

letter only considered once; fill the grid with | P Q S T U

the remaining letters in alphabetic order \4 W X Y Z

O Letters | and J are treated the same (see exqunple above with keyword
IRELAND)

O Letters are encrypted in pairs
O Repeats have an X inserted:

BALLOON -> BA LX LO ON

O Letters that fall in the same row are each replaced with the letter on the
right (OK becomes GM)

O Letters in the same column are replaced with the letter below (FO becomes

OU)

O Otherwise, each letter gets replaced by the letter in its row but in the other
letters column (QM becomes TH)



Robustness of Playfair Cipher
S =

0 The algorithm’ complexity was much improved over the
simple monoalphabetic cipher, since we have 26 x 26
(= 676) character combinations we have to deal with

0 This requires a 676-entry frequency table for analysis
(versus 26 for a monoalphabetic cipher) and
substantially more ciphertext for a cryptanalysis

0 Therefore, it was widely used for many years, e.g., by
US & British military in WW1

0 However, it can be broken, given a few hundred letters



Example Playfair Cipher

0 Consider the Playfair Cipher and the key
“PRUNEJUICE”

0 Encipher the following plaintext:
“KENSENTMEX”

0 What is the resulting ciphertext?



Vigenere Cipher

0 Blaise de Vigenére is generally credited as the inventor of the
"polyalphabetic substitution cipher*

o A monoalphabetic cipher is any cipher in which the letters of the plain text
are mapped to cipher text letters based on a single alphabetic key

O A polyalphabetic substitution ciphers uses multiple substitution alphabets
0 To improve security, use many monoalphabetic substitution alphabets
0 Hence each letter can be replaced by many others

0 Use a key to select which alphabet is used for each letter of the
message

0 i letter of key specifies i alphabet to use
0 Use each alphabet in turn
0 Repeat from start after end of key is reached



Example Vigenere Cipher
S =

0  Write the plaintext out and under it write the keyword repeated
0 Then using each key letter in turn as a Caesar cipher key
0 Encrypt the corresponding plaintext letter. Example:

Plaintext THISPROCESSCANALSOBEEXPRESSED
Keyword CIPHERCIPHERCIPHERCIPHERCIPHE
Ciphertext VPXZTIQKTZWTCVPSWEDMTET IGAHLH

In this example have the keyword "CIPHER". Hence have the following
translation alphabets:

C —> CDEFGHI JKLMNOPQRSTUVWXYZAB
[ —> TJKLMNOPQRSTUVWXYZABCDEFGH

ABCDEFGHT JKLMNOPQRSTUVWXYZ

to map the above plaintext letters



Example Vigenere Cipher

0 Encode the plaintext “KENSENTME” using the
Vigenére cipher and the keyword “BABA”

0 Plaintext: KENSENTME
0 Key: BABABABAB
0 Ciphertext: MFPTGOVNG



How to break the Vigenére Cipher
N

0 Search the ciphertext for repeated strings of letters; the longer strings you find
the better

0 For each occurrence of a repeated string, count how many letters are between
the first letters in the string and add one

0 Factor the number you got in the above computation (e.g., 2, 5 and 10 itself
are factors of 10)

0 Repeat this process with each repeated string you find and make a table of
common factors. The most common factor is probably the length of the keyword
that was used to encipher the ciphertext. Call this number 'n'

0 Do a frequency count on the ciphertext, on every nth letter. You should end up
with n different frequency counts

0 Compare these counts to standard frequency tables to figure out how much
each letter was shifted by

0 Undo the shifts and read off the message!



Example Breaking the Vigenére Cipher
N

Key: ABCDABCDABCDABCDABCDABCDABCD (not known to attacker)
Plaintext: CRYPTOISSHORTFORCRYPTOGRAPHY (not known to attacker)
Ciphertext: CSASTPKVSIQUTGQUCSASTPIUAQIB

o Our search reveals to following repetition:
CSASTP KV SIQUT GQU CSASTPIUAQIB

o The distance is 16, therefore the key length n is either 2, 4, 8 or 16 characters
o Do four different frequency counts on the ciphertext, i.e., on every nt letter
o Continue as shown before



In-Class Activity: Breaking Vigenére
N

0 Consider the following ciphertext that has been
encoded using a Vigenéere Cipher:

DYDUXRMHTVDVNQDQNWDYDUXRMHARTIGWNQD

0 Q1: Which repeating strings can you identify?
0 Q2: What is the distance of their appearances?
0 Q3: Subsequently, what is the probable key length?



Rotor Machines
S

0 These allowed for the mechanisation / automation of message
encryption and decryption and were widely used in the 20™
century (until the 1970s)

0 The primary components of a rotor machine are
O a set of rotors
O a keyboard for inputting text
0 A dashboard (e.g. array of letter-coded lamps) to show the output

0 Rotors are rotating disks with an array of electrical contacts on
either side

0 The wiring between the contacts implements a fixed substitution of
letters, replacing them in some complex fashion

0 After encrypting of a letter, the rotors advance positions, changing
the substitution (to be applied to the next latter that is typed in)

0 By this means, a rotor machine produces a complex polyalphabetic
substitution cipher, which changes with every key press



Rotor Machines
S

0 The example below shows schematically N = 3 rotors including some of their internal wiring
0 Keyboard and dashboard are not shown

0 The medium rotor advances its position after a full turn of the fast rotor, and the slow rotor
advances its position after a full turn of the medium rotor

0 Therefore, we have a N-stage polyalphabetic substitution algorithm
0 For N =5, there are 26N (= 11881376) steps before a substitution is repeated!

direction of motion direction of motion

- A 24— 21 26 20 1 & A - A 24— 21 26 20 26 4| A

B 25— 3 1 1 2 — 18] B = —= B| 25— 3 1 1 1 B B

26— 15 2 6 3 26| C I | 26— 15 2 6 2 18| C
DJ1 1 3 4 4 17| D DJ|1 1 3 4 3 26| D
E|2 19 4 15 5 —— 20| E = E]l2 19 4 15 4 A~ 17| E—
F|3 10 5 3 6 221 F F|3 10 5 3 5 20| F
Gl4 14 6 14 7 101 G Gl4 14 (] 14 6 22| G
H|S 26 T 12 8 3l H H| 5 H—26 T — 12 7 10| H
16 20 8 23 9 —13 I —-- 1|6 20 8 23 8 3| 1
7 8 9 5 10 1y J 7 8 9 5 9 131 J
K|B 16 10 16 11 4| K K|8 16 10 16 10 11| K
Lo 7 11 2 12 231 L L9 7 11 2 11 41 L
M LD 22 12 ——22 13— SIM M| 10 22 12 ——22 12— 231 M
NIl 4 13 19 14 241 N Nl 11 4 13 19 13 S| N
ol12 11 14 11 15 a1 O 0] 12 11 14 11 14 241 O
P13 5 15 18 16 121 P Pl13 5 15 18 15 al P
Q14 17 16 25 17 251 Q Ql 14 17 16 25 16 12] Q—=
R| 15 9 17 — 24 18—+ 16| R R 15 9 17 — 24 17— 25| R
S|16 12 18 13 19 191 s Sl 16 12 18 13 18 6| S
T 17 23 19 = 20— 6|l T Ty 17 23 19 b= 19 19] T —j=
Ul 18 18 20 10 21 15| U U] 18 18 20 10 20 6| U
VARE 2 21 8 22 21l v vie 2 21 8 21 15| v
W20 ~—25 22 21 23 2w W20 ‘25 2= 21 22 21w
xl21 6 23 9 24 T X x| 21 6 23 9 23 2| X
Y22 ~—24 24 26 25 | v Y|22 — 24 24 26 24 Tl Y
7|23 13 25 17 26 14| £ Z]23 13 25 17 25 1|1 £

slow rotor medium rotor fast rotor slow rotor medium rotor fast rotor

(a) Initial setting (b) Setting after one keystroke



Example: The Enigma Machine

https: / /www.youtube.com /watch2v=-
mdSvGUdO ¢



https://www.youtube.com/watch?v=-mdSvGUd0_c
https://www.youtube.com/watch?v=-mdSvGUd0_c

How Alan Turing broke the Enigma
Code

0 https://www.iwm.org MATHEMATICIAN

U k /h I S.I-O ry /h OW - Alan Turing was a brilliant mathematici
1912, he studied at both Cambridge and Princ:
universities. He was alrea orking part-time f
Cllqn Turlnq erCked— < er School before
» uring took up a m
ire —where top
military codes y

the-enigma-code

0 The Imitation Game
(Film, 2014)

O https://www.youtube
.com/watch2v=nuPZ
UUEDSuk



https://www.iwm.org.uk/history/how-alan-turing-cracked-the-enigma-code
https://www.iwm.org.uk/history/how-alan-turing-cracked-the-enigma-code
https://www.iwm.org.uk/history/how-alan-turing-cracked-the-enigma-code
https://www.iwm.org.uk/history/how-alan-turing-cracked-the-enigma-code
https://www.youtube.com/watch?v=nuPZUUED5uk
https://www.youtube.com/watch?v=nuPZUUED5uk
https://www.youtube.com/watch?v=nuPZUUED5uk

Breaking Enigma using Cribs
T

0 Breaking Enigma was based on the following
observations:

O Plaintext messages were likely to contain certain
phrases, e.g.

® Weather reports contained the term "WETTER
VORHERSAGE”

® Military units often sent messages containing “KEINE
BESONDEREN EREIGNISSE”, i.e. “nothing to report”

O A plaintext letter was never mapped onto the same
ciphertext letter



Breaking Enigma using Cribs

sWikiBediai

0 While the cryptanalysts did not know where exactly
these cribs were placed in an intercepted message, they
could exclude certain positions (i.e. Position 1 and 3):

Ciphertext | O | H|J | Y| P|D|IOM|QIN|J|C|O|S|IGIA|WH|IL|IE|IH|Y|S|O|P|J|S/M|{N|U
Position 1 KIE|IIT/N|IE|BIE|S|O|N|D|E|R|E|N|E|R .. GIN|I|S|S|E

Position 2 KIE|I|N|E|B|E|S|ON|DIEIR|E|N|E|R|E|I|G|N|I|3|S|E

Position 3 KIE|T|N|E|B|E S.N DIE|R|E N.R E|I|G|N|I S.E

Positions 1 and 3 for the possible plaintext are impossible because of matching letters.

The red cells represent these crashes. Position 2 is a possibility.

00 From here on, possible rotor start positions and rotor
wiring would be systematically examined using a “the
bombe”, an electromechanical device designed by
Alan Turing



Transposition Ciphers

0 Now consider classical transposition or
permutation ciphers

0 These hide the message by rearranging the letter
order without altering the actual letters used

0 This can be recognised since ciphertext has the
same frequency distribution as the original text




Rail Fence (Zigzag) Cipher

0 Write message letters out diagonally up and down
over a number of rows, then read off cipher row by
row

0 Example (Wikipedia): WE ARE DISCOVERED. RUN
AT ONCE:

Ww...E...C...R...U...0. ..
.E.R.D.S.0.E.E.R.N.T.N.E
L L 1 I

0 Resulting ciphertext:

WECRUOERDSOEERNTNEAIVDAC



Row Transposition Ciphers
N

O Write letters of message out in rows over a specified number
of columns

0 Then reorder the columns according to some key before
reading off the columns

0 Example:
Key: 4312567
Plaintext: ATTACKP
OSTPONE
DUNTTILT
WOAMXYZ

Ciphertext: TTNA APTM TSUO AODW COIX KNLY PETZ
Note that spaces are inserted to improve readability



Combined Ciphers

0 Ciphers using substitutions or transpositions are not
very strong because of language characteristics

0 Hence consider using several ciphers in succession to
make harder:
O two substitutions make a more complex substitution
O two transpositions make more complex transposition

O but a substitution followed by a transposition makes a new
much harder cipher

0 Similar approaches are implemented in modern
ciphers



- Steganography



Steganography

0 An alternative to encryption
0 Steganography hides the existence of a message,
by:
0 Using only a subset of letters / words in a longer
message marked in some way
0 Using invisible ink

O Hiding single bits at a time in suitable computer files
(e.g., images or sound files)

0 Drawback:

o0 Not very economical in terms of overheads to hide a
message (see also examples)



Example for Steganography

Assume an x-by-y pixel wide image is stored in RGB format

For each pixel the colour component (R, G and B) intensity is
represented by a byte

The image can be stored in a byte array of size [x][y][3]

For each entry we change the least significant bit to hide bitwise
d message, e.g.

'fsgl O R G B becomes R G B
= 01010110 11100101 10110000 01010111 11100100 10110000
11111111 10101001 00101010 11111111 10101000 00101011

11001101 10011001 11001010 11001100 10011001 11001010

0 This transformation allows the storage of the bit pattern
100101010, while causing minimal image distortions (invisible for
the human eye)

0 However, this method doesn’t work in combination with image
compression (e.g. JPEG compression)

https: //stylesuxx.qgithub.io /steganography /



https://stylesuxx.github.io/steganography/

Annex
B

1. Example cryptanalysis of a simple substitution
cipher



Example Cryptanalysis of Simple

Substitution Cipher
B

0 Assume one intercepts the ciphertext below

0 We know (out of the context) that
O the plaintext message is written in English
O The message has been encoded using the simple substitution cipher

0 Intercepted ciphertext:
UZQSOVUOHXMOPVGPOZPEVSGZWSZOPFPESXUDBMETSXA
IZVUEPHZHMDZSHZOWSFPAPPDTSVPQUZWYMXUZUHSXEPYE
POPDZSZUFPOMBZWPFUPZHMDJUDTMOHMQ

0 We do a frequency analysis of the ciphertext and begin with
the most common letters in the English language, e and t

0 Guess ciphertext letters P & Z are plaintext letters e and t (we
use small letters to distinguish between both):
UtQSOVUOHXMOeVGeOteEV SGHW StOeFeESXUDBMETSXAIYV
UEeHtHMDtSHIOW SFeAeeDTSVeQUZWYMXULtUHSXEeYEeOeD
tStUFeOMBtWeFUetHMDJUDTMOHMQ



Example Cryptanalysis
N

0 Guess (1) Z2P means the:
UtQSOVUOHXMOeVGeOteEVSGtW StOeFeESXUDBMET
SXAItVUEeHtHMDtSHtOW SFeAeeDTSVeQUZWYMXUtUH
SXEeYEeOeDtStUFeOMBtWeFUetHMDJUDTMOHMQ

0 Assume W is h:
UtQSOVUOHXMOeVGeOteEVSGthStOeFeESXUDBMETS
XAItVUEeHtHMDtSHtOhSFeAeeDTSVeQUZWYMXUtUHSX
EeYEeOeDtStUFeOMBtheFUetHMDJUDTMOHMQ



Example Cryptanalysis
N

0 Guess word that, translating S into a:
UtQSOVUOHXMOeVGeOteEVSGthStOeFeESXUDBMET
SXAItVUEeHtHMDtSHtOhSFeAeeDTSVeQUZWYMXULUH
SXEeYEeOeDtStUFeOMBtheFUetHMDJUDTMOHMQ

0 Ciphertext becomes:
UtQaOVUOHXMOeVGeOteEVaGthatOeFeEaXUDBMET
aXAltVUEeHtHMDtaHtOhsFeAeeDTaVeQUZWYMXUtUH
aXEeYEeOeDtatUFeOMBtheFUetHMDJUDTMOHMQ



Example Cryptanalysis
N

0 Guess that AeeD means been:
UtQaOVUOHXMOeVGeOteEVaGthatOeFeEaXUDBM
ETaXAltVUEeHtHMDtaHtOhsFe AeeDTaVeQUZWYMXU
tUHaXEeYEeOeDtatUFeOMBtheFUetHMDJUDTMOHM
Q

0 Resulting in (with A=2b and D—2>n):
UtQaOVUOHXMOeVGeOteEVaGthatOeFeEaXUnBM
ETaXbltVUEeHtHMntaHtOhsFebeenTaVeQUZWY M XUt
UHaXEeYEeOentatUFeOMBtheFUetHMNnJUNTMOHMQ



Example Cryptanalysis
N

0 Is HMntaHt meaning contact?

UtQaOVUOHXMOeVGeOteEVaGthatOeFeEaXUnBMET
aXbltVUEeHtHMntaHtOhsFebeenTaVeQUZWYMXUtUH
aXEeYEeOentatUFeOMBtheFUetHMnJUNnTMOHMQ

0 Therefore (with H2 ¢ and M~ o):
UtQaOVUOcX00eVGeOteEVaGthatOeFeEaXUnBoETa
XbltVUEectcontactOhaFebeenTaVeQUZWY o XUtUcaXEe
YEeOentatUFeOoBtheFUetconJUnToOcoQ




Example Cryptanalysis
N

0 Does VUEect mean direct?
UtQaOVUOcXoOeVGeOteEVaGthatOeFeEaXUnBoETaX
bltVUEectcontactOhaFebeenTaVeQUZW YoXUtUcaXEeY
EeOentatUFeOoBtheFUetconJUnToOcoQ

0 Therefore (with V=2 d, U 2 i and E-> r):
1I1QaO0diOcXo0OedGeOterdaGthatOeFeraXinBorTaXblt
directcontactOhaFebeenTadeQiZWYoXiticaXreYreOent
atiFeOoBtheFietconJinToOcoQ




Example Cryptanalysis
N

0 Does GeOterdaG mean yesterday?
itQaOdiOcXoOedGeOterdaGthatOeFeraXinBorTaXblt

directcontactOhaFebeenTadeQiZW YoXiticaXreYreOent
atiFeOoBtheFietconlJinToOcoQ

0 Therefore (with G2 y and O =2 s):
itQasdiscXosedyesterdaythatseFeraXinBorTaXbltdirect
contactshaFebeenTadeQiZW YoXiticaXreYresentatiFeso
BtheFietconJinToscoQ




Example Cryptanalysis
N

0 Moscow calling?
itQasdiscXosedyesterdaythatseFeraXinBorTaXbltdirectco

ntactshaFebeenTadeQiZW YoXiticaXreYresentatiFesoBth
eFietconJinToscoQ

0 Therefore (with T 2 m and Q 2 w):
itwasdiscXosedyesterdaythatseFeraXinBormaXbltdirectc
ontactshaFebeenmadewiZW YoXiticaXreYresentatiFesoB
theFietconJinmoscow




Example Cryptanalysis
N

0 X means |, F means v, B means ¢
itwasdiscXosedyesterdaythatseFeraXinBormaXbltdir
ectcontactshaFebeenmadewiZW YoXiticaXreYresentati
FesoBtheFietconJinmoscow

0 Therefore:
itwasdisclosedyesterdaythatseveralinformalbltdirectc
ontactshavebeenmadewiZW YoliticalreYresentativesoft
hevietconJinmoscow



Example Cryptanalysis
N

0 | means u, Z means t, W means h, Y means p?
itwasdisclosedyesterdaythatseveralinformalbltdirectco
ntactshavebeenmadewiZWYoliticalreYresentativesofth

evietconJinmoscow

0 Therefore:
itwasdisclosedyesterdaythatseveralinformalbutdirectco
ntactshavebeenmadewithpoliticalrepresentativesofthe

vietconJinmoscow



Example Cryptanalysis
N

0 Finally: J means g:
itwasdisclosedyesterdaythatseveralinformalbutdirectc
ontactshavebeenmadewithpoliticalrepresentativesofth
evietconJinmoscow

0 Therefore (with spaces added):
it was disclosed yesterday that several informal but
direct contacts have been made with political
representatives of the vietcong in moscow
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Lecture Overview
I

0 This lecture provides an introduction to one of the
fundamental building blocks to provide confidentiality,
namely block ciphers, thereby covering the following:

O Symmetric versus Public Key Algorithms
O Block ciphers versus Stream Ciphers

o Building Blocks of modern Block Ciphers
o Modes of operation of block ciphers

o0 Examples for modern block ciphers



Recall: Model of Conventional

Cryptosystem
-b

—X
Cryptanal A .
ypranalst > K Symmetric
Algorithm!

Secure Channel

Y = E(X), X = E¢'(Y)



Symmetric Key Algorithms

0 Also called ciphers for traditional / conventional / single
key / private key encryption

0 Here the encryption key can be calculated from the
decryption key and vice versa

0 Normally both keys are the same
0 The algorithm / cipher itself is public, i.e. is not a secret
0 If the key is disclosed, communications are compromised
0 The key is also symmetric, parties are equal

0 Hence methods does not protect sender from receiver
forging a message & claiming is sent by sender
— nonrepudiation is usually not provided



Public-Key Algorithms

0 Also called ciphers for two key / asymmetric cryptography

0 These involve the use of two keys:

O a public key, which may be known by anybody, and can be used to
encrypt messages, and verify S|gnq’rures (later!)

O a private key, known only to the recipient/owner, used to decrypt
messages, and sign (create) signatures

0 The keys are asymmetric, because they are not equal

0 While the public and its private key are interlinked, it is
mathematically very hard to recover the private key via its
public key

0 Public key algorithms are generally significantly slower that
symmetric algorithms, therefore these are often used to securely
convey symmetric algorithm’ (session) keys

0 More later!



Block Ciphers versus Stream

Cighers
]

0 In a block cipher the data (e.g. text, video, or a network
packet) to be encrypted is broken into blocks M1, M2, etc.

of K bits length, each of which is then encrypted

0 The encryption process is like a substitution on very big
characters — 64 bits or more

1\£] T\£2 I\£3 ".1‘1]:1
AR

Cn
0 In contrast, stream ciphers (= next lecture) only process
one bit or one byte at a time

encoding

decoding



Example Block Cipher Transformation

P: 0000000000000000 ..... TTTTITT1111111111
C: 0101001010100101 .... O110110110110010

0 Block size K is 16 bits

0 If there wasn’t a cipher available for this
transformation, we'd require a table with 2 entries

> Not feasible

0 Note that there are (2'9)! possible substitutions



Block Ciphers and Padding

S | —
0 Messages are usually not multiples of K bits
0 Padding is a way to take data that may or may not be

a multiple of the block size for a cipher and extend it
out so that it is

o It is only applied to the last block that is being encrypted
0 Padding must be reversable, i.e., one must be able to

distinguish between relevant content and padding bytes
in a block



Padding Algorithms
N

0 Let N be the number of bytes required to make a final
block of data the same size as the block size

o PKCS7 padding works by appending N bytes with the binary
value of N; example:

... | DD DD DD DD DD DD DD DD | DD DD OD DD ©4 64 84 84 |

0 ANSI X9.23 padding works by appending N-1 bytes with the
value of O and a last byte with the value of the binary value
of N; example:

... | DD DD DD DD DD DD DD DD | DD DD DD DD ©@ 00 €0 o4 |




Modes of Operation: Electronic
Codebook (EBC) Mode
B I

0 These modes comprise different strategies on how
to use block ciphers (to encode messages)

0 What are the advantages / disadvantages of the
ECB mode?

0 Note that “DES” in
the diagram on the
right is just an
example for a
block cipher




Characteristics and Limitations of ECB
Mode

Source:
Wikipedia

Original image Using ECB allows patterns 1o be Modes other than ECE result in
eagsily discerned pseudo-randomness
ECB

Electronic codebook
Encryption parallelizable Yes
Decryption parallelizable Yes

Random read access Yes




Why would one avoid the Electronic Codebook
Mode?

0 In ECB mode identical plaintext blocks result in
identical ciphertext blocks

0 An attacker, while not able to decode the ciphertext
blocks, would conclude that the encoded data is
repetitive / structured, i.e. could be an image

0 However, random data (e.g. long cryptographic keys)
could be still encoded in ECB

o E.g., a 512-bit key could be encrypted using a 128-bit
block cipher using ECB mode



Modes of Operation: Cipher Block

Chaining (CBC) Mode
_—

Time =1 Time=N
v P, Py
Cra (+)
Encrypt Encrypt
C Cy
(a) Encryption
Cy C, Cy
DES DES DES
K Decrypt K Decrypt ¢ 0 K Decrypt
v —b? }? Caa 4’?
Py P, Py
(b) Decryption




The Initialisation Vector (IV)

0 An IV is a block of bits that is used by several modes
(including CBC) to randomise the encryption

0 An initialization vector has different security requirements
than a key, so the |V usually does not need to be secret

00 For most block cipher modes it is important that an
initialisation vector is never reused under the same key, i.e.
it must be a cryptographic nonce

O Hence distinct ciphertexts are generated even if the same
plaintext is encrypted multiple times using the same key

0 In data communication, the IV may be attached as
plaintext to the encrypted data, and send to the receiver



Modes of Operation: Cipher Block
_ Chaining (CBC) Mode

0 What are the characteristics of the CBC mode?

(b) Decryption




Modes of Operation: Cipher Block

Chaining (CBC) Mode
B I

0 For encryption, a one-bit change in a plaintext or IV affects all
following ciphertext blocks

0 Decrypting with the incorrect IV causes the first block of plaintext
to be corrupt but subsequent plaintext blocks will be correct

O This could be problematic if the IV was kept a secret and is used to
expand the algorithm's key space

CBC

Cipher block chaining

Encryption parallelizable Mo
Decryption parallelizable Yes (@) Encryption
Random read access Yes Cy

(b) Decryption




Full Block Cipher Feedback (CFB)

Mode
R

0 Note that CFB only requires block encryption for
both encoding and decoding

Initialization Vector (1V)
| l
block cipher block cipher block cipher
Key encryption Key encryption Key encryption
Plaintext Plaintext Plaintext
(- (- oo %
OTTTITTTTTTM OTTTITTTTTTM TTTTTTTTIT™
Ciphertext Ciphertext Ciphertext
Cipher Feedback (CFB) mode encryption
Initialization Vector (1)
| l
block cipher block cipher block cipher
Key encryption Key encryption Key encryption
Ciphertext Ciphertext Ciphertext
~[ITTTTTTTITT1] =<[ITTTTITTITT1 ~<[ITTTTITTITT1]
Plaintext Plaintext Plaintext
Cipher Feedback (CFB) mode decryption




Full Block Cipher Feedback (CFB)

Mode
T

0 This mode is particularly useful, when decryption
needs to be fast (i.e., parallelisable)

Initialization Vector (1V)
OTTTITTTTTTM
0 Note that CFB only : 1 l
block cipher block cipher block cipher
req Uires bIOCk Key —= encryption Key —= encryption Key —= encryption
. Plaintext I Plaintext I Plaintext _I"'%
encryption for both ™ e R
OTTTITTTTTTM OTTTITTTTTTM TTTTTTTTIT™
° Ciphertext Ciphertext Ciphertext
ncoding and
enco g a Cipher Feedback (CFB) mode encryption
[ ]
d eCOd I n g Initialization Vector (IV)
l i
block cipher block cipher block cipher
CFB K&Y —=| encryption K&Y —=| encryption K&Y —=| encryption
Cipher feedback Ciphertext Ciphertext Ciphertext
. i =[TIITITITITTIT] =<[ITTTTITTITT1 ~<[ITTTTITTITT1]
Encryption parallelizable Mo
Decryption parallelizable es - _ -
Plaintext Plaintext Plaintext
Random read access Yes
Cipher Feedback (CFB) mode decryption




Propagating Cipher Block Chaining

SPCBCE Mode
o

0 This mode fixes the IV problem of CBC, i.e,,
decrypting PCBC with the incorrect IV causes all
blocks of plaintext to be corrupt

Plaintext Plaintext Plaintext
OTITTTIITTTTT [MITITTITTITT]
Initialization Vector (IV)
T — & &
block cipher ‘ block cipher block cipher
Key encryption Key encryption Key encryption
[ITIITITTITT [IITITIITTITT] [IITTTTTITTTT
Ciphertext Ciphertext Ciphertext

Propagating Cipher Block Chaining (PCBC) mode encryption

Ciphertext Ciphertext Ciphertext
[IITITIITT7T1 LITITITITITIT] LITITITTTIT1
block cipher block cipher block cipher
Key decryption Key decryption key decryption
Initialization Vector (IV)
TTTTTTTTTT1 OTTTITTTTTIT1 ITTTTTTTTT1

Plaintext Plaintext Plaintext




Propagating Cipher Block Chaining

SPCBCE Mode
20

0 This mode fixes the IV problem of CBC, i.e,,
decrypting PCBC with the incorrect IV causes all
blocks of plaintext to be corrupt

Plaintext Plaintext Plaintext
OTITTTIITTTTT [MITITTITTITT] OTTTITITTTTT
Initialization Vector (IV)
T — & eg——
block cipher ‘ block cipher block cipher
Key encryption Key encryption Key encryption
[ITIITITTITT [IITITIITTITT] [IITTTTTITTTT
Ciphertext Ciphertext Ciphertext

Propagating Cipher Block Chaining (PCBC) mode encryption

Ciphertext Ciphertext Ciphertext
OTTITITTITT1d OIIITIIITITIT] OITITTITTTI11]
PCBC l—l l—‘ }
Propagating cipher block chaining Key —= b;gi:ﬂﬂgsr Key —= bcllc;ilﬁ;gfigﬁr Key —= bcllc;cc&;;fir;ﬁr
Encryption parallelizable No Initialization Vector (1)
Decryption parallelizable No LTI — EB—"% @—'%
Random read access No mm—t mj (ENNRNNNRNREN

Plaintext Plaintext Plaintext




Counter (CTR) Mode

0 Here the random nonce (which is equivalent to an IV) is
complemented with an incremented counter value

Monce Counter Monce Counter Monce Counter

0 Note that CFB only T e R

block cipher block cipher block cipher

[ ]
req U I res b I OCk Key —= encryption Key —= encryption Key —= encryption
Plaintext

encryption for both T ) )

OTTTTTTTITT TTTTITTTTT TTTTITTTTTM
Ciphertext Ciphertext Ciphertext

enCOd ing CI n d Counter (CTR) mode encryption

(]
d eCOd N g Nonce Counter Monce Counter Monce Counter

£59bcf35. elelelelelelele] c59bcf35. [eleleleleleleTN c59bcf3s. elelelelelelol)
COTTTTTITITTT] CTTTITITTTTTT CITTTITITITTT

| | |

block cipher block cipher block cipher
encryption encryption encryption

Key —

kKey —

Key —

Ciphertext—:-? Ciphertext—:-? Ciphertext ——=
CIITTITTITTITT CLITITITTIITT CLITITITTIITT A

e oy OO

Plaintext Plaintext Plaintext

Counter (CTR) mode decryption




Counter (CTR) Mode

0 Here the random nonce (which is equivalent to an IV) is
complemented with an incremented counter value

Nonce Counter Nonce Counter Nonce Counter
D N O'I'e 'I'h q 1_ C F B on I c58hcf3s. [elelelelelelele] c59bcf35. elelelelelelenk c58bcf3s., [ eleelelel e
y TTTTITTIT1T (TTTTTITTITT HEEEEEENNEREN
' | i
o block cipher block cipher block cipher
re q U I res b I OCk Key encryption Key encryption Key encryption
. Plaintext ? Plaintext ? Plaintext 613
encryption for both [T LTI T
y p OTTTTTTTITT TTTTITTTTT ITTTTTTTTTT]
Ciphertext Ciphertext Ciphertext
[ ]
enCOd Ing a nd Counter (CTR) mode encryption
[ ]
d e COd | n g Monce Counter Nonce Counter MNonce Counter
c59bcf35. elelelelelelele] c59becf35. elelelelelelen] c59bcf3s. [eleleleleleleh:
CIITTITTITTTITT CLITITITTITT CIITITITTITT
block cipher block cipher block cipher
Key encryption Key encryption Key encryption
CTR Ciphertext—:-? Ciphertext—:-? Ciphertext ——=
Counter CIITTITTITTITT CLITITITTIITT CLITITITTIITT A
. . LITITIITTIT OTTTITITTTTTY ITTIITTITTM
Encryption parallelizable Yes Plaintext Plaintext Plaintext
Decryption parallelizable fes .
Counter (CTR) mode decryption
Random read access Yes




Another Question ...
L TT——

0 Assume you have a large data file stored on your
computer that needs to be encrypted / decrypted
on-the-fly, potentially with random block access

0 You pick a suitable block cipher for this task

0 Which mode of operation would you choose?



- Building Block Ciphers

Confusion, diffusion and the avalanche effect
Using SP-Networks
Using Feistel Networks



Important Block Cipher Principle

0 Transformations must be reversible (“non-singular”), e.g.,

Plaintext  Ciphertext Plaintext Ciphertext
00 «—— 11 00 «—— 11
o1 «—— 10 o1 «—— 10
10 «—— 00 VSs. 10 00
11— 01 11 F—. 00

?

0 There must be a 1:1 association between a n-bit plaintext

and an-bit ciphertext, otherwise mapping (encryption) is
irreversible



Confusion and Diffusion

0 A block cipher needs to completely obscure the statistical
properties of original message (obviously)

0 Claude Shannon introduced two terms:

o Diffusion seeks to make the statistical relationship between the
plaintext and ciphertext as complex as possible

o Confusion seeks to make the relationship between the statistics of
the ciphertext and the value of the encryption key as complex as
possible

0 Both thwart attempts to deduce the key

0 Thos can be achieved, by applying a cryptographic
operation iteratively multiple times, i.e. over multiple
rounds

0 See also the avalanche effect (next slide)



The Avalanche Effect
S

0 Practically, confusion and diffusion provide for encryption
algorithms, where a slight change in either the key or the
plaintext results in a significant change in the ciphertext

[] The TCIble ShOWS some {a) Change in Plaintext (b) Change in Key
. . Number of bits Number of bits

ChCI quferlslhcs Of The Round that differ Round that differ
. 0 1 0 0
DES algorithm (later), that | 6 ! 2
2 21 2 14
encrypts a block over 16 : 3s 3 2
4 39 4 32
rounds : y ; 0
6 32 6 32
0 A swap of a single bit either 1 o s
b C ¥ 34
in the key or in the plaintext 0 42 ) 4
10 44 10 38
results in an incrementally } 2 I 31
12 30 12 33
growing change in the 13 30 E 2
o 14 26 14 26
ciphertext (avalanche effect) E 2 15 y
16 34 16 35




Block Cipher Building Blocks

0 In order to build a block cipher efficiently, one needs

robust building blocks, that can be easily implemented
and tested

0 The robustness of the block cipher depends on the robustness
of its components

0 These blocks are combined or iterated through creating
a block cipher

0 The most common building blocks are:
O P-Boxes
0 S-Boxes

O Feistel ciphers



The Permutation Operation

0 A binary word (i.e. block) has its _ P-Box
bits reordered (permuted) " N
O Similar to classical transposition ! | —> ¢
ciphers ﬂ \’ < me
0 This operation is represented by a ; r?? .
P-box (see diagram) 0 " e
0 .{" 0
0 Here the re-ordering / internal ) ",:\) — 0
wiring forms the key E: ‘?{ 1
[ — )
0 The example shown allows for 15! ; "\ !
=1,307,674,368,000 ; | — 0
combinations g !




The Substitution Operation

0 A binary word is replaced by some other binary word
0 Similar to classical substitution ciphers

0 This operation is represented by an S-box

0 Here the re-ordering / internal wiring forms the key

0 The box shown allows S-Box
for 8! = 40320 combinations | Py P8 o

A
m

= T OO A ©
=] I N e L R =S
=] O U LD R e
= T oo n =

—




Substitution-Permutation Network
S

encoding * The key describes the
] internal wiring of all S-
1—| P | st s el ls [olPle >
A\ s Bl BN Bls B\ [ B boxes and P-boxes
0 — > > > > — > > —» 0
C I\ s Y S Yo e A s P
NS e B N/l cs: ¢ The same key can be
P o 's_: 's_: 'S—:f—’s_'l i
el <\l n<hl =< v v used for encoding and
00— > - - — > > » |0 . . e
< =< = ks < U= An =< decoding, hence it is a
0o —» > —> — > N > > .
» > n
= B PR R Bl private key
encryption algorithm
decoding ¢ The direction of the
process determines
Question: encoding / decoding

* How big is the key space for this arrangement?
* How many bits are needed to describe a single S or P box?
*  What is the total number of bits required to describe all boxes?



The Feistel Cipher
N

0 In practice, we need algorithms that can decrypt and
encrypt messages using similar code / hardware for both

0 An S-P network as seen in the example cannot be easily
reversed when implemented in hardware / software

O i.e. one needs different functions for encoding / decoding

0 In contrast, a Feistel cipher is an invertible cipher structure
which adapts Shannon's S-P network in an easily invertible
structure for encoding and decoding

O In fact, it can use other cryptographic building blocks
0 It is based on the concept of the invertible product cipher

0 It was invented by Horst Feistel, who worked at IBM
Thomas J Watson Research Labs in early 70's



The Feistel Cipher — A Single Round
—

0 The idea is to partition the input block into two halves, L (i-1) and
R(i-1), and use only R(i—1) in the i round (part) of the cipher

0 The function g incorporates the equivalent of one stage of the S-P
network, controlled by part of the key K (i) known as the i subkey

L(i-1) R(3-1) L{1-1) R(i-1)

—K(i) — k(1)
(o

L(i) = R(1-1) R(i) L(i) = R(i-1) R(i)




The Feistel Cipher — A single Round
—

0 A round of a Feistel cipher can be described functionally

as:

oL(i) = R3GE-1)

oR(i) = L(i-1) EXOR g(K(i), R(i-1))
LG-1) RG-1) L(i-1) RGD

X i K(i) - ; —K(i)

|L{i:r = R(i-1) R(i) L(i) = R{i-l)l R(i)




Recap: Symmetry of Bitwise EXOR

5 A EXOR B = C 1
A EXOR C = B olol
C EXOR B = A 1710




In-Class Activity: Feistel Cipher — Single

Round
.

0 Encoding of O1011110:

olL(i - 1) = 0101 R(1—-1) = 1110
og (@), R(H-1)) = 1001 L(i) = 2
oR@) =2
o Therefore 01011110 becomes
LG-1) R(-1) Li-1) RGD

@ | K1) @ ; —K(i)

ILG) = R(i-1) R(i) L(i) = R(i-1) R(i)




Example Feistel Cipher — Single Round
B

0 Encoding of O1011110:
oL -1) = 0101 R(1-1) = 1110
og(K(@), R(i-1)) = 1001 L) = 1110
oR(i) = 0101 XOR 1001 = 1100
o Therefore 01011110 becomes 11101100

0 Decoding of [1101100:
oL() = 1110 R(i) = 1100
og(K(i), RG-1)) = 1001 R@GE - 1) = 1110
oL - 1) = 1100 XOR 1001 = 0101
o Therefore 1110 1100 becomes 01011110



Feistel Network
1

0 Common structure of many modern
block ciphers

0 It perform multiple transformations
(single rounds) sequentially,
whereby output of i round
becomes the input of the (i+1)"
round

. | O Every round gets is own subkey,
which is derived from master key

0 Decryption process goes from
bottom to top




Feistel Cipher Design Elements
S =

These include

0 Block size (typically 64 — 256 bits)
0 Key size (typically 80 — 256 bits)
0 Number of rounds (typically > 16)
0 Subkey generation algorithm

0 Round function



Simple Methods for Subkey Generation

1
0 Here two 8-bit round keys (K, and 10-bit key
K,) are derived from a 10-bit i"’
(master) key: lﬁ'
o0 The 10-bit master enters the e
permutation box (P10) ” ”

O The output is split into 2 parts

O Each part is left-rotated by one bit
(LS-1)

O Both parts are concatenated and

passed into a permutation box (P8)

O P8 has eight outputs, which make K,




- Block Cipher Examples

Data Encryption Standard (DES)
AES



Common Block Cipher Key and Block

Lengths
-_

Key length k = 80,128,192, 256
Block lengthn = 64,128, 256

Plaintext {0,1}n

0,1} Key

Examples: m {0,1}”

DES: k = 56, n = 64
AES: k = 128,192,256, n = 128



Data Encryption Standard (DES)

0 DES was the first block
cipher widely used in

industry
0 Introduced in 1976
0 64-bit block length
0 56-bit key length

0 Feistel network with 16

rounds and 48-bit subkeys [_r32-“it5wav )




The DES Challenge

0 Contest to demonstrate to the US government that

56-bit DES is an ineffective form of encryption

0 The goal of the challenge was to decrypt secret
messages which had been encrypted with DES

Nome _______|When | Duration | Hardwareused __

DES | Challenge
DES Il Challenge
DES Challenge 1I-2

DES Challenge llI

June 1997
February 1998
July 1998

January 1999

140 days
41 days
56 hours

22 hours

Up to 70,000 PC
4

Custom FPGA
Design

~100,000 PC



Triple DES

0 DES has been widely used and implemented across many OS and crypto
libraries, so attempts were made to increase its active life span

This resulted in Triple-DES
It is based on three processing stages
Note the symmetry in the encoding and decoding process

O O O 0O

In principal, this concatenation can be applied to every private key block
cipher

0 There are 2 common keying options:

O 2 keys (as shown in the figure) K, K, K,
O 3 keys (one for each stage)
Encryption
Ky K, K,
—{( p )} (D )—>p
Decryption




Double-DES and the Meet-in-the-

Middle Attack

0 Double DES uses two instances of DES with different keys

0 While this algorithm uses two independent keys, it is not as
sound as it looks

0 It is vulnerable to the meet-in-the-middle attack, where an

attacker has access to P and C, and tries to determine K1
and K2



Double-DES and the Meet-in-the-
Middle Attack

0 This attack is an example of a space-time tradeoff, where the
adversary does the following:

1. Encrypt P using every possible key, and copy each key and the resulting
cyphertext into a table T1

m T1 will have 2 columns and 2%% rows

2. Decrypt C using every possible key, and copy each key and the
resulting plaintext into a table T2

® Again, T2 will have 2 columns and 23° rows
3. Check for identical ciphertext / plaintext entries in T1 and T2
4. Their corresponding keys K1 and K2 are key candidates and can be
further validated using other plaintext/cyphertext pairs

0 Overall, this process requires 2°° encryption and 2°° decryption
attempts, so overall 2 x 2°¢ = 2°7 attempts (rather than 2'12
attempts) are required

0 Note that this attack can also be applied to Triple DES, but it
would require 22%°¢ attempts



Advanced Encryption Standard (AES)
B

0 Successor of DES since 2002

0 Based on a S-P network

0 Block size is 128-bit

0 Key length is configurable can be 128, 192 or 256 bit

0 Stronger & faster than Triple-DES
o2 *56 << 128!

0 Envisaged active life until ~2030
0 Full specification & design details public

0 Algorithm has reference implementations across many
programming languages



- Breaking Block Ciphers



Why does Block and Key Length

matter?
I

0 Cryptographic algorithms with short block length
can be tackled as seen with the substitution
cipher

0 Large keys and large blocks prevent brute-force
attacks / searches

O Take the ciphertext and try all possible key
combinations (or block permutations), until the text is
successfully decoded (e.g. until the decryption
provides meaningful text)



Brute Force Search / Attacks

0 DES uses 56-bit key has a key space that contains 2°°
(= 7.2 X 10'%) keys
00 Deemed unsafe since the 1990s

0 Triple-DES uses two 56-bit keys. and its key space
contains 212 (= 5.1 X 10°3) keys
o Its use will be prohibited from 2024

0 AES-128 key space contains 2''2 (= 3.4 X 1038) keys

0 Generally accepted minimum key length today

0 Top secret information requires the use of either AES-

192 or AES-256



Brute Force Search / Attacks

Always possible to simply try every key
Most basic attack, effort proportional to key size
Assume that you either know or recognise plaintext

GPUs are very good at this task, for example a single RTX 3070 GPU
can crack a DES key in ~215 days

O 0O 0o od

Key Size (bits) Number of Time required at 1 Time required at 10°
Alternative Keys decryption/us decryptions/us
32 2% =43 x10° 23 us =35.8 minutes | 2.15 milliseconds
56 256 =72 x10'6 2% us = 1142 years 10.01 hours
128 2128 =34 x 1038 227 us =54x10* 5.4 x 10'8 years
years
168 2168 =37 x 10°° 2167 s =59 x 103 5.9 x 10%° years
years
26 characters 26! =4 x 10% 2x10%° pus =64 x 1012 6.4 x 106 years
(permutation) years




Side-Channel Attacks

0 AES is cryptographically sound and there is no
practical cryptographic "break” that is faster than a
brute-force attack

0 However, there are possible side-channel attacks

0 Generally, these are attacks on implementations of
a cipher on hardware or software systems that
inadvertently leak datq, e.g.

o Timing information (how long does an encryption take)

0 Cache and memory content (> HeartBleed)



Timing Attacks

0 Here the attacker attempts to compromise o

cryptosystem by analysing the time taken to execute
a cryptographic algorithm

0 Every logical operation in a computer takes time to
execute, and the time can differ based on the input

0 With precise measurements of the time for each

operation, an attacker can work backwards to the
input



Example: Insecure String Comparison

‘Wikiﬁediqz
5o

0 Spot the difference?

bool insecureStringCompare(const void *a, const void *b, size t length) {
const char *ca = a, *cb = b;
for (size t i = 8; i < length; i++)
if (ca[i] != cb[i])}
return false;
return true;

}
versus

bool constantTimeStringCompare(const void *a, const void *b, size t length) {
const char *ca = a, *cb = b;
bool result = true;
for (size t 1 = 8; 1 < length; i++)
result &= ca[i] == cb[i];
return result;

}

0 Note that many such functions in normal (rather than
crypto-) libraries are unsafe

0 Example memcpy() as used in C




Timing Attacks
N

0 In principal, timing attacks can be performed

O remotely (e.g. a client measures the response time of a
server that encrypts a message)

O locally (i.e. in the host machine itself)

0 Remote timing attacks are not practical, as variable OS
and network latencies effect any measurement

0 Local attacks are better, but require the exploit to be
installed on the host under attack

0 Saying this, many modern CPUs have built-in hardware
instructions for AES, which protect against timing-related
side-channel attacks



FYIl: More Side-Channel Attacks

0 Transient execution CPU vulnerabilities are
vulnerabilities in a computer system in which a
speculative execution optimisation implemented in o

microprocessor is exploited to leak secret data to an
unauthorized party

O Example Meltdown and Spectre attack

0 In cache timing aftacks an attacker process
deliberately causes page faults and /or cache misses in

the target process, and monitors the resulting changes in
access times

O This can be done despite both processes being otherwise
isolated



N
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Lecture Overview
N

0 This slide decks covers the following topics:

o Stream Ciphers and their implementation in
m LFSR
®m NLFSR
m RC4

O Pseudorandom number generation principles



Recap: Block Ciphers versus

Stream Cighers
]

O In a block cipher the data (e.g. text, video, or a network
chke’r) to be encrzp’red is broken into blocks M1, M2, etc. of K
its length, each of which is then encrypted

O The encryption process is like a substitution on very big
characters — 64 bits or more

M1 M2 M3 Mn

S
PeaT

Cn

L]

.

.
™

encoding

decoding

0 In contrast, a stream cipher is a symmetric key cipher where
plaintext digits are combined with o pseudordnd%m cipher
digit stream (the keystream)

0 Normally,

O stream ciphers only process one bit or one byte at a time
O the combining operation is an exclusive-or (XOR)



Stream Ciphers

0 Stream ciphers typically provide a (pseudo) random stream key generator
that produces a pseudo-random digit sequence s; (i=1, 2, ...)

0 This stream is XORed dlgl’r by- d|8|’r with the plcun’rex’r X:

0 The plaintext stream can be recovered by reapplying the XOR operation
0 In modern stream ciphers, a digit is one bit (or one byte 2 later)

0 A random stream key completely destroys any statistically properties in
the plaintext message

O For a perfectly random keystream s., each y. has a 50% chance of being O or 1
0 But how can a pseudo-random sequence s; be generated?

' X; Si Yi

3 WA Vi insecure channel i >.\', 0 1 1
<L/ (e.g., Internet) 1 0 1

1 1 0




Stream Cipher Performance
B

0 Since an XOR operation of a single bit or byte can be done in
a single CPU cycle,

O the code size and complexity of a stream cipher mainly depends
on the code size and complexity of the random number generator

O the speed of a stream cipher mainly depends on the speed of the
random number generator

0 For comparison (based on some Intel Pentium architecture):

Cipher Key length Mbit/s

DES o6 36.95

3DES 112 13.32

AES 128 51.19

RC4 (stream cipher) (choosable) 211.34

0 Size and speed make stream ciphers very suitable for
resource constrained devices (e.g., mobile phones, loT devices)



One-Time Pad

0 The OTP is an encryption requires the use of a single-use pre-shared
key that is equal to the size of the message being encrypted

0 For the resulting ciphertext to be impossible to decrypt, the key
must...

O be at least as long as the plaintext (think of Vigenére and its weakness)
O be

® random (uniformly distributed in the set of all possible keys and independent of
the plaintext)

m entirely samgled from a non-algorithmic, chaotic source such as a hardware
random number generator

® pattern-less

O never be reused in whole or in part (Coincidence counting -> next slide)
O be kept completely secret by the communicating parties

0 OTPs are not practical for practical reasons, therefore pseudo-
random generators (PRG) are used

0 PRGs are often based on Linear Feedback Shift Registers (LFSRs)



Example Coincidence Counting
B

0 Coincidence counting allows predicting the length of the key of a stream cipher, by
comparing the ciphertext against itself with different offsets

0 Assume ciphertext CXEKCWCOZKUCAYZEKW that has been encoded using a
stream cipher with an unknown key

0 Count the number of identical characters (matches) using different displacements of
ciphertext:

O Displacement = 1

CXEKCWCOZKUCAYZEKW
CXEKCWCOZKUCAYZEKW

Matches: O
o Displacement = 2

CXEKCWCOZKUCAYZEKW
CXEKCWCOZKUCAYZEKW

Matches: 1
o Displacement = 3

CXEKCWCOZKUCAYZEKW
CXEKCWCOZKUCAYZEKW

Matches: O



Example Coincidence Counting

0 If you line up the ciphertext with itself displaced by k (= key length) characters,
then you get a match in the ciphertext (offset by k places) if there is a match in the
plaintext (offset by k places)

O With the non-uniformity of the frequency distribution of English letters there's about a
6% chance that those two positions have the same letter (the index of coincidence)

0 In contrast, when you line up the ciphertext using a different displacement, the
index of coincidence is much smaller, i.e., 1/256, if ciphertexts are bytes

0 By counting the displacement over a long ciphertext stream, k can be determined

Displacement
O —-— N W AN U o N ®© ©

o
N
N

6 8 10 12
HMatches



Linear Feedback Shift Reqgisters

(LFSR)
N s

0 A LFSR consists of a binary shift register of some length along with a
linear feedback function (LFF) that operates on some of those bits

O The most commonly used LFF is the XOR operation
0 To get started the register is preset with a secret initialisation vector
0 Each time a bit is needed,

O a new bit is formed from the linear feedback function

o all bits are shifted by one position (shifted right in the example below) with the
new bit being shifted in

0 The bit shifted out is used as the (pseudo-random) output of the LFSR

0 A well-designed n-bit LFSR generates a pseudo-random sequence whose
length correlates to n

—P»| b32|b31 b7 | b6 | b5 | b4 | b3 | b2 | b1 —P»
Output
Bit




Example for an 8-Bit LFSR

O O O O o o o o O

Initialisation vector: 10100110 (B7 BO)
Feedback Function: B, XOR B, XOR B,
Right shift after each cycle (B, shifted out)

lteration O: 10100110

lteration 1: 01010011 >> O
lteration 2: 00101001 »>> 1
lteration 3: 00010100 >> 1
lteration 4: 10001010 >> 0O



Example VolP Encoding using a Stream
Cipher

e = e = = — = — — — o — e — e —
Sender Metwork Receiver

Sound Card

NIC

Bitwise Bitwise
encoding decoding



Stream Ciphers in Practice
I

0 In practice, one key is used to encrypt many messages
O Example: Wireless communication
O Solution: Use Initial vectors (1V)
0 E. [M] = [IV, M @ PRNG(key || IV)]
m |V is sent in clear to receiver
m |V needs integrity protection, but not confidentiality protection

® |V ensures that key streams do not repeat, but does not increase cost
of brute-force attacks

® Without key, knowing IV still cannot decrypt

O Need to ensure that IV never repeats! How?



Example for a 16-bit LFSR written in C
N

#include <stdint.h>
#include <stdio.h>
int main(void) {
vint16_t start_state = OxACE1u; /* Any non-zero start state will work. */
vint16_t Ifsr = start_state;
uint16_t bit, input, period = 0;
printf(“Enter LFSR IV as integer: ”); scanf(“%d”, &input);
if (input > 0) {
start_state = input;
Ifsr = start_state;
}
do
{ /*LFF:B15 XOR B13 XOR B12 XOR B10 */
bit = ((Ifsr >> 0) A (Ifsr >> 2) A (Ifsr >> 3) A (Ifsr >> 5)) & 1y;
Ifsr = (Ifsr >> 1) | (bit << 15);
printf(“%d”, bit);
++period;
} while (Ifsr 1= start_state);
printf(“\nPeriod of output sequence: %d \n”, period);

return O;



What is the Maximum Sequence Length

of a single LFSR?
n_

0 Consider a single n-bit LFSR with some feedback function
Each bit that is shifted out is intrinsically linked to the content of the LFSR

Each shift operation maps the register content to another (different) pattern,
as seen in the example, resulting in another bit shifted out

0 An n-bit LFSR allows for 2" different register content variations, with each
variation pushing out a O or a 1

0 Therefore, the longest cycle of non-repeating patterns is
2" — 1 iterations, with 2" the maximum length of the sequence
O Think of a 1-bit LFSR (n = 1):
m There are 2 different LFSR contents (“0” or “1”) possible
® The longest possible patterns are “10” or “0O1”; both have a length of 2"
m It just takes one iteration (2™') to reach all possible register contents (1 2 0 or 0 2 1)
0 However,
O poorly designed LFSR may result in cycles that are shorter

O the Index of Coincidence problem also applies to LFSR (and in fact to all stream
ciphers)



The Combined LFSR

0 A combined LFSR uses multiple LFSR in parallel, and combines
their respective outputs to generate a key stream

0 They work well on resource-constrained devices too

0 Example: A5/1, which was used for GSM voice communication:

0 The Global System for Mobile Communications (GSM) was a mobile
phone standard back in the 1990s

o In GSM, digitised phone conversations are sent as sequences of
frames

0 One frame is sent every 4.6 milliseconds and is 228 bits in length
® Voice samples are collected / digitised over 4.6 milliseconds and send in a block

o A5/1 is a combined LFSR-based algorithm that is used to produce
228 bits of key stream which is XORed with the frame

O It is initialised using a 64-bit key



Example A5/1

S =
0 3 independent LFSRs:

o LFSR 1
= 19 bits gief | i3 8 0
m LFF: B18 XORB17 XOR B16 XOR B13 |— i‘ (—‘
o LFSR 2: =D
m 22 bits 4
= LFF: B21 XOR B20 i 1g ol
o LFSR 3: Li
m 23 bits vy
m LFF: B22 XOR B21 XOR B20 XOR B7 i =TT .
0 The output bit is the XORed [
output of all 3 LFSRs B3 B3
L RN L

0 A LFSR is only shifted to the left,
if their clocking bit (B8, B10, and
B10 respectively) matches the
output bit;
otherwise, there is no shift, and
the same output bit value is used
again in the next cycle



Non-Linear Feedback Shift Registers

‘NLFSR:
e

0 NLFSR contain AND gates as well as XOR gates in
their feedback function

0 Example Trivium: A, B and C are three shift registers
with bit lengths of 93, 84 and 111 bits respectively

| S

_.éa 1 A 73 5 |9:| E] (] SR
: —
é_‘ | B i 75| |s: 5354 - {
& THR—-
| C £ &7 sl 111 1

(1=




Example for a 16-bit NLFSR in C
L, [ e

#include <stdint.h>
#include <stdio.h>
int main(void)
{
vint16_t start_state = OxACE1u; /* Any non-zero start state will work. */
uint16_t Ifsr = start_state;
uint16é_t bit, period = 0;
do
{ /*FBF:B15 XORB13 XORB12 XORB10 XOR (B2 and B1)*/
bit = ((ifsr >> 0) A (Ifsr >> 2) A (Ifsr >> 3) A (Ifsr >> 5) A ((Ifsr >> 13) & (Ifsr >> 14))) & 1y;
Ifsr = (Ifsr >> 1) | (bit << 15);
printf(“%d”, bit)
++period;
} while (Ifsr 1= start_state);
printf(“\nPeriod of output sequence: %d \n”, period);

return O;



Pseudo-Random Number

generation: RC4
]

0 Instead of single bits, a generator algorithm can also
produce one byte (or one word) at a time

0 RC4 is an example for such an algorithm, it returns one
pseudorandom byte at a time

0 It was designed by Ron Rivest of RSA Security in 1987

0 RC4 was initially a trade secret, but in 1994 o
description of it was anonymously posted on the Internet

0 RC4 consists of a
0 key-scheduling algorithm (KSA) and o
O pseudo-random generation algorithm (PRGA)



RC4: The Key-Scheduling Algorithm

(KSA)
S s

0 The KSA requires a key (stored in key|]) of length
keylength

o keylength is somewhere between 1 and 256

0 Using the keyword, a 256-byte long permutation
vector S|] is generated:

for 1 from 0 to 255
~ Sli] = 1;
J = 0;
for 1 from 0 to 255
j := (j +S[i] + keyli mod keylength])
mod 256 ;
swap (S[1], S[3]);



RC4: The Pseudo-Random Generation
Algorithm (PRGA)

]
0 PRGA returns one byte at a time:
1 := 0;
J = 0;

while GeneratingOutput:
i := (1 + 1) mod 256;
j := (j +S[i]) mod 256;
swap (S[1i], S[jl);
output S[(S[i] + S[j]) mod 256]:




Security of RC4

0 Obviously not an LFSR-based design, but a more
general pseudo-random number generator design

0 Can also be efficiently implemented in software

O Very compact algorithm

0 However, it is not deemed safe
Gnymore! 3 Security

3.1 Roos's biases and key reconstruction from permutation
3.2 Biased outputs of the RC4

3.3 Fluhrer, Mantin and Shamir attack

3.4 Klein's attack

3.5 Combinatorial problem

3.6 Royal Holloway attack

3.7 Bar-mitzvah attack

3.8 NOMORE attack




Background: Pseudorandom Number

SURE.

Generators
24|
O Cl‘ypfogl‘dphiCCI”y s’rrong pseudorqndom number generaﬁon
i iall [ TOUR OF ACCOUNTING ;
is essential! % NINE NINE f‘,gf) THAT'S THE
OVER HERE B NINE NINE | PROBLEM
WE HAVE OUR % NINE NINE ;| ThaTS WITH RAN-
RANDOM NUMBER :| RANDOM? DOMNESS
GENERATOR. : YOU CAN
§ NEVER BE
3

I &
10}as/s(® 2001 United F
—
Lo

0 Pseudorandom number generators (PRNG) are used in a
variety of cryptographic and security applications, including

O Stream cipher encryption =2 802.11 WEP
O Encryption keys (both for symmetric and public key algorithms)



Obvious Requirements for Random

Number Generators
T

0 Assume we toss a fair coin or throw a fair dice multiple
times. We expect the following from the resulting sequence:
0 Randomness, i.e. uniform distribution

O The distribution of values in the sequence (e.g. “head or tail”)
should be uniform; that is, the frequency of occurrence of
possible outputs should be approximately equal

0 Unpredictability, i.e. independence

O Successive members of the sequence are unpredictable; no
subsequence in the sequence can be inferred from the others



Types of Random Generators
N

0 A TRNG takes as input a source that
is effectively random

O The source is often referred to as an
entropy source

O The entropy source is drawn from the
physical environment of the computer,
e.g. a combination of keystroke timing
patterns, CPU temperature changes
and mouse movements

0 A PRNG uses just a seed (e.g. LFSR)

Source of
Lruoe
rando s Seed
Conversion Deterministic
to binary algorithm
Random Pseudorandom
bhit stream hit stream
(a) TRNG () PRNG

TRNG = true random number generator
PRNG = pseudorandom number generator
PRF = pseudorandom function

Context-
specific
Seed  values

— ) |

Deterministic
algorithm

—

value

() PRF

0 A PRF often also takes in a context-specific value, e.g.

O A secure end-to-end communication via TCP/IP may take in the endpoints’ IP addresses

0 However, PRNG and PRF are based on deterministic algorithms, therefore the “P”




Formal Requirements for

Pseudorandom Generators
=
0 Randomness
The generated bit stream must “appear” random even though it is
deterministic
This can be validated by applying a sequence of tests to the generator,
which determine (among others) the following characteristics:

O Uniformity: At any point in the generation of a sequence of random or
pseudorandom bits, the occurrence of a zero or one is equally likely;
The expected number of zeros (or ones) is n/2, with n being the
sequence length

O Scalability: Any test applicable to a sequence can also be applied to
sub-sequences extracted at random; if a sequence is random, then any
such extracted subsequence should also be random

O Consistency: The behavior of a generator must be consistent across
many starting values (seeds); it is inadequate to test a PRNG based on
the output from a single seed



Formal Requirements for

Pseudorandom Generators
N

0 Unpredictability
A stream of pseudorandom numbers should exhibit two forms of
unpredictability

O Forward unpredictability: If the seed is unknown, the next output bit in the
sequence should be unpredictable in spite of any knowledge of previous
bits in the sequence

O Backward unpredictability: It should not be feasible to determine the seed
from knowledge of any generated values; no correlation between a seed
and any value generated from that seed should be evident; each element
of the sequence should appear to be the outcome of an independent
random event whose probability is 0.5



NIST SP 800-22

0 The National Institute of Standards and Technology
(NIST) published the above report, “A Statistical Test
Suite for Random and Pseudorandom Number Generators
for Cryptographic Applications”

O It lists 15 separate tests of randomness and
unpredictability

0 https://qgithub.com /terrillmoore /NIST-Statistical-Test-
Suite

A Statistical Test Suite for
Random and Pseudorandom
Number Generators for

Cryptographic Applications



https://github.com/terrillmoore/NIST-Statistical-Test-Suite
https://github.com/terrillmoore/NIST-Statistical-Test-Suite
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Lecture Overview
N

0 In the previous lectures we have covered block and
stream ciphers that provide data confidentiality

0 In this slide deck we focus on data integrity, i.e.,
“Guarding against improper information modification or
destruction, and includes ensuring information non-
repudiation and authenticity”

0 Such integrity protection can be provided via
0 Message authentication codes

0 Hash functions



Recap: Types of Security Attacks on

Information in Transit
e

0 Integrity checks are particularly

important for data in transit 0 0
0 Here we need to consider the o o
fO”OWing QCiive Cmd pQSSive QH'QCkS: (a) Normal flow

O Interception - of info-traffic flow,

attacks confidentiality O—'| O O é) ’O

O Interruption - of service,
attacks availability

(b) Interruption (c) Interception

O Modification - of info, attacks integrity

o Fabrication - of info, attacks

authentication O g O O

0 In all these scenarios the attacker is a

1 H . (d) Modificati (e) Fabricati
“Man-in-the-Middle” (MitM) ifation ¢ Fabriction




Recap: Passive Attacks
N

0 Passive attacks are in the nature of eavesdropping
or the monitoring of transmissions:

O Release of plaintext message content

O Traffic analysis of encrypted data communication

m Allows to analyse patterns of message exchange (sender,
receiver, timing) rather than content

0 Tools like Wireshark allow for passive attacks



Recap: Active Attacks
N

0 Active attacks involve the modification or the creation
of data in a stream:

0 Masquerade

m Attacker pretends to be a legitimate sender or receiver of
data

O Replay

m Attacker retransmits (encrypted) data which has been previously
captured via eavesdropping

o Modification of message content

m Attacker intercepts a message in transit, modifies it and
forwards it to the receiver

0 Denial of Service (DoS)
m Attacker Inhibits the normal use of communication services



Attack Scenario
B

0 Your company sends the software patch as email attachment to all
the clients

0 The patch is encrypted using a secret key, which is pairwise shared
with your clients
0 However, an attacker can

O intercept these emails in transit, changes randomly a few bytes of the
encrypted executable and forwards them to their destination, or

o0 forge a similar looking email with some random file attached that claims
to be a bug fix

0 Your clients replace the executable on their local machines, which
of course won’t work and bring the entire factory floor to a halt
0 -2 financial losses for your clients, huge reputational loss for your
company!

0 Therefore, your clients need some mechanism to validate the
origin of the email, as well as the integrity of its content



Case Study 2: Weakness of Mode

Block Cipher Modes

0 In CBC, the IV is tagged to an encrypted message as plaintext (thereby allowing
the receiver to decrypt the message), a MitM attacker can do changes in transit.

Here:
O Flipping the i IV-bit (1) flips also the i plaintext bit (2)

O Flipping a ciphertext bit (3) will change the entire plaintext block (5), and the

corresponding bit of the next plaintext block (4)

0 Other modes show similar weaknesses, i.e. changing one bit in a single block of an
encrypted message (in transit) will corrupt the correct decoding of a following

blocks

0 The receiver needs the ability to validate the integrity of the received message

(blocks) !

Ciphertext g Cipheraxt
I ITTTTJTITTIITT]

Kay

¢

Plaintext 5

aE
Plaintext E

Ciphertext

K AES K AES
By decryption ey decryption

&

B

4
ITTTTTT]

e

Plaintaxt




Message Authentication Code (MAC)

0 Message authentication = message integrity [+ source
authentication]

0 A MAC (also called authentication tag, fingerprint, or
cryptographic checksum), is a short piece of information used
for authenticating and integrity-checking a message

0 A MAC condenses a variable-length message M using a secret
key K and some algorithm C to a fixed-sized authenticator:

MAC = C (M)
0 After its calculation, the MAC is appended to the message
before it is sent

0 Note that the message:
O can have any length
O is not automatically encrypted!



Typical Use of a MAC (Wikipedia)

0 If both MACs are identical, the receiver knows, that
O the message was not altered in transit,
O the message was sent by the alleged sender, and

o0 if the message includes a sequence number, that the sequence
was not altered

0 The term CMAC is used for

q MAC thqf iS CGICUIGTed MESSAGE MESSAGE
using a (block) cipher i\ /’ |
o This contrasts to a HMAC, ey (0> [igorithm T Mac] T Y * ~*|gerithm
. el
where a hash function (later) | \ |
. [IMAC| [MAC|—»> +[MAC
and a secret key is used Had mad é} mad
MAC: If the same MAC is found: then
Message Authentication Code itrr:ti Tﬁssfr?scte?jumentic and
Else(h::J soinething is not right.




Typical CMAC Implementation

Time =1 Time =2 Time=~N-1 Time=N
Dy
(64 bhits)

D> Dyv_j

DES . DES ”
K St K L K DES
(56 bits) Encrypt Encrypt ¢ e Encrypt
h J 4 ' Y h 4
0 0 | Oy Oy
(64 bits) 2 L. N-1 N

——

DAC
(16 to 64 bits)

0 Generally:

O Any modern block cipher may be used (i.e., it’s only DES in the example above)
Message padding shall apply as seen before
MAC = C (M), where K is secret key and C is a symmetric block cipher (DES above)
MAC guarantees message integrity AND source authentication

This construction is also called Encrypt-then-MAC



Message Authentication Benefits
S =

0 In summary there are four types of attacks on data in transit, which
are addressed by message authentication:
O Masquerade: insertion of messages into the network from a fraudulent source
o Content modification
O Sequence modification: change the order of messages as they arrive
o Timing modification: delete or repeat messages

0 Note that the above may require a unique (i.e. incremented) sequence
number in every message

0 Therefore, message authentication is concerned with:
O Protecting the integrity of a message
O Validating identity of originator
O Validating sequencing and timeliness

0 Non-repudiation of origin (dispute resolution)



Example: Authentication of TCP/IP

Packets
N

0 In TCP/IP data communication, a MAC cannot only
cover the payload (i.e., the TCP Data field), but also

the TCP header, as well as the non-modifiable fields of
the IP header

ETHEEMET FRAME

Cvest hatich Saoutce
elhethet
addbess addre=s

/ 1P FPACKET

Frotacal Crata

Checksum

\

Length

Protacol
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1P address

Desti nation
1P address

Crata

/T':E| FACKET

\

Sootee TCP
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Basic Use Cases of CMACs
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Case Study CMAC

0 Assume you operate a distributed weather station with
battery-operated sensors located across Ireland

0 You use “public” networks (i.e. Wi-Fi, Internet) to collect
data and send it for processing to a central hub in
Galway

0 Which basic uses of a CMAC as shown in the previous
slide would be most appropriate?

O In your suggestion consider data privacy concerns and
energy budget



The AES-CBC-HMAC Mode

0 An example on how to combine

authentication with a block CCLLLLITTTT LTI L
Clph er mode Initialization vEctoE % 45
0 Based on CBC mode (top), but ey —| Dlock cipher | |y | blockcipher | | g | block cipher
with additional authentication — — |
(bottom) e ohenent e ohenet T Cohenext |
0 Here the HMAC takes a single Cipher Block Chaining (CBC) mode encryption

variable length input, i.e. the
concatenation of IV + ciphertext
+ HMAC key, and creates a fix o MACKey
length authentication key

O The diagram is misleading as it shows two
separate inputs

0 How many secret keys would this " S—— authenticaton tag
Scheme require? LITTTTTTTTITTTITT] COTTTTTT I T T I T AT I T I T T AT T | LTI T I T T ITTIT70d




Block Cipher Mode of Operation: The

Galois ‘ Counter Mode
s

0 What are weaknesses of the mode below and the AES-
CBC-HMAC Mode (previous slide), i.e.
o0 Can it be parallelised?
Ols a 16- to 64-bit DAC sufficient?

Time =1 Time =2 Time=N-1 Time=N

)]
(64 b]itsl " DA-1 Dy

(64 bits)

DAC
(16 to 64 bits)



Block Cipher Mode of Operation: The
Galois / Counter Mode

0 Extension of
counter mode

0 Recall advantages
of this mode?

Nonce Counter Nonce Counter Nonce Counter
c58hbcf35. elelelelelelele] c58bcf35. olelelelelelenl c58bcf35. [olelelelelele)
OTTTTTITTTT OTTTTTITTTT1 TTTTTTTTITT
block cipher block cipher block cipher
Key encryption Key encryption Key encryption
Plaintext ? Plaintext ? Plaintext ?
OTTTTTTTITT OTTTTTITTTT TTTTITTTTT7
OTTTTTITTTT OTTTTTITTTT1 TITTTTTTITT
Ciphertext Ciphertext Ciphertext

Counter (CTR) mode encryption

Nonce Counter Nonce Counter Nonce Counter
c58bcf35. elelelelelelele] c58bcf35. [eleleelclelenl c58bcf35. [eleleleleleler
LITITIITTIT LITITIITITT CITITTITTIT
block cipher block cipher block cipher
Key encryption Key encryption Key encryption
Ciphertext—n? Ciphertext—:-% Ciphertext ———=
I TTTITTITT I TTTTITTIT T TITITTITTT
T TTTITITT TTTTTITTIT I TTTITTIT1T
Plaintext Plaintext Plaintext

Counter (CTR) mode decryption




Block Cipher Mode of Operation: The

Galois ‘ Counter Mode
i

0 GCM provides both data authenticity (integrity) and confidentiality

0 It belongs to the class of authenticated encryption with associated data
(AEAD) methods, i.e. it takes as an input

O an initialisation vector IV
O a single secret key K,
O the plaintext P, and
O some associated data AD
0 It encrypts the plaintext (similar to counter mode) using the key to produce

ciphertext C, and computes an authentication tag T from the ciphertext
and the associated data (which remain unencrypted)

0 A recipient with knowledge of K, upon reception of AD, C and T, can
decrypt the ciphertext to recover the plaintext P and can check the tag T
to ensure that neither ciphertext nor associated data were tampered with

0 GCM uses a block cipher with block size 128 bits (i.e., AES-128), and uses
arithmetic in the Galois field GF(2'28) to compute the authentication tag

o That's modular arithmetic with a modulus of 2128



Features of AEAD

key OxXBES6E. ..

AN

L
& a

A key DXBBEE...
plaintext "hellc" AEAD
ad “from alice” encrypt

ciphertext+tag 0x&eala. ..

1. Alice and Bob meet in real life to agree on a key.

1. Alice can now use it to encrypt messages with
an AEAD algorithm and the symmetric key.
She can also add some optional associated data.

o
« = = ciphertext+tag D:-:-Eeﬂe...—l*'

ﬂ *— ciphertext+tag 0xTa0e...

ﬁ key 0xXB83866...
ciphertext+tag ox7zoe... AEAD
ad "from alice” decrypt

errer

3. The ciphertext and tag are sent to Bob.
An observer on the way intercepts them
and modifies the ciphertext.

4. Bob uses the AEAD decryption algorithm on
the modified ciphertext with the same key.
The decryption falls.




Block Cipher Mode of Operation: The

Galois ‘ Counter Mode
20

0 A 96-bit IV is concatenated witha [ v ]
32-bit counter (initialised with 0), - _ - _ __
e (IV<<32) || C [ Comero 1~ )—»|c1 (e )—{ ¢ |

o Eyis AES with a 128 — 256 bit key (& | (-

(AES-128, AES-192 or AES-256)

_

k.

WU
"

0 mult, is a hash-function (later) that =
produces a 128-bit (hash) output [Cipnertori 1 ] Clphariext 2
O Auth_Data_1 has a variable A
N

length (but its hash is 128-bit

wide) (e ) [ }—

0 len(A) and and len(C) are 64-bit

, |E\_ D
@k

values that are the lengths (in [ Auth Data 1 |
bytes) of Auth_Data_1 and all :
ciphertext blocks respectively [ o
0 € is the bitwise XOR function P
W

Auth Tag
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Hash Functions and HMAC

0 A hash function produces a fixed size hash code (i.e. hash
or fingerprint) based on a variable size input message

O A hash function
® does not need a key
W guarantees the integrity of the message

0 However, since a hash function is public and is not keyed,
a hash value may have to be protected (i.e., encrypted)

o0 A HMAC (hash-based message authentication code) is a
specific type of MAC involving a cryptographic hash function
and a secret cryptographic key

0 A HMAC verifies both message integrity and its authenticity
0 Modern hash functions calculate 256 - 512-bit hashes



Basic Uses of HMACs
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Basic Uses of HMACSs
e

0 In scenarios (e) and (f) a symmetric secret seed S is used, which is
shared between sender and receiver

0 S is used to authenticate all messages exchanged between both
endpoints

0 Scenario (f) also uses a symmetric key K for confidentiality, which is
independent from S

M
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g Compare
I
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(e}
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Case Study HMAC

0 Assume you operate a distributed weather station
with battery-operated sensors located across Ireland

0 You use “public” networks (i.e. Wi-Fi, Internet) to
collect data and send it for processing to a central
hub in Galway

0 Which basic uses of a Hash function as shown in the
previous slides would be most appropriate and
efficient?



Requirements for a Hash Function H(x)
B

0 One-way property (also called pre-image resistance):
For a given hash function H and a hash value h it is
infeasible to find x such that H(x) = h

o l.e., it is virtually impossible to generate a message given a
hash

0 Such a situation is also called a hash collision
0 Why is the one-way property important?

0 See Figure (e): An opponent could intercept M | | H(M, S),
create inputs M | | X (with some random value X), until a hash
collision is found (i.e. )



Requirements for a Hash Function H(x)

S
0 Weak collision resistance (also called second pre-image
resistance):

For a given hash function H and a known input X it is infeasible
to find another ing;u’r v with

vy 1= x and H(x) = H(y)

0 Why is the weak collision resistance important?

O See Figure (b): An opponent could
m calculate h (M) (as both h and M are known)
m find an alternate message with the same hash code (a hash collision), and
® send it together with the encrypted (original) hash code to the receiver

O The receiver would not be able to realise that the original message
had been tampered with

m Think of the previous software patch example



Requirements for a Hash Function H(x)
B

0 Strong collision resistance (also called collision resistance):
It is computational infeasible to find any pair of inputs (i.e.,
messages) (x, y) withH(x) = H(y)

0 Why is the strong collision resistance important?

O Again, see Figure (b), but this time the attack vector is different:

® Rather than intercepting a hashed message in transit, the attacker presents
the signing authority a crafted authentic message that has the same hash
as a fraudulent message

m Generating such a crafted message is accommodated by the Birthday
Paradox discussed earlier



Birthday Paradox Attack

0 Rather than thinking of birthdays, we consider messages and their hashes

0 In the BPA the attacker does not intercept a hashed message in transit, but
presents the signing authority a crafted authentic message that has the
same hash as a fraudulent message (HMAC use case b)

0 For a hash value that is m-bit long, the attacker creates a large number
(i.e., in the order of 29°M) of variations of:
O correct messages
0 fraudulent replacement messages
0 The birthday paradox will make it more likely to find among both sets a
correct message M. . that has the same hash as a fraudulent message M
O M, is presented to the signing authority, who
O hashes the message

O encrypt the hash using the secret key (only known to the signing authority and the
receiver)

O concatenate message and hash
0 Before the message is sent off, the attacker replaces M, . with

0 The receiver gets M but will assume that it was signed (and send) by the
signing authority

nasty

nasty’



Birthday Paradox

0 What is the minimum value k such that the probability is
greater than 0. 5 that at least 2 people in a group of k

people have the same birthday, assuming that a year
has 365 days?

0 Intuitively someone would assume that

k =365 / 2 = 183

0 Probability theory shows, that k = 23 is sufficient!



Birthday Paradox
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BPA — How to create many
Variations of a Message

Dear Anthony,

{Thls let?e¥ 15} to introduce {you to} {Mr.} Alfred {P']
I am writing to you == —

0 The example gives o
37

Barton, the { new } {ChlEf

newly appointed| |senior

[ ] [ ]
t th uropean area will take the
VArIATIONS  wertem Pl favision) - vefias eaka) over (2]

P all . X watches and jewellery
responsibility for {the whole of} our interests in {jewellery and watches}

} jewellery buyer for {our}

the

letter in

area

in the { .
region

} . Dlease {afford} him { every may need}

give all the} help he { needs

to {seek cut

modern
find } the most {

. top
up to date} lines for the {

high} end of the

empowered
authorized

samples

market. He is .
specimens

} to receive on our behalf { } of the

{lateSt} {natch and jewellery} products, { up } to a Lnllmlt }

newast jewellery and watch subject aximum
) Carry . . letter
of ten thousand dollars. He will {hold} a signed copy of this {document}
f of identity. An ord ith his signat hich is |aPPended
as procf of identity. order wi is signature, which is § vv . o
authorizes } above
21lows yvou to charge the cost to this company at the head office

fully

address. We { } expect that our {level

of orders will increase in
volume

trust

following
} yvear and {hope

the { next

} that the new appointment will ﬁ)be }
rove

{advantageous

an advantage} to both our companies.



Case Study: Circulating Software

using the BPA
]

O

This is a typical insider attack (here conducted by Grumpy George
— GG — a disgruntled lead engineer in your team)

Again, your team develops an urgent software patch, which is
hashed

The 32-bit hash value is encoded using a symmetric key K, which is
shared with your client

The key is only known to you and you client, but not to GG

Software |
patch

Client validates

Your authenticator
(encrypted hash)

software patch



Case Study: Circulating Software

_ via a Birthdax Paradox Attack

0 GG as the lead engineer creates a large number of binary code versions for
O software patches (to be presented to quality team)
0 malicious software patches (to be circulated)

0 How can GG create > 2 * 216 different source code variations?

0 GG introduces in both source code files a new constant variable (e.g. long int) that is
not otherwise used, e.g.

const unsigned long int var = 12; // possible values are 0 ... 2°4-1

O GG then creates different source codes by systematically incrementing var
m GG is able to create 2°“ different versions of both programs if needs to be

0 GG compiles each of those software versions and calculates their hash

0 GG looks for a hash collision, i.e. a software patch and a malicious patch
that have the same hash code

0 GG present this software patch to quality team, who sign it using key K

0 GG replaces the software with the malicious patch before sending it to the
client



Hash Function Execution (Example

HAVALI
—

0 HAVAL creates a 256-bit fingerprint, for example:

0 "The quick brown fox jumps over the lazy dog*
will be translated into the (256 bit) hash
“b89c551cdfe2e0b6dbd4cea2belbc7d557416c58ebb4d07cb
c94e49f710c55be4”

O “The quick brown fox jumps over the lazy cog”
will be translated into the hash

“60983bb8c8f49ad3bea29899b78cd741f4c96e911bbc272e
5550a4f195a4077e”

0 l.e. very similar inputs result in totally different outputs,
there is no correlation between a hash and its original
input



A naive Hash Function based on XOR
I

0 Consider the XOR function @D:

00 The input is broken into m blocks

0 For the resulting hash value C, each bit C, is calculated

via
C.=b,®b, Db D... b,
Where

0 m = the number of n-bit blocks and

EX-OR Gate Truth Table
O b, is the i bit of the ™ block

A@B
o

~ QO
~ QO

1
1
o




A naive Hash Function based on
XOR

Bit 1 Bit 2 Bit n
Block 1 by, b, b1
Block 2 b, b, b,
Block m oI Do D
Hash code C, C, C,




A naive Hash Function based
on XOR

¢ Consider the ASCll-encoded input “ABC” and a hash function H that
calculates an 8-bit hash h:
» ASCII(A) = 65,, = 01000001,
= ASCII(B) = 66,, = 01000010,
m ASCII(C) = 67,,= 01000011,

gl B8 | Bit7 | Bite | Birs | Bitd | Bit3 | Bit2|Bitl
A 0 1 0 0 0 0 0 1

B o) 1 o) 0 o) o) 1 0
C o) 1 o) 0 o) o) 1 1
h 0] 1 0 0] 0 0 0 0

H(“ABC”) — h — 64]0 ) “@”



A naive Hash Function based
on XOR

¢ Does this algorithm fulfil the requirements of a hash function:
m One-way property?

B Weak collision resistance?

| | Bit8 | Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit]
A 0 ] 0 0 0 0 0 1

B 0 ]

C 0 ]

h 0 1

H(“ABC”) = 64,, = “@”

o) 0 0 o) 1 0
0 0 o) 0 1 1
0] 0 0] 0 0 0



Example: 8-bit Hash Function

based on XOR
e

¢ Fulfils requirements of hash function?
m One-way property? Certainly not!

m Weak collision resistance? H(“ABC”) = H*@@@") = H'@Q@QQ@QQ@Q@Q@") =
| Bit8 | Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bitl
“@" 0 1 0 0 0 0 0] 0

“@“ 0 ] 0 0 0 0 0 0
“@“ 0 ] 0 0 0 0 0 0
h 0 1 0 0 0 0 0 0

H@@@") = 64,0 = *@”



A naive Hash Function based on rotating

XOR
]

-~ 16 bits L

0 Initially set the n-bit hash value to O

0 Process each successive n-bit block
a follows: i

]

140

o Rotate the current hash value to the
left by one bit

0 XOR the block into the hash value

—

(I EEEEEEEEEEEEEN [ HINEEEEEEEEEEEEEN
XOR with 1-bit rotation to the right XOMR of every 16-bit block

A




Example: Simple Hash Function based on

Rotating XOR
N

0 Consider “ABCD”

o “AB” = 01000010 01000011,

o “CD” =01000100 01000101,

0 “CD” left-rotated = 10001000 10001010,

0 1 0 0 0
1 1 1
1 1 1

0 0
0 0
0 0

o o o

1 1 1
0 0 0
1 1 1

o o o
o o o

0
0 0
0 1

1
1
0]



Example: Simple Hash Function based on

Rotating XOR
N

- wis— ] Assume a password must be
at least 2 ASCll-encoded
characters long

]

0 Fulfils requirements of hash
Function?

O One-way property?

1 Weak collision resistance?

—

(I EEEEEEEEEEEEEN [ HINEEEEEEEEEEEEEN
XOR with 1-bit rotation to the right XOR of every 16-bit block

A




Examples for Hash Algorithms
S =

0 In order to meet the aforementioned requirements, a hash algorithm
must
O be non-trivial
O calculate long hash values

0 Popular hash functions include:
o MDb5:

® Produces a 128-bit hash value

m Specified as Internet standards (RFC1321)

m Still has some popularity, but unsafe for years (broken via collision attacks)
O SHA (Secure Hash Algorithm) - X:

®m Family of hash functions, designed by NIST & NSA
m SHA-3 (released 2015) produces 224-, 256-, 384- and 512-bits hash values

®m Internet standard

o RIPEMD-160:
m Creates a 160-bit hash value
m Developed in Europe

0 See https://defuse.ca/checksums.htm



https://defuse.ca/checksums.htm

FYI: MD5-An Overview

Padding Message length

(1 to 512 bits) (K mod 264)
-t L S12bits=N 32 bits -
- K bits \\‘7
Message 100..0
512 bits——pt——512 bits—f al——512 bits——p ——512 bits—
& & YL_I

128-hit
digest




FYIl: MD5-Processing of a Single 512 Bit Block (left)

and Elementary MD5 Operation
]

Y C‘b"q
128

A

. /1
Ay Ry Oy I

F, T]1..16], X[i]
16 steps

Ay By Oy In

G, TI17..32]. X 7]
16 steps

X[ k]

Ay By Oy I
H, T[33..48], X[ ai] N
: lﬁst!p,s : J I III

Ay By Oy Iy

L T[49..64], X[ 4i]
16 steps
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FYI: MD5-Table T

T[1]
T[2]
T[2]
T[4]
T[5]
T[]
T[7]
T[2]
T[2]
T [10]
T[11]
T [12]
T[12]
T[14]
T[15]

T[1&]

D7cAR4LTE

ES8CTB756

2420700B

C1BDCEEE

FETCOFAF

4787Ce20

AB3204c513

FD459501

62809808

EB44FTAF

FFFFEEREL

EOBCDTEE

6B901122

FDoB71593

AETO438E

45B40821

T [17]
T [12]
T [19]
T [20]
T [21]
T [22]
T[23]
T [24]
T [25]
T [26]
T [27]
T [28]
T [29]
T [20]
T[21]

T[22]

FE1EZ562

CD40EB240

265EBRE]

E9QE6CTAR

De2F105D

02441453

DER1EGE]L

ETD3IFRBCE

21E1CDES

C33707D6&

FAD50DA7T

455114FED

AO9E3IESOS

FCEFA3FE

&TEFOZD9

ADZR4ACAA

T [23]
T [24]
T [25]
T [26]
T [27]
T[2a]
T[29]
T [40]
T [41]
T [42]
T [43]
T [44]
T [45]
T [46]
T [47]

T[48]

FFEAZ 042

8771Fe81

&00DE122

FDESZ2B0C

L4EBEEER44

4BDECFALSD

F&EB4B& O

EEEFECTO

2B9BTECS

EARTIZ2TRA

D4EF3085

04281D05

Dapb4aD0o3g9

EECBSOES

1FRAZTCFE

C4ACEEEE

T[49]
T[50]
T[51]
T[52]
T[53]
T[54]
T[55]
T[56]
T[57]
T[58]
T[59]
T[&0]
T[61]
T[&2]
T[63]

T[&54d]

Fa202244

432AFF27

LBO423AT

FCO3R039

&55B59C32

BFOCCCoZ2

FFEFF47D

258450D1

aFABTE4AF

FE2CE&EOD

5320143214

4FE081121

FT537E82

ED3AFZ235

2ADTDZER

EBEcD321



FYI: MD5-Primitive Functions and

their Truth Tables
I

Round | Primitive functiong | g(b, c, d)
1 F(b, c, d) (b AND c) OR (NOT b AND d)
2 G(b, c, d) (b AND d) OR (c AND NOT d)
3 H(b, c, d) B EXORcEXORd
4 I(a, b, ) C EXOR (b or NOT d)

b c d F G H |
0 0 0 0 0 0 ]
0 0 | I ( ] 0
0 | 0 0 ] ] 0
0 | | ] 0 0 ]
| 0 0 0 (0 ] ]
| 0 | ( ] 0 ]
| | 0 ] ] 0 0
| | | ] ] ] 0




Non-Cryptographic Hash Functions aka

Checksums
.

0 Checksums are designed to detect bit errors of files or data streams, e.g.
O Hard disk storage errors
O Data transmission errors

0 CRC (Cyclic Redundancy Code) is a well know example

0 Such checksums are too short and vulnerable to brute force attacks, and are not
suitable for cryptographic purposes

20 00 20 VA 3F ZE 20 00 20 20 2A AE 0e oo IP, ARP, etc. 0o 20 20 3A
Destination MAC Address Source MAC Address EtherType FPayload CREC Checksum
MAC Header Data
(14 bytes) {46 - 1500 bytes) (4 bytes)

Emernethg e |l Frame
(64 ta bytes)
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Lecture Overview
I

0 Methods to reverse-engineer hashed passwords
0 Rainbow tables

0 A recap on SQL injection attacks (based on CT417
content), i.e.
o SQL
0 HTTP get / post Methods and PHP
o SQL injection attacks

o0 SQL injection attack mitigation strategies

can be found at the end of this slide deck



Lecture Motivation
I

0 One-way property, weak and strong collision
resistance are fundamental properties of a hash
function

0 These come also into play when we consider
common password storage methods ...

0 ... and approaches to undermine such methods

0 Such approaches are summarised in this slide deck



What is a Password?
N

0 A memorised secret used to confirm the identity of a user

O Typically, an arbitrary string of characters including letters, digits, or
other symbols

O A purely numeric secret is called a personal identification number (PIN)

0 The secret is memorised by a party called the claimant while
the party verifying the identity of the claimant is called the
verifier

0 Claimant and verifier communicate via an authentication
protocol



Claimant and Verifier

i =)




Storing User Passwords
N

0 User passwords at rest (e.g., in database tables)
are hashed instead of being stored in plaintext

0 ldea:

O “KenSentMe!” 2 “7b24afc8bc80e548d66c4e7ff72171c5”
B Note: This token is in hex format, it is128 bit long (32 x 4 bits)

o0 An attacker cannot algorithmically reverse-engineer o
hash function to recover the original password
m Recall hash function properties

0 The verifier does not have a plaintext copy of the
password either



Why is this Form of Password Hash
Management problematic?

s Gz

Consider a webserver that stores user credentials.

A user registration entails the following steps:

1.  The claimant visits the verifier’s landing / login
page using their web browser

2.  The claimant enters and submits their user id and
password

3.  Both are sent to the verifier over the secure
connection

4.  The verifier calculates the hash, and and stores it

together with the user name in the DB table



Server-Side Password Storage

g =)

1. The claimant enters user id and password (i.e., login
details)

2.  Aclient-side (e.g. JS) script calculates the password
hash

3. Userid and hashed password are sent to the verifier

using the secure connection

4, The verifier checks if the transmitted user id and hashed
password against the stored values in the table

5. The verifier notifies the claimant via the authentication
protocol if the authentication was successful



Dictionary-Based Brute-Force Search

0 Assume an attacker retrieves an entire DB table containing user IDs and
hashed passwords

0 Hash functions are one-way functions, so hash values cannot be
transformed back to the original input

0 However, assuming that a user picks a common word or phrase, or a
known password as their own password, a simple dictionary search can
be used to systematically identify a match for a given hash value

O Here the underlying hash function must be known

0 Such dictionaries are based on large word, phrase or password
collections

D@:

O Straight forward process

O Large dictionaries are readily available (next slide)

0 ®:

O Significant computational effort to find match
O No guaranteed result



CrackStation's Password Cracking

Dictionar
.

O https://crackstation

.net /crackstation-
wordlist-password-

cracking-

dictionary.htm

CrackStation's Password Cracking Dictionary

I am releasing CrackStation's main password cracking dictionary (1,493,677,782 words, 15GB) for download.
What's in the list?

The list contains every wordlist, dictionary, and password database leak that I could find on the internet (and I spent a LOT of time looking). It also
contains every word in the Wikipedia databases (pages-articles, retrieved 2010, all languages) as well as lots of books from Project Gutenberg. It
also includes the passwords from some low-profile database breaches that were being sold in the underground years ago.

The format of the list is a standard text file sorted in non-case-sensitive alphabetical order. Lines are separated with a newline "\n" character.

You can test the list without downloading it by giving SHA256 hashes to the free hash cracker. Here's a tool for computing_hashes easily. Here are
the results of cracking LinkedIn's and eHarmony's password hash leaks with the list.

The list is responsible for cracking about 30% of all hashes given to CrackStation's free hash cracker, but that figure should be taken with a grain of
salt because some people try hashes of really weak passwords just to test the service, and others try to crack their hashes with other online hash
crackers before finding CrackStation. Using the list, we were able to crack 49.98% of one customer's set of 373,000 human password hashes to
motivate their move to a better salting scheme.

Download

Note: To download the torrents, you will need a torrent client like Transmission (for Linux and Mac), or uTorrent for Windows.

Torrent (Fast)

GZIP-compressed (level 9). 4.2 GIB compressed. 15 GiB uncompressed.

HTTP Mirror (Slow)

Checksums (crackstation.txt.gz)

MDS: 4748a7270611934a17662446862casf8
SHA1: efa3fsecbfba®3df523418a78871ec59757b6d3f
SHA256: a6dc17d27d@a34f57¢989741acdd485b8aeed5a6e9796dafB8c9435370dc61612


https://crackstation.net/crackstation-wordlist-password-cracking-dictionary.htm
https://crackstation.net/crackstation-wordlist-password-cracking-dictionary.htm
https://crackstation.net/crackstation-wordlist-password-cracking-dictionary.htm
https://crackstation.net/crackstation-wordlist-password-cracking-dictionary.htm
https://crackstation.net/crackstation-wordlist-password-cracking-dictionary.htm

Example
N

0 Assume a hash code and the underlying hash function are
known

0 The dictionary contains 10'° entries

0 A single laptop / PC can compute 10° hash values per
second

0 It takes 10° seconds (~29 hours) to search the entire
dictionary for a match

0 This process can be vastly improved by using pre-processed
lookup tables



Lookup Table-Based Attacks
N

0 For a given hash function and dictionary
O Calculate the hash values for all dictionary entries
O Insert both values to a table (i.e. one line per entry)

o Sort table (e.g. in ascending order of hash values)
m Also called lookup table

O Store the table
0 Example table (assuming 44-bit hash values):

Hash value Password
0x00000000354 gangster
0x00000001003 Bluemoon

0x00000001032 Z0om!




Lookup Table-Based Attacks
N

0 A matching password for a given hash value can be recovered by
systematically searching the look-up table via a binary search

0 ©:
0 Such a table can be generated offline

O The search process itself is fast (~log,(# of entries)) using binary
search

m A table containing 1.8x10'? entry would require just 64 guesses to find (or
not) the correct password for a given hash value

0 ® .

O Huge table, with no guaranteed result

o Different table required for every hash function



Lookup Table-Based Attacks: Example
N

0 Assume a hash function that generates 16-byte (128 bit) hash
values

0 We calculate a lookup table for all possible 6-character long
passwords composed of 64 possible characters A-Z, a-z, 0-9,

u.u omd u/n
0 A table would consist of 64° (= 68,719,476,7 36) entries, with

every entry consisting of a 6-byte password and a 16 bytes
hash

0 Total size of table ~ 1.4 Terabyte

0 However, there are online services available that host pre-
computed look-up tables for password attacks (see next slide)



Crackstation’s free Password Hash

Cracker
I

Free Password Hash Cracker

d9295ddbbe9fd599a8c8849d14d@186eadb6d998a4e70335bdBb712831b74Fa8

|:| h 'l"l' p S: ,/,/C r 0 C k S.I. q .I_i Enter up to 20 non-salted hashes, one per line:

on.net/ —

Crack Hashes

Supports: LM, NTLM, md2, md4, mdS, md5(md5_hex), md5-half, shal, sha224, sha256, sha384, sha512, ripeMD160, whirlpool, MySQL 4.1+ (shal(shal_bin}),
QubesV3.1BackupDefaults

Hash Type Result

Color Codes: BGF8&NY Exact match, Yellow: Partial match, Bl Not found.

Download CrackStation's Wordlist

How CrackStation Works

CrackStation uses massive pre-computed lookup tables to crack password hashes. These tables store a mapping between the hash of a password,
and the correct password for that hash. The hash values are indexed so that it is possible to quickly search the database for a given hash. If the
hash is present in the database, the password can be recovered in a fraction of a second. This only warks for "unsalted" hashes. For information on
password hashing systems that are not vulnerable to pre-computed lookup tables, see our hashing_security page.

Crackstation's lookup tables were created by extracting every word from the Wikipedia databases and adding with every password list we could
find. We also applied intelligent word mangling (brute force hybrid) to our wordlists to make them much more effective. For MD5 and SHA1 hashes,
we have a 190GB, 15-billion-entry lookup table, and for other hashes, we have a 19GB 1.5-billion-entry lookup table.

You can download CrackStation's dictionaries here, and the lookup table implementation (PHP and C) is available here.


https://crackstation.net/
https://crackstation.net/

In-Class Activity: Password Recovery
N

0 5 minutes only, work alone or in a group

0 What to do:

o Pick a password and calculate its MD5 or SHAT1 hash using
hitps: / /defuse.ca/checksums.htm

0 Copy and paste the hash value into https:/ /crackstation.net/
to see if it is can be recovered

0 Repeat the above and keep a list of all passwords
® that can be cracked

m that cannot be cracked


https://defuse.ca/checksums.htm
https://crackstation.net/

Rainbow Tables
N

0 Look-up tables are huge and take up a lot of hard
disk space

0 Rainbow tables in contrast provide an efficient way
to represent large numbers of hash values

0 They require more processing time and less storage
to find a match compared to a simple lookup table

0 Rainbow tables are a practical example of a
space—time trade-off

0 They are based on pre-computed hash chains



Pre-Computed Hash Chains
N

0 Such chains contain long sequences of password candidates (green
strings below) and hash values (black strings below)

0 The are based on using a hash function “2” and a reduction function
“27 e.g.,
aaaaaa—2>173bdfede2ee3ab3 2 jdikvo 29fdde3a0027fbb36 = ... 2 k3rtol

O In this example we only consider passwords (green) that are 6 characters long,
which are converted into 64-bit hash values

O Each chain starts with a different password
O Each chain has a fixed length, e.g. 100,000 passwords and their hashes

O Here “—=2” converts the 64-bit hash value into an arbitrary 6é-byte long string
again, i.e. it's not an inverted hash function!

0 We only store the first and the last value (starting point and end
point), i.e. “caacaaa” and “k3rtol”



Example for a simple Reduction

Function
T

private static String reductionFunction(long val) { // Hash value i3 just a long integer
otring car, out; // The method returns an alphanumeric string
int i;
char dat;

car = new String("0123456789ABCDEFGHIJKLMNOPQRSTUNVXYZabedefohijkinnopgratuvwxyz!3");
out = new String("");

for (1 =107 1<) i+4) {
dat = (char) (val % ©3);
val = val [ 23;
out = out + car.chardt(dat);

return out:



Coverage of Hash Chains
N

0 The reduction function determines the range (i.e., length and
composition) of plaintext (i.e., password) candidates that are
covered

0 Example:
O Consider the password “Domino5”

O In order to have this word stored in a chain, the reduction function must
create outputs that are
m At least 7 characters long
m Contain small and capital letters, as well as numbers

O Also, hash chains may not be able to cover all possible character
combinations

é’é@




Pseudo-Code to create a single Chain

0 This example creates a chain with the start value “abcdefg” that

covers 10,001 plaintext words

0 Note that the last value of this chain is a hash value (i.e.

ciphertext)

0 We don’t know for certain what type of words the reduction
function returns, possible only words of length 7 that consist of

small letters only

String plaintext,

plaintext =

for ( int i=0;

1<10000;

first, ciphertext;

first = "abcdefg":

i++ ) {

ciphertext = hash it (plaintext}):
plaintext = reduce it (ciphertext});
¥

System.out.printf ("%3:%3\n", first, ciphertext);




Chain Lookup

Assume we have a table with just 2 chains (with start and end values), i.e.
aaaaaa>173bdfede2ee3ab3 - ... - 8995tg ->9fdde3a0027fbb36 — ... = k3rtol
nfk39f>856385934954950 —> ... = delphi -759858fde66e8aa8 —> ... = | prp56e
... and a hash value “759858fde66e8aa8” we'd like to crack

Starting with this hash value we apply consecutively “2” and “=>”, until we
hit a known end value (e.g., k3rtol), or
have repeated “2” and “2” x times (with x being the length of the chain)

If we hit a known end value, e.g. “prp56e”, we repeat the transformation, beginning
with the start value of the chain, i.e., “hfk391”, until we hit “759858fdeb66e8aa8”
again

The input that led to the hash value (i.e., “delphi”) is the solution



Chain Lookup Pseudocode

1. Input: Hash value H
2. Reduce H into another plaintext P

3.  Look for the plaintext P in the list of final plaintexts (i.e. end values),
if it is there, break out of the loop and goto step 6.

4. If it isn't there, calculate the hash H of the plaintext P
5.  Goto step 2., unless you've done the maximum amount of iterations

6.  If P matches one of the final plaintexts, you've got a matching chain;
in this case walk through the chain in question again starting with the
corresponding start value, until you find the text that translates into H



Chain Collisions
N

0 Consider the following scenario:
aaaaaa—> ... » 173bdfede2ee3ab3 - delphi - 759858fde66e8aa8 - ... > prp56e
hfk39f-> ... = 856385934954950 - delphi - 759858fde66e8aa8 —> ... - prp56e

0 These 2 chains could merge, because

O the reduction function translates two different hashes into the same password (as
reduction functions are imperfect), or

O the hash function translates two different passwords into the same hash (which
should not happen = see hash function requirements)
00 Because of these collisions or chain loops (next slide) hash chains will

not cover as many passwords as theoretically possible despite having
paid the same computational cost to generate

0 Previous chains are not stored in their entirety; therefore, it is impossible to
detect this efficiently

2caBd0cf2f25cadb
b35d8dc0bETIc3f

Tf8bb0fe8b3aTEORD
B8feBbB0ced14529
6236c78a73f52110a
@39e588bad8delb

a70dab11c90d06bE
08d0be230731762a

a70dab11c30d060b8
08d0ba230731762a

2caBdOcf2f25c4db
basdadeObETIc3f




Chain Loops
=

0 Here you find repetitions of hashes in a single chain

0 The result of imperfect reduction functions that map
two different hashes into the same plaintext




Rainbow Tables
N

0 Rainbow tables effectively solve the problem of collisions
with ordinary hash chains by replacing the single reduction
function R with a sequence of related reduction functions
R, through R, (one reduction function per chain element)

0 In this way, for two chains to collide and merge they must
hit the same value on the same iteration, which is rather

unlikely

441219b5ISITIBOE

dledbasdeidaso

AaTdled 4144740403 Sid2c08iS583 a6
AaciBcchBas3dab

Sld2c 0BS5S 310G 40f4daIdbbe1B0214 aSEE15484d142080
12bbbed 5516 d c23bBaEGdadlTT2 2E7Tab8A15dTA5E6]




Example for a Reduction Function for a

Rainbow Table
e

private static String reductionFunction(long val, int round) { // Note that for the first function call "round" has to be 0,

otring car, out; // and has to be incremented by one with every subsequent call.
int i; /{ I.e. "round" created variations of the reduction function.
char dat;

car = new String("0123456789ABCOEFGHIJKIMNOPQRSTUNVXYZabedefghijklmnopgratuvwxyz ! ") ;
out = new String("");

for (1 =07 1< 27 i+4) |

val -= round;

dat = (char) (val % ¢2);

val = val [ 03;

out = out + car.charat(dat);
}
return out;



Coverage of Reduction Functions
N

0 Rather than calculating a random string a reduction function
may calculate an integer index value to identify an entry
(word) in a large (password) dictionary

0 Example:
P | # |dicteniry

o H(lalo) = 368437FDA

O Dogb

0 R(368437FDA) = 6 = dict[6] = robot123 1 Simple

o0 H(robot123) = DDA0087e73 2 fEED2
a... 3 lalo
0 This is similar to a lookup table, but requires 4 mEn
far less space, as hashes are not stored 5 hat

0 However, it may be difficult to design a hash : robot1 23

rose

function that covers all dictionary indices



Searching a Rainbow Table (Wikipedia)
7

0 Let's assume a Rainbow table of length 3 with 3
different reduction functions R,, R, and R,

0 Again, we just store start (green) and end (yellow)
value of each chain

........... .

tllip-llil. C:} u-llhd l:.'} ::} ib‘.pmw ::r jimhu- l:.':il uﬂﬂ-: I::'.ll roatreat -

------------------------------------

H ........ El .y [—— ) |+ —— H E3 ............ .

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
. [




Searching a Rainbow Table (Wikipedia)
7

0 Consider you have the rainbow table below and the password hash “re3xes”
O Calculate R3(“re3xes”) and check if the result matches any of the chain ends (yellow boxes)

Calculate R2(H(R3(“re3xes”))) and check if the result matches any of the chain ends

Repeat this process until the algorithm reaches R1, or a match is found

If a match is found, traverse through the chain in question as seen before, to find the

solution

......................... : =

iwi:l:ﬂ .E ' rootroot i <= rambo 4.‘:3= @

............ . 3 H

E_W : ' myname linux23 ‘<:=<:=| crypto ﬁ(rﬂxes)

..y




Perfect and non-perfect Rainbow

Tables
I

¢ In a perfect rainbow table any word does not
appear in more than one chain

* Non-prefect rainbow tables (as shown below)
have redundant entries

m They are easier to compute, but less memory-efficient
because of these repetitions (which are not collisions!)

dledbasdeidaso

aSEE15484d142080
2E7Tab8A15dTA5E6]

Sld2c 0BS5S 310G 40f4daIdbbe1B0214
12bbbed 5516 d c23bBaEGdadlTT2



Defense against Rainbow Tables
—

0 ldea:
0 Increase the (required minimum) length of a password

o0 By doing so there are many more potential passwords to
be considered by a rainbow table ...

M ... up to a point where such tables are simply no more
economical to generate

O Increasing the password length can be either done by the
m password owner (e.g., on the client side), or

® algorithmically (e.g., on the client or server side)



Defence against Rainbow Tables

T e
Client-side defence:

0 A user requirement to choose long passwords that contain different types of
characters,

e.g. consider passwords that contain “A...Z”, “a...z”, “1-8":

o 6 characters long passwords result in 60 = 46,656,000,000 combinations
o 10 characters long passwords result in 1090 = 604,661,760,000,000,000

combinations
Server- (and potentially client-) side defence:

1. Password salting

o A unique and random, but known string (“salt”) per user that is appended to each
password before its hash is calculated
u] The salt is stored in the user database
User ID Salt Password Hash Password (not part of table)
ms@gmail.com 12367 | 1d8922d005733... 12367KenSentmel
k51@outlook.com | 56f87 628749afdb83... 56f87Fluffybear
abd@yahoo.com 465d0 | 980ade367fc93... 46d05Limerick




Defense against Rainbow Tables
—

2.  Password peppering

o Similar to Salting, but a unique secret string is concatenated
to all passwords before they are hashed

4. Multiple iterations

0 A password is hashed multiple (e.g., 1000) times before
stored in the database

5.  Combination approach

o Different techniques are combined to create a complex hash
algorithm, e.g.,

0o NewHash(password) = hash(hash(password) | | salt)



- SQL Attacks

Some revision material covering
SQL
HTTP get / post Methods and PHP
SQL injection attacks
SQL injection attack mitigation strategies



What are SQL Injections?

0 SQL injection is a code injection technique, used
to attack data-driven applications, in which malicious
SQL statements are inserted for execution

0 A way of exploiting user input and SQL Statements to
compromise the database and/or retrieve sensitive data

0 Such attacks are closely linked to various web
technologies, i.e. HTTP and PHP



HTTP get / post Methods and PHP

I I ————

0 PHP is a general-purpose server-side scripting language especially suited
to web development

0 PHP originally stood for Personal Home Page, but it now stands for the
recursive initialism PHP: Hypertext Pre-processor

0 The HTTP GET method sends the encoded user information appended to the
page request

The page and the encoded information are separated by the ¢ Character

Example: http: //www.test.com /index.htm2name 1 =value 1&name2=value2

PHP provides $_GET associative array to access all the sent information
using GET method, e.g.

<form method="GET" action="foo.php">

foo-php: First Name: <input type="text" name="first name" /> <br />
Last Name: <input type="text" name="last name" /> <br />

<?php <input type="submit" name="action" walue="Submit" />

</form>

.$.\;ar1 = $_GET[*first_name’];


http://www.test.com/index.htm?name1=value1&name2=value2

HTTP get / post Methods and PHP

s
0 The POST method transfers information via HTTP headers

0 The information is encoded as described in case of GET
method and put into a header called QUERY_STRING

0 The POST method does not have any restriction on data size
and type to be sent

0 The data sent by POST method goes through HTTP header
(rather than the page request)

0 PHP provides $_POST associative array to access all the
sent information using POST method

foo.p hp: <form method="POST" action="foco.php">

<2php First Name: <input type="text™ name="first_name" /> <br />
Last Name: <input type="text" name="last name" /> <br />

$vq rl = $ POST[‘firST nqme’]; <input type="submit" name="action" value="Submit" />

</ form>




SQL Syntax Review
I

0 Basic select query:

SELECT <columns> FROM <table> WHERE
<condition>

0 Example:
SELECT * FROM user WHERE id = 1 AND pass =

‘bla’
0 Note:
o Literal strings are delimited with single quotes

1 Numeric literals aren’t delimited



SQL Syntax Review
N

0 Some databases allow semicolons to separate

multiple statements:
DELETE FROM user WHERE id = 1; INSERT INTO

user (id, pass) VALUES (1, 'secure’);

0 For most SQL variants, the sequence -- means the
rest of the line should be treated as a comment



SQL Code Injection Example
N

1 -
2 Login code
3 = ——D
4 [Cl<?php
S require once('connection.php'};
&
7 Semail = Spassword = Spwd = '';
g $email = § POST['username'];
10 $pwd = $_POST['password'];
11
12 SZpassword = MD5 (Spwd) ;
13
14 £3gl = "SELECT * FROM tklclinician WHEEE Emzil='"$Semail' AND Password='Spassword'"™;
15 $result = mysqgli gumery($conn, $sqgl);:
16
17 if (mysqgli_num rows ($result) > 0)
18 [H{
15
20 header ("Location: searchpatl.php™):;
21 =¥
22 else
23 =k
24 header ("Location: loginfailed.php™):
25 -}
26 =2



SQL Code Injection Example
T | e

— Member Login
ms@mail.ie momm s Username :

dory123 - Password :

femail = £ POST['usernam='];
Spwd = § POST['password']l;

Spassword = MD5 (Spwd) ;

£3gl = "SELEC # FROM thlclinician WHEEE Email='Semail' AND Password='Spassword'"™:
Sresult = mysgli guery(Sconn, £sqgl):

Table tblclinician:

Email | Hashed Password

ms@mail.ie af47f8d1ac4



SQL Code Injection Example
N

Member Login
‘; DROP TABLE tbiclinician; -- gmss) Username :

Em Password :

$sql = "SELECT * FROM tblclinician WHERE Email=""; DROP
TABLE tblclinician; --> AND Password="

0 Note: The SQL DROP TABLE statement deletes an existing
table in a database

0 While an attacker does not know the tables’ names, the
attacker can do a blind attack

00 More generally, If DB details are not known to the attacker,
blind SQL injections are used



Other Code Injections if DB structure is

known
N

0 SELECT * FROM tblclinician WHERE Email =*; INSERT
INTO tblclinician (Email,Password) VALUES (‘hacker’,123);-
-> AND "Password ="

0 SELECT * FROM “login® WHERE Email =*"; UPDATE
tblclinician SET Password = 1284ffa WHERE Email =
ms(@moail.ie ;-- AND “Password ="

0 The first injection creates a new user (hacker) including
password hash

0 The second injection replaces a user’s password hash


mailto:ms@mail.ie

Types of SQL Injection Attacks

L
0 Blind SQL Injection
O Enter an attack on one vulnerable page but it may not display results
O A second page would then be used to view the attack results
0 Conditional Response
O Test input conditions to see if an error is returned or not

O Depending on the response, the attacker can determine yes or no
information

0 First Order Attack

O Runs right away
0 Second Order Attack

O Injects data which is then later executed by another activity (job, etc.)
0 Lateral Injection

O Attacker can manipulate values using implicit functions



What is at Risk?

I =
0 Any web application that accepts user input
0 Both public and internal facing sites

0 Public facing sites will likely receive more attacks than
internal facing sites
0 For the last couple of years (i.e. since 2013), (SQL)
Injection is one of the frontrunners on the OWASP
top ten list

o A well understood attack, but still not fully grasped by
the developer community



OWASP Top 10

I
0 The Open Web Application Security Project (OWASP)

is a non-profit foundation dedicated to improving the
security of software

2017 2021

A01:2021-Broken Access Control
A02:2021-Cryptographic Failures
~»A03:2021-Injection

(New) AD4:2021-Insecure Design

A05:2021-Security Misconfiguration
A06:2021-Vulnerable and Outdated Components

= AD7:2021-ldentification and Authentication Failures

AD1:2017-Injection
AD2:2017-Broken Authentication
AD3:2017-5ensitive Data Exposure
AD4:2017-XML External Entities (XXE)
AD5:2017-Broken Access Control
AD6:2017-Security Misconfiguration
AD7:2017-Cross-Site Scripting (X55)

AD8:2017-Insecure Deserialization /_/ {New) AD8:2021-Software and Data Integrity Failures
A09:2017-Using Components with Known Vulnerabilities /’,_,—)ADB:ZDII—Securiw Logging and Monitoring Failures*
A10:2017-Insufficient Logging & Monitoring (New) A10:2021-Server-Side Request Forgery (SSRF)*

* From the Survey



Some historical Notes
e

0 Guess Inc. is an American clothing brand and
retailer

0 Guess.com was open to a SQL injection attack

0 In 2002 Jeremiah Jacks discovered the hole and
was able to pull down 200,000 names, credit card
numbers and expiration dates in the site's customer
database

0 The episode prompted a year-long
investigation by the US Federal Trade
Commission




Some historical Notes

49|
0 In 2003 JJ used an SQL injection to retrieve

500,000 credit card numbers
from PetCo ]
0 In 2014 Russian hackers used a Psrco

Botnet to recover a vast collection of stolen dataq,
including 1.2 billion unique username /password
pairs, by compromising over 420,000 websites
using SQL injection techniques




What can SQL Injections do?
N

00 Retrieve sensitive information, including
0 Usernames/ Passwords
o Credit Card information
O Social Security / PPS numbers
0 Manipulate data, e.g.
O Delete records
O Truncate tables
O Insert records

0 Manipulate database objects, e.g.
o0 Drop tables
O Drop databases



What can SQL Injections do?
N

00 Retrieve System Information
O Identify software and version information
O Determine server hardware
0 Get a list of databases
O Get a list of tables

0 Get a list of column names within tables

0 Manipulate User Accounts
o Create new sysadmin accounts
O Insert admin level accounts into the web-app
0 Delete existing accounts



N
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Lecture Content

N

0 Public key cryptography versus private key
cryptography

0 Public key cryptography applications

0 Diffie-Hellman Key exchange
O Man-in-the-Middle (MitM) attacks

0 RSA encryption

0 Optimisation techniques for public key encryption

0 ECC encryption

0 The Double-Ratchet algorithm



Model of Conventional Cryptosystem
—

Symmetric block ciphers are cryptographically strong,

but key distribution can be a headachel! A
Y - X
Cryptanalyst A
> K
Message Encryption Decryption
Source Algorithm Algorithm

Secure Channel

Key
Source

Y = E(X), X = E.'(Y)



Features and Limitations of Private-
Key Cryptography

0 Traditional symmetric/single key cryptography uses one
key, shared by both sender and receiver

O If this key is disclosed, communications are compromised

0 The key is also symmetric, both parties are equal
O This is problematic too, as it does not protect the sender from
a situation, where:
- the receiver forges a message using that key
- and claims that it was sent be the sender

® Think about an electronic contract that is exchanged between two
business partners that use a shared key

® One party can forge a contract and claim it was sent by the other
side

B Message authentication (HMAC or CMAC) doesn’t solve the
problem!



Features of Public-Key Cryptography
B

0 Public-key/two-key/asymmetric cryptography involves the use
of two keys:

O a public-key, which the owner shares with any peer; it is used to:
W Encrypt messages send from the peer to the owner

m Verify the in’regri'ry and origin of messages send from the owner to a peer
(signature validation)

O a private-key, known only to the recipient/owner, used to:
m Decrypt messages that were encoded using their public key
m Digitally sign data send to a peer (signature creation)

[

The keys are asymmetric, because they are not equal

Those who encrypt a message or verifK a signature (using the
receiver’s public key) cannof decrypt the message or forge a
signhature

O It is computationally very hard (and infeasible) for an attacker
to rebuild an owner’s private key by analysing their public key

0 This is achieved through the application of number- theoretic
concepts

[



Public-Key Encryption

M
JD}I ?
Bob's public Bob 's private
key key
o rd
Transmitted
ciphertext
> —»
: 4 .
Plaintext . . . . . Plaintext
Input Encrvption algorithm Decryption algorithm output
(e.o.. RSA) (reverse of encryption

algorithm)



Applications of Public-Key
Cryptosystems

Data encryption/decryption:
The sender encrypts the message with the recipient’s public key and the
receiver decodes the message using their private key

O Recall symmetric encryption where only one key is used

Digital signature/authentication:
The sender “signs” a message with their private key. Signing is achieved
by encrypting the message or its MAC using their private key (next slide)

O Recall private key encryption where sender and receiver just share one key

Key exchange:
Two sides negotiate a symmetric session key

O Private key encryption is much faster than public key encryption
O This key may also be used for conventional message authentication

Note that in order to avoid confusion we use from now on the terms:
O Symmetric key for private key encryption (block ciphers and stream ciphers)
O Public and private keys for public key encryption



Public-Key Cryptosystems: Secrecy
and Authentication

The entire message Y is the
authenticator
Destination B

Source A
- A ™
Message Z Decryption Decryption
Source Algorithm Algorithm

Key Pair
Source

K

U,

R, K
Key Pair determine that a received message
Source is intelligible, i.e. that Z has not been

manipulated by a MitM in transit

Note that this scheme requires B to




Recap: Basic Uses of Hash Functions (H) in
Combination with asymmetric Encryption (c)

-+ Source Destination—— =

M [ M ()
) ‘_—F Compare
H

(a)

4
=

— KUy Compare KR, = Sender’s private key
T KU, = Sender’s public key

1.

£
Expal HIM) ]




Recap: Basic Uses of Hash Functions (H) in
Combination with asymmetric Encryption (d)

Destination——

M (1)
B o KU, Compare

id)

1
Ek M | ERal HOW) T ] / i T
Excral HOM) |
— ) .
KR, = Sender’s private key

M KU, = Sender’s public key

‘ = Compare

M

v

. y L ¢ pe Compare
Ex| M| HM | S)] /

Helt | s)



Public-Key Cryptosystems
I

0 There are different cryptosystems, including (from
simplest to most complex):
o Diffie Hellman key exchange
o RSA

o DSS
o Elliptic Curve Cryptography

Algorithm Encryption/Decryption Digital Signature Key Exchange
RSA Yes Yes Yes
Diffie-Hellman No No Yes

DSS No Yes No




Modular Arithmetic
T

0 Modular arithmetic is a system of arithmetic for integers,
where numbers wrap around when reaching a certain
value n, called the modulus

O Recall modulus operator “%” in C and other languages, i.e.
“division with rest” with rest being the modulus

0 Example: 75 / 6 = 12 remainder 3 = 75 % 6 = 3

0 Numbers {0, 1, ..., n - 1} are called “multiplicative group
of integers modulo n”, or simply Z_, for some n > 0O

0 Within Z , addition and multiplication is well defined!



Example: Multiplication in Z,




lllustration of Concept behind Diffie-

Hellman Kez Exchcmge SWikiBedia'
i

0 Alice and Bob want to share a secret colour  Alice
using public transport

Commeon paint

O i.e. an adversary (i.e. Mallory, not shown) can
get samples of any colour that is exchanged

Secret colours

00

between both S— S—

0 Alice and Bob agree on a common “public” S R
paint color (yellow in the example) o

=-q mi:_:ture 5epa_lratinn H

0 Each of them add a secret colour and send [ oo [

their mix to the other party T ——

O Mallory can intercept both, but cannot separate
the mixtures

Commeon secret

.".*

0 Alice and Bob receive the other’s mixture
and add their secret colour

0 Both colours are identical
o = This color is their common secret



Diffie-Hellman Key Exchange
N

0 Diffie-Hellman provides a mechanism for a secure key exchange between
two endpoints

0 The negotiated key is subsequently used as a symmetric key (or as a seed for a key)
for data encryption and message authentication (as seen before)

0 The algorithm uses the multiplicative group of integers modulo q
O q has typically a length of 1024 or 2048 bits

0 It is based on the difficulty of computing discrete logarithms over such
groups, e.g.

65 mod 17 = 216 mod 17 = 12 (easy)
12 = 6Y mod 177 (difficult)

O Recall 63 = 6 x 6 x 6, so we need just the multiplication

0 The core equation for the key exchange is

K= (A)B mod g



Diffie-Hellman: Global Public Elements
e

0 Alice and Bob select:
O A prime number q which determines Z_
O A positive integer a, with 1 < a < q and a is a primitive root of g
® Note that a is also called the generator
0 Definition: a is a primitive root of q, if numbers

a mod q, a2 mod g, =+ a@~ Y mod g
are distinct integer values between 1 and (q — 1) (i.e. in Zy)in
some permutation

0 Example: a = 3 is a primitive root of Z (i.e. g = 5), a = 4 is not:
3'=3 =0 *5+3 4'=4 =0 *5+4
32=9 =1 *5+4 42=16 =3 *5+1
33=27=5 *5+2 43 =64 =12*5+4
34=81=16*5+1 44 =256 =51 *5+ 1



Primitive Roots of Z_ with 15 <n < 32
2

T primitive roots modulo n

16

17 (3,5,6, 7,10, 11,12, 14

1865, 1

192, 3,10,13,14, 15

20

21

22| 7,13,17, 19

23|95, 7,10, 11, 14,15, 17,19, 20, 21

24

2912, 3, 812,13, 17, 22,23

26| 7, 11,15, 19

27 12,5, 11,14, 20, 23

28

2912, 3,810, 11,14, 15,18, 19, 21, 26, 27
30

3|3, 11,12,13, 17, 21, 22, 24




Generation of Secret-Key: Part 1
S =

0 Alice and Bob share publicly a prime number g and a
primitive root a

0 Alice (User A):
0 Select secret number XA with 0 < XA < ¢
O Calculate public value YA = a** mod q (&« difficult to reverse)
o YA is sent to Bob (user B)

0 Bob (User B):
O Select secret number XB with 0 < XB < ¢
O Calculate public value YB = a*® mod q (&« difficult to reverse)
o YB is send to Alice



Generation of Secret-Key: Part 2
S =

0 Alice:
0 Alice owns XA and receives YB

O She generates the secret key: K = (YB)* mod g
0 Bob:

1 Bob owns XB and receives YA

O Bob generates the secret key: K = (YA)*® mod ¢

0 Both keys are identical!



Generation of Secret-Key: Part 2

N 1 ———
K = (YB)* mod g

= (a*® mod q)* mod q

= (a¥8) XA mod q

= a8 XA nod ¢

= a* %8 mod g

= (&™) % pod q

= (a* mod q)*® mod q

= (YA)XB mod q



Example for Diffie-Hellman
N
0 Alice and Bob agree on public values g and a, and
determine their respective secrets XA and XB :
0 Lletg=5anda =3
0 Alice picks XA = 2, therefore YA = a* mod 5 = 4
0 Bob picks XB = 3, therefore YB = a*® mod 5 = 2
0 Alice sends YA = 4 to Bob
0 Bob sends YB = 2 to Alice
0 Alice calculates: K = (YB)*A mod q = 22 mod 5 = 4
0 Bob calculates: K = (YA)®8 mod q = 4° mod 5 = 4



Ephemeral versus Static Diffie-Hellman

Keys
-—

0 The generated DH keys can be either
O static (to be reused)

0 ephemeral (only used once, e.g., for one session only)

0 Ephemeral keys

O provide forward secrecy, but no endpoint authenticity

m Forward secrecy: If the current key is recovered by an adversary, it only
effects the current session, but no past or future sessions

O Static keys
O do not provide forward secrecy
O do provide (implicit) endpoint authenticity

O do not protect against replay-attacks



Example DH Parameters
I

0 Standardised, see hitps://www.ietf.org/rfc/rfc3526.txt

0 Example 2048-bit MODP Group

O q=2"2048-2"1984 -1 + 2264 *{[2"1918 pi] + 124476}

O g = FFFFFFFF FFFFFFFF CQOFDAA2 2168C234 C4C6628B 80DC1CD1
29024E08 8A67CC74 020BBEA6 3B139B22 514A0879 8E3404DD
EFP519B3 CD3A431B 302BOA6D F25F1437 4FE1356D 6D51C245
E485B576 625E7EC6 FA44C42E9 A637ED6B OBFF5CB6 FA406B7ED
EE386BFB 5A899FAS5 AE9F2411 7C4B1FE6 49286651 ECE45B3D
C2007CB8 AT163BFO5 98DA4836 1C55D39A 69163FA8 FD24CF5F
83655D23 DCA3AD96 1C62F356 208552BB 9ED52907 7096966D
670C354E 4ABC9804 F1746C08 CA18217C 32905E46 2E36CE3B
E39E772C 180E8603 9B2783A2 ECO7A28F B5C55DF0 6F4C52C9
DE2BCBF6 95581718 3995497C EAQ56AES5 15D22618 98FA0510
15728E5A 8AACAA68 FFFFFFFF FFFFFFFF

0a=2

[] == rounded



https://www.ietf.org/rfc/rfc3526.txt

DH and Man-in-the-Middle (MitM)
Attacks

Alice Mallory Bob

in-g'mndpi i
E :“Z—g’|111:n:||:|:I
i LB—ghmndpi
Lz—g’mndp: i

Ky,=Z'modp K,=Amodp K= Z’mod p
K g=Bmod p

AMan In The AMuddie
Mallory

Mallory is a MitM attacker with the ability to intercept, and fabricate messages
O Not to confuse with a Meet-in-the-Middle attack (= double-DES and triple-DES)

Both Alice and Bob are unaware of Mallory’s existence, as there is no mutual authentication and an
unprotected communication link

Alice and Bob exchange their shared values (A and B in the example), but these are intercepted by Mallory
Mallory completes both key exchanges sending her own shared value Z to both Alice and Bob
By doing so, Mallory establishes two individual (secure) connections with Alice and Bob

Alice and Bob have no idea that they became victims of a MitM attack!



In-Class Activity: Diffie-Hellman

MitM Attack
T e

lLetg =5 and a = 3;

Xilice = 2, therefore Y,;;., = a*lice mod 5 = 4
Xgop, = 3, therefore Yg, = a*® mod 5 = 2
Xialory = 1, therefore Yy 1o, = a*®lov mod 5 = 3

What session keys between
O Alice and Malory

O Malory and Bob

are generated?

0 Note: User As key K = (YB)** mod g
0 Note: User B’s key K = (YA)*® mod q

O O O o o



Solution

O 0O O 0O

Alice sends “4” to Bob, but this message is intercepted by Malory
Bob sends “2” to Alice, but this message is intercepted by Malory
Malory sends “3” to both parties, claiming to be either Bob or Alice

Alice receives “3” and calculates K as follow: K = 32 mod 5 = 4
O Malory calculates 4! mod 5 = 4

Bob receives “3” and calculates K as follow: K = 33 mod 5 = 2
O Malory calculates 2! mod 5 = 2

Alice and Bob think they just mutually agreed on a shared
secret key

From this point onwards Malory as a MitM can read,
manipulate and fabricate messages between Alice and Bob



The RSA Algorithm

O

O

Published by Rivest, Shamir and Adleman in 1977, but first discovered by
Clifford Cocks (British mathematician and cryptographer) in 1973

The RSA scheme works similar to a block cipher, where a plaintext M and a
ciphertext C are integers between 0 and n - 1, i.e. elements of 7_

M can be a plaintext message (block), a hash value, or a private key picked
by the sender to be shared with the message recipient

o E.g., “ABC” =*01000001 01000010 01000011” = 4276803,,

Me mod n

Principle: C
Cd mod n = Med mod n

M

Public key KU = {e, n}
Private key KR = {d, n}

With n sufficiently large it is infeasible to determine d given e and n



Key Generation for the RSA Algorithm
—

Euler’s totient

function Phi

Key Generation

Select p. g pand g both prime

Calculate Greatest

Calculate o common divisor

Select integer ocdiain). ey = 1. 1 <e<din)
Calculate o d = el mod ain)

Public key KU=ie, n!

See next slide

Private key KR =3d. n{




Example
N

Oletp =7, q =11andn = pq = 77
0d(77) = p-1)(@-1) =6 x 10 = 60

0 Factorisationof 60 = 1 x 2 %k 5 % 2 % 3

Therefore, the divisors of 60 are: 2, 3, 5

0 List of all integers x, 1<x<60, with GCD (60, x) = 1:
7, 11, 13, 17, 19, 23, 29, 31, 37, 47, 49, 53, 99
[
Note that these integers either
O are prime numbers (that cannot share a common divisor with 60), or
0 do not share a common divisor with 60 (i.e., 7 and 49)



Example (continued)

e
0 Lete = 7

1 Choose d withed = 1 mod & (pg) &
7d = 1 mod 60 < 7d mod 60 = 1

7*#1 mod 60 = 7 7*%2 mod 60 = 14 7*%3 mod 60 = 21
7*%4 mod 60 = 28 7*%5 mod 60 = 35 7%6 mod 60 = 42
77 mod 60 = 49 7*%8 mod 60 = 56 749 mod 60 = 3
7%10 mod 10 = 28 7*%11 mod 60 = 17 7*%12 mod 60 = 24

743 mod 60 = 1
0 Therefore d = 43

0 Therefore KU = (7, 77) and KR = (43, 77)

0 Note there are better / more efficient algorithms (i.e. the
Extended Euclidean Algorithm) to calculate d



Example for an Encryption/Decryption
N

Encryption Decryption
Plaintext 2476000 20807 witha | Cinperient {97 1010 106.. 107 with|  Plaintext
1O et 1 0, = — — remainder of 66 [TI66 |, = — = aremainder of 19
66 | 19 ™
KU=5,119 KR=77,119

0 Obvious drawbacks:

O Very large numbers are to be computed
® Ordinary integer or floating-point variables don’t work
® Instead, large number libraries need to be used

O This makes RSA encryption / decryption is very slow!



Computational Aspects of Public Key
Cryptography
—

Assume you have to evaluate the expression C = 503%% mod 899 as part of the
encoding process

O Note that the modulus is small enough to fit into an integer variable

503%% = 1. 367929313795408423250439710106 x 109 cannot be properly

represented using an ordinary integer or floating-point variable!

In order to solve this problem, the exponentiation must be broken down into
smaller steps, e.g.

o 5032 mod 899 = ((5035 mod 899) x (5035 mod 899)
x (5035 mod 899) x (503° mod 899)) mod 899

o 503% mod 899 = ((503° mod 899) x (503% mod 899)) mod 899
o 503° mod 899 = ((503° mod 899) x (5032 mod 899)) mod 899
o 503 mod 899 = ((5032 mod 899) x 503) mod 899




Computational Aspects of Public Key
Cryptography
—

0 ... or even iteratively:

50323 mod 899 =
((((((503%2 mod 899) x 503) mod 899) x 503) mod
899) x --- x 503) mod 899

0 This expression consists of 22 nested multiplications and 22
nested modulus operations and can be easily calculated by
using a loop

0 However, once a single number squared is too large to fit
into a 32-bit or 64-bit (unsigned) integer variable, a big
number library must be used



The Security of RSA

0 There are various angles to attack the RSA algorithm:
O Brute force: Trying all possible private keys (not a great ideal)

0 Mathematical attacks: Factor n (which is the product of two
primes); see some very old data below:

Number of Decimal Approximate Data Achieved MIPS-years Algorithm
Digits Number of Bits
100 332 April 199] 7 quadratic sieve
L1 363 April 1992 T3 quadratic sieve
120 398 June 1993 830 quadratic sieve
129 428 April 1994 5000 quadratic sieve
130 431 April 1996 500 generalized number field sieve

0 See also (for some more recent data)
https: / /en.wikipedia.org /wiki/RSA numbers#RSA-704

o Timing attacks: Based on analysis of the run time of an
decryption algorithm



https://en.wikipedia.org/wiki/RSA_numbers#RSA-704

Breaking RSA

s

0 Consider the key pair (e, n) and (d, n) or simply (e, n)
and d

On=p *q, with p and g being large (secret!) primes
0 Factorising n is unfeasible for very large n
0 However, let’s assume n can be factored into p and q
0 The adversary can now do the following calculations:
apn)=(p—1)%(q-1T)
0 Identify d, so that e * d = 1 mod ¢(n)

® e is known, use the aforementioned Extended Euclidean
Algorithm



Step 1: Factorise N
I

// This is a very lightweight integer factoring algorithm, not very efficient or
// sophisticated.

// Assume n is the product of two primes p1 and p2
void factorise(int n) {
int i;
for (p1 = 2; i <= sqrt(n); i++) {
if (n% p1 ==0)
printf(“n = %d; p1 = %d; p2 = %d\n"), n, p1,n / p1);
break;

}

// Note that the integer values above would be replaced with large number
// representations, i.e., BBGNUM in OpenSSL



Step 2: Determine e

o
// We know p and q (n was successfully factorised), d is in the public key KR=d, n

// This is again a very lightweight algorithm, not very efficient or sophisticated.
int breakRSA(int p, int q, int d) {
int prod, found = O, start = 1, df = -1;
int phi = (p -1) * (g = 1);
while ((found) && (start < phi)) { // exit if needed
prod = d * start;
if (prod % phi == 1) found = 1;
else start++;
}
if (found) df = start;
return (df);

}
// Note that the integer values above would be replaced with large number
// representations, i.e., BBGNUM in OpenSSL



How to choose p and g

0 When choosing p and ¢, the following should be
considered:

. p<>gq,asp =q=sqrin)

2. Neither p or g must not be “small”, as factorising could
produce a result in a reasonable amount of time (see
previous slide “Step 1: Factorise N”)

3. p must not be similar in size to q, because of Fermat's
method of factoring a composite number N:

® N can be represented as the difference of two squares:
Bp*Fg=N® a?2=b?2< (a-b)(a+b)[==p *d]
® N = a? - b? can be rewritten as: b2 = a? - N

m To find a solution, iterate through a (starting with round(sqrt(N))),
until a? - N is a square number (i.e. b?)



Fermat’s Factoring Algorithm
T

// This function assumes N can be factorised. It returns N's factors
// p and q, using “pass by reference” pointers, so that both values

// are returned.
void fermatFactor(int N, int *p, int *q) {
int a = ceiling(sqrt(N)); // start value for a
intb2 = a*a-N;// see last slide
while (sqrt(b2) * sqrt(b2) <> b2) { // is b2 a square?
a=a+ 1; // No, so increment a ...
b2=a*a-N; // ... and update b2

i . If p(=a-b)and g (= a + b)
P —d-sq I‘T(b2); are similar in size, it takes only a
*q = a + sq r’r(b2); small number of iterations over a
to find a solution




Example
T

1. n= 33 (based on secret valuesp =3 and g=11)
2. First iteration: a = 6 (i.e., ceiling(sqrt(33)):
. b2=6%6-33=3
2. b2 is not a square number
3. a=a+t+1
3.  Second iteration: a = 7:
. b2=7*7-33=16
2. b2 is a square number
4. Calculate p and q:
. p=7-sqrt(16) =3
2. q=7+sqgrt(16) =11



Breaking RSA in Practise

https:/ /arstechnica.c

om /information-
technology /2022/0
3 /researcher-uses-
600-year-old-
algorithm-to-crack-

crypto-keys-found-
in-the-wild /

QB TECHNICA oien @ s o o s o

BREAKING KEYS —

Researcher uses 379-year-old algorithm to
crack crypto keys found in the wild

It takes only a second to crack the handful of weak keys. Are there more out there?

DAN GOODIN - 3/14/2022, 9:31 PM
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Elliptic Curve Cryptography (ECC)

0 Traditional methods exploit the properties of
arithmetic using large finite groups Z_ with n having
a typical size of 1024 bits, i.e. 309 decimal digits

0 The security depends on the difficulty of factorising
large numbers or calculating discrete logarithms

0 Using large numbers makes such algorithms
computationally expensive

0 In ECC, Z_is replaced by points of an elliptic curve,
making the discrete log calculation problem
different and much harder compared to the discrete
log in ordinary groups



Elliptic Curve Groups

0 Elliptic curves are based on simplified cubic
equations, e.g.
y2 = x3 tax + b
where a and b are real numbers -

0 The curve shown here is defined by the pan)

equation >

y> = x3 - X (i.e,a=-1and b =0) »
0 To plot such a curve, we need to compute o

y = sqrt(x® +ax + b) p

0 Since the shape of the curve depends on a and
b, ECs can be described as E(a, b)

0 The above curve can be written as E(—-1, 0)

0 In order to operate on elliptic curves, we need
to introduce an operation that is equivalent to T T
the addition as well as a “0” element




Elliptic Curves over a Finite Field

0 In order to have values (X, yv) within Zp, the modulus
operation is used again:
v2 mod p = (x3 +ax + b) mod p

O p is either a prime number or p = 2"

0 We only consider pairs (x, y), where both x and v

are integer values o o oo

0 Example: Table of all integer (0,22) (6, 19) (13,7
. (1,7 (7,11} (12, 16)
solutions for E,5(1,1) (1,16 (7,12 (17,3
(3, 103 (9,7} {17, 20)

(2, 13} {9, 16) {18, 3}

{4, 0) (11,3} {18, 20)

(5.4 (11,20 {19, 5)

(5, 19) (12, 4) (1%, 18)




The Elliptic Curve E,4(1,1)

22
1
20 % 258
19 258 L
18 >
17
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15
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13 %5
12
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6
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3 L 258
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Adding Points on an Elliptic Curve
S =

0 ECC requires the equivalent of an addition on
E.(A,B) of two points a and b

0 This is done (geometrically) as follows:
- Draw a straight line through a and b
to find the third intersecting point w,
- then draw a vertical line through w to —
find the intersecting point ¢ (that’s the sum)

0 Every line intersects the curve three
times (tangents are counted twice), e.g.,
the line through a and b intersects a
"third" point b. We name this line [a,b,b]

0 O is called the origin, or point at infinity

0 We can say
at+tb=c at+td=b+c=0
ata=b at+ O =a



ECC over a Finite Field: Addition
T e

0 There’s p as defined before

0 Addition of two field elements S = (x5, v<) and Q =
(XQ, YQ> with S <> —Q:
oS + Q=R = (xp, ¥p)
oxp = (L2 = xg - xg) mod p
oy, = (L (xg = xp) — yg) mod p
oL is either

m((yg - vg) / (x, = xg9)) mod p, if S <>Q, or
m (3 x%+a) / (2yy)) mod p, if S =Q



ECC over a Finite Field: Addition and

Multiplication
B

0 The addition of two elliptic points P and Q consists of a
number of integer operations (mod q):
O 5 or 6 subtractions
O 1 or 4 multiplications
o 1 division
0 A multiplication (P * Q) is done via consecutive additions

0 A scalar multiplication (x * Q) with some scalar X is the

operation of successively adding a point § along an elliptic
curve to itself X times (i.e. Q@ + Q + Q + +-+ + Q)



ECC Diffie-Hellman

0 Similar to conventional Diffie-Hellman, but
operates of finite EC field:
O Users A & B select a suitable curve E (a, b)
0 Users select base point (equivalent to primitive root)
G= (Xl’ Yl)
O User A & B select private keys n_ and n,
O Users A & B compute public keys PA and PB
o0 Shared keys are exchanged
O Secret key K is computed



ECC Diffie-Hellman Example
S =

0 Use E, (0, -4) that is equivalent to y2 mod 211 = (x3 - 4) mod 211
0 Choose G = (2, 2)

0 User A chooses n, = 121, so A’s public key PA is:
121 G =121 %(2,2) = (115, 48)

0 User B chooses n, = 203, so B’s public key PB is:
203 * G =203 * (2, 2) = (130, 203)

O '(I;hqe) shared secret key Kis 121 * (130, 203) = 203 * (115, 48) = (169,

0 Note:
0o ECC-DH (or ECDH for short) can be compromised via a MitM!

0 We still use a BIGNUM integer representation, but the range of values is
significantly smaller, and operations can be executed much quicker (see next slide)



Comparable Key Sizes for Equivalent

Security
N 1 ——
Symmetric ECC-based RSA
scheme scheme (modulus size in
(key size in bits) | (size of p in bits) bits)
56 112 512
80 160 1024
112 224 2048
128 256 3072
192 384 7680
256 512 15360




FYIl: Curve25519

0 Curve25519 is an elliptic curve offering 128 bits of security (with
256 bits key size) and designed for use with the elliptic curve
Diffie—Hellman (ECDH) key agreement scheme

0 It is one of the fastest ECC curves and is not covered by any
known patents

0 It was first released by the cryptologist Daniel J. Bernstein in

2005

0 In 2013, interest began to increase considerably when it was
discovered that the NSA had potentially implemented o
backdoor into the most common EC encryption method

0 i.e. the P-256 curve based Dual_EC_DRBG algorithm
0 Today it is the de facto alternative to P-256
0 Its reference implementation is public domain software



The Double-Ratchet Algorithml'!

O

The Double Ratchet algorithm is a cryptographic protocol used by two
parties to exchange encrypted messages

0 Messages are encrypted using (fast) symmetric key algorithms (e.g., AES)

O Every message that is exchanged in either direction is encrypted using a
different private key

The algorithm is implemented in the Signal protocol, which in turn is used in
secure messaging apps such as the Signal app and WhatsApp

It ensures forward secrecy and post-compromise security, making
conversations secure even if previous keys are compromised

(Perfect) forward secrecy and post-compromise security are properties of
secure communication protocols

O Forward security ensures the confidentiality of past sessions even if long-term
keys are compromised

0 Post-compromise security ensures the security of future communications even
after an initial compromise



Key Derivation Function (KDF) and KDF
Chains
oo

0 A KDF is a cryptographic function that
O is used to create a new secret key for each message

o takes a secret [KDEIREH and some [IAPEH data, and

returns an output

O looks like a “one-way” function (i.e., a hash function)

0 In a KDF chain some of the KDF output is used as
an and some is used to make a new

o If two endpoints cg1ree on the same initial [KBE

and the same , they create the same
sequence of output keys, and can exchange
messages securely

0 A KDF chain guarantees forward security, but not
automatically post-compromise security

o Consider output key (2) being recovered by an
attacker:

O The attacker cannot calculate key (1)

O The attacker is only prevented from calculating Output
key (3), if Input is a secret shared by both endpoints



KDF Chains

0 A KDF chain is like a ratchet, which only goes in one direction
O each step provides a different output (KDF key | | Output key)
Both Alice and Bob have both a “send” and “receive” ratchet each

Alice’s “send” and Bob’s “receive” ratchet are initialised using the same initial KDF and the
same Input key (and visa versa)

0 Every time a message is to be sent by either side, it is encrypted first using a new encryption
key (Output key) that is generated by invoking the KDF (i.e., the “sender” ratchet)

o Similarly, every time the receiver receives a new message it calculates the (same) key for

message decryption by invoking the KDF (i.e., the “receiver” ratchet)

-

‘I
i




Sender and Receiver Ratchet
e

DH- 00
Ratchet

Send- Receive-
Ratchet Ratchet

KA1 KB1 KB1 KAT
KA2 KB2 KB2 KA2

DH-
Ratchet

a2

MA =D, (CA))

A=)
B0




Explanations

0 K{A|B}, is a secret key used by A or B for encoding
and decoding a message (e.g., KA or KB-)

O x is simply an incremented index value (i.e., 1, 2, 3,...)

0 M{A|B} are (indexed) plaintext messages
generated by A or B (e.g., MA; or MB.)

0 C{A|B} _is the corresponding ciphertext
O E.g., MA; <-> CA,

0 E() and D() are corresponding encryption and
decryption functions that use a key KAx (e.g.,

DKAS(CAS))



Synchronising Sender and Receiver Ratchets
to compensate for lost Messages

If messages get lost in

transit, the ratchets DH-
go out of sync
Ra’rche’r therefore . Ratchet

Allce

Send- Receive-
Ratchet Ratchet

KA1 KB1 KB1 KAT
KA2 KB2 KB2 KA2

RiEETwTiss sucy) IS




O

Symmetric Key Ratchet

“Send” and “receive” ratchets are also
called the symmetric-key ratchets

Since every message sent is encrypted
with a unique Message key (see
diagram), the receiver may have to
buffer generated (decryption) keys to
deal with packets received out-of-order

Here KDF keys are called [SHGIMKEIS) G

The sequence of generated chain keys is
called a sending chain / receiving chain

Here KDF chains use a (secret) [Consiant)

as a 2" input to provide post-
compromise security

L

-
.
o

.-




The Diffie-Hellman Ratchet
N

0 As Alice and Bob exchange messages, they also exchange new
Diffie-Hellman public keys to generate shared secret keys

00 These secret keys become the input to another KDF chain, the root
chain

o This is called the Diffie-Hellman ratchet

0 The output keys from the root chain provide for new KDF chain
keys for the sending and receiving ratchet

0 The complete construct is called a Double Ratchet, consisting of the
symmetric key ratchets and the DH ratchet, which require KDF keys
for three chains:

O a sending chain and a receiving chain (linked to the “send” and
“receive “ratchets)
®m With Alice’s sending chain matches Bob’s receiving chain, and vice versa

O a root chain (linked to the DH-ratchet)



The Diffie-Hellman Ratchet

A T
0 To implement the DH ratchet, each party generates a DH

key pair (a Diffie-Hellman public key and private key)
which becomes their current ratchet key pair

0 Every message from either party begins with a header
which contains the sender’s current DH-ratchet public key

0 When a new ratchet public key is received from the other
party, a DH ratchet step is performed which replaces the
local party’s current ratchet key pair with a new key pair

0 This results in a “ping-pong” behavior as the parties take
turns replacing ratchet key pairs



Stepping through the DH-Ratchet: Step 1
Les B

0 Alice receives Bob’s ratchet’s public key

O Alice’s ratchet’s public key isn’t yet known to Bob

0 As part of the initialisation Alice performs a DH
calculation using her ratchet’s (Private key) and Bob’s
ratchet’s (Public key)

Alice Bob

Bob’s rachet’s public key —{] ---------------------- -(Pubickey  Private key

on —— Do

*
Alice’s rachet’s private and public key Private key -




Stepping through the DH-Ratchet: Step 2
I T

0 Alice’s initial messages advertise her ratchet’s public key

0 Once Bob receives one of these messages, he performs a DH ratchet step
(consisting of two (DH) steps, i.e., Diffie-Hellmapn key exchange calculations):

O He calculates the DH output between Alice’s ratchet’s public key and his
ratchet’s (Private key), which equals Alice’s injtial (DH output)

O Bob then calculates a new xatchet key pair/and calculates a new DH output:

Bob's DH ratchet step

Bob's new ratchet key pair



Stepping through the DH-Ratchet: Step 3

0 Messages sent by Bob advertising his new Public key are received by Alice,
who does a similar step comprising:

O A (DH) operation using her current Private key and bob’s new Public key will
result in a DH output identical to the one calculated by Bob

O She creates a new Privq’re// Public key and calculates a new DH output :

Alice’s DH ratchet step



Stepping through the Diffie-Hellman

Ratchet: Step 4+
h

0 Messages sent by Alice Alice Bob
advertise her new public

key

0 Bob receives one of these
messages and perform a

second DH ratchet step,
and so on




Deriving Sending and Receiving Chains

Keys
—

0 The DH outputs

generated during each Alice Bob

DH ratchet step are used *‘ﬂ ----------------------  Puickey P
to derive new sending oM - Sesmgoran = ecsvngenan —— O
and receiving chain keys  clopmm D*
for Alice’s and Bob’s 6_’- S S

symmetric key ratchets 1
*d |

0 The DH outputs are not
used directly, but go . -

through a DH ratchet first F""‘“"'“”-
(see next slide)



Deriving Sending and Receiving Chains

0 This diagram shows the complete process from Alice’s perspective:

O The Root Key is a shared secret with Bob, determined via (ECC-) DH at the beginning of
the protocol / session

O The DH output (as calculated in previous slides), together with the Root key, is processed
by the DH ratchet in the centre of the diagram to create a Receiving chain key

O Bob’s public key, together with Alice’s Private key of her 2" generated keypair is used
for another KDF invocation that generates the Sending chain key and a new Root key

| _?
Alice’s keypair 1 Pivatekey [ISISIERSH) o ke
—

Bob’s public key 1 *4--- @
" ’ ' ey
. =. -L
1

Alice’s keypair 2 | Private key [IEISIRSI)




A Double Ratchet Walk-Through

0 The following example shows a double ratchet walk-through from
Alice’s perspective, including only messages she is receiving from Bob

O Step 1:

O Alice receives Bob’s public key and generates a new root key - and sending

chain key [GK)

Ratchet Root Sending Recsiving
L@f Old keys can be deleted
D Ak ok
0 Step 2:

0 When Alice sends her first message, she applies a symmetric-key ratchet step to
her sending chain key -, resulting in a

Ratchet Root Sending Recsiving

= message key (Bl
- Old keys can be deleted
m new chain key [@K (ignore for now)

- |

Symmetric-key
ratchet




A Double Ratchet Walk-Through

0 Step 3:

O Alice receives a response from Bob; it contains his new DH ratchet public key B1

0 Alice applies a DH ratchet step to derive a new receiving chain key 8K ...

m She then applies a symmetric-key ratchet step on [l to get the message key [l for the
received message, as well as a new chain key [BK)

O ... and to derive a new sending chain key [BK)

®m In the next step (shown on the next slide), she applies the ratchet on [ as well to create

the sending ke . .
9 Y - Ratchet Root Sending Haceiving

DH ratchet Symmetric-key ratchet [



A Double Ratchet Walk-Through

0 Step 4:

O Here Alice next sends a message using -, and applies two more ratchet steps
to create sending message keys @l land [B8fifor 2 additional messages

®m Note that the DH-rachet wasn’t invoked to create new chain keys, as seen before, i.e. Alice
sent a sequence of messages to Bob without prior receiving his new public key

O Alice receives a message encrypted
with [B2) .
O Since Alice didn’t receive a new public : '=

) i

Ratchet Root Sending Receiving

key from Bob, she simply applies the
receiving key ratchet again, to derive
(B2)

3 steps }

1 step




A Double Ratchet Walk-Through

0o Step 5:

O Alice then receives Bob’s new public

key (B3), as well as messages H
encrypted with [E@flond B2

O She generates these keys, by

Ratchet Root Sending Recsiving

® Applying the DH ratchet and creating

a new receiving chain key (CK) -
®m Executing the receiving key ratchet
twice to generate (B3) and (B4)

O Alice also generates a new sensing

message key -, by ___j_BeeeBs | T L .
B calculating a new private key

m Applying the DH ratchet \

w
= Creating a new [EHCINCICHGINIREY

m Executing its ratchet once to create [[lB)




Summary: Keys and Key Exchanges in

the Double Ratchet Protocol
O
0 Initial Key Exchange:

O Two parties (Alice and Bob) perform an initial key exchange using (a
MitM-resilient variation of) ECDH to establish the Root key;

O The Constants in the symmetric key ratchets are derived from the Root key

0 Symmetric Key Ratcheting:

O Every time a message is sent / received, a new symmetric encryption key
is provided by the “send” ratchet and the “receive” ratchet

O This process is known as "ratcheting forward" and ensures that each
message has a unique encryption key

0 Asymmetric Key Ratcheting:

0 Normally, after each message exchange, both parties generate a new
root key by doing a DH key exchange

O However, if the message receiver is offline, the sender can still use
symmetric key ratcheting to create a new message key for each message
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Recap: Model of a Conventional

Cryptosystem
-b

Y = E(X), X = E'(Y)



Recap: DH and Man-in-the-Middle

SMi’th Attacks
.

Alice Mallory Bob

: 1 1
1 1 1
1 A=g°*modp, '

1
E :Z—Q’mndp:
1 1 II
i B=g"modp !
1 ' 1
1 Z=g’modp i
v 1 1
1

Ky=Zmodp K,=Amodp K= Z’mod p
K g= E'mod p

AMan In The Muidio
Mallory

0  Mallory is a MitM attacker and performs message interception and message fabrication
0  Mallory establishes two individual (secure) connections with Alice and Bob
0 Both Alice and Bob are unaware of Mallory’s existence (as there is no authentication)

0 DH alone is not sufficient for secure key distribution!



Recap: Public-Key Encryption

Ted’s Key?
JD}I - ?
ec
Bob's public Bob 's private
key key

Transmitted

ciphertext
| B

W
Plaintext . . . . . Plaintext
. Encrvption algorithm Decryption algorithm
mput output

(e.o.. RSA) (reverse of encryption
algorithm)




Key Issues that need to be addressed
N

1. Symmetric key encryption
O Key distribution mechanism?
O Key management (key renewal / generation)?

O Key authentication?

2. Public key encryption
1. Public key distribution / management?

2. Public key authentication, i.e. validation of owner?



Terminology
B

0 Key rotation is the general term for creating a new key and
starting to encrypt data with it, while retiring the old key,
hence the rotation
O Time-Based Key Rotation

m E.g., every week
O Usage-Based Key Rotation

m E.g., after using it to process x Gigabyte of data
O Incident-Triggered Key Rotation

®m Change key if it was compromised

0 Re-keying involves changing cryptographic keys in an on-
going communication channel (e.g., TLS =2 later)

0 Re-encryption refers to the process of encrypting previously
encrypted data using a new key



Key Management Lifecycle

I I ————

O

d

Generation: Generating strong cryptographic keys using a cryptographically
secure random number generator (as seen before)

Distribution: Safely transmit them using encrypted channels / protocols, to
authorised parties without risking unintended exposure

0 Key wrapping is a common approach here, i.e. encrypt the new key using the old key
before circulation

0 Possibly DH if hardened against MitM attacks

Storage: Utilize key management systems (KMS) to encrypt, store and manage
cryptographic keys to protect them from theft or unauthorised access

O See next slide
Usage: Utilise keys for encryption / decryption / authentication

Rotation: Replace cryptographic keys regularly or according to a policy to limit
their exposure and minimize any data exposure impact from potential key
compromise

Destruction: Safely delete keys once they are no longer needed to prevent their
recovery or misuse



Types of KMS and cryptographic Key

Stores
N

0 Hardware Security Modules (HSMs):

O These are physical devices that provide secure key storage and
cryptographic operations, e.g. USB HSM

0 Cloud-based Key Management Services:

O E.g., AWS Key Management Service, Azure Key Vault, and Google
Cloud KMS

0 Software-based Key Stores:
O E.g.,, OpenSSL, Java KeyStore (JKS), and Microsoft's Cryptographic API
O They are used for storing keys in software applications

0 Hardware-based Key Stores:

O Devices like TPM (Trusted Platform Module) and smart
cards can securely store cryptographic keys and
perform cryptographic operations




- Symmetric Key Cryptosystems



Key Distribution Case Study

0 Problem

O Two parties PA and PB want to securely communicate over a public network
using symmetric key encryption

O How can the key distribution be achieved?

0 Simple solutions
1. A key is selected by PA and physically delivered to PB
2. Some independent authority PC selects a key and physically delivers it to
PA and PB
0 Drawbacks of both solutions:
O Manual delivery of keys =2 this is tedious and is cumbersome

O The solution does not scale, as for N parties (e.g. endpoints in a computer
network)
N * (N =1) / 2 unique keys are required



Number of (unigue) Keys versus Number of
Endpoints
]

e
, /
L

e

10° = /

N

Mumber of keys

—_
=
-

5 6B ¥ a9 2
107 10* 10
Mumber of endpoints



Key Distribution using a KDC

0 Solution 3 overview

O PA and PB can rely on a secure (encrypted) connection to a
key distribution centre (KDC)

O The KDC delivers a key via the encrypted links to A and B on
demand

0 Details:
0 Each endpoint and the KDC already share a unique master key

O This key is used to securely exchange messages between both
(E¢, in the next slide)

O For N hosts, N master keys are required

O Two hosts communicate securely with each other, by using o
secure session key K, which is provided by the KDC



KDCs and the Needham-—
Schroeder Protocol

(1) Request | N

Key distribution (2) Egy | Ko || Request | Ny || Egpiks, (D4 ]
steps

(3) Egp [Ks [[TD 4]
Respond
(4) Exo N2 |

S Ep. | fiNA
Authentication (3) Egs [ 1iN2) ]

sleps
1. A=>KDC: ID,||IDg||N,
2. KDC— A: E(K.. [K||1Dg||N||E(Ks. K< 1DAD))
3. A—B: E(K, [K,||ID 4])
4. B—A: E(K,. Nz)

thnh

. A—B: E(K,, f(N))



The Needham-Schroeder Protocol

explained
14|

0 Initiator A (IA) and responder B (RB) share a unique master key each with the KDC (K, and K;)

1. IA issues a message to the KDC for a session key to be shared with RB; it includes:
o The Request, containing the identity of IA and RB (e.g., their network addresses)

O A unique nonce N, for this transaction

2. The KDC responds with a message encrypted using Ky, that contains:
O The session key Kg
O The original Request and N,

O A message for the responder RB that is encrypted using Ky, and that includes:
®  The session key Kg

®  The identity of A, ID, (e.g., its network address)
3. IA decrypts / validates the response and sends only the above message to RB
4, RB:

O Decodes the message using Ky, and validates |IA to be the message sender
O Sends a new nonce N, to |A, encrypted using KS
5. IA:
O Decrypts the message using its copy of Kg
O Processes the nonce in an agreed fashion (e.g.,, N, = N, + 1)

O Encrypts N, and sends it to RB

0 RB validates the content of the message and by doing so authenticates |IA



KDCs and the Needham-—
Schroeder Protocol

How can the

KDC be
Compromlsed? Key distribution

How can the
protocol be

compromised?

steps %

Authentication
steps

(1) Request | N

(3) Egp [Ks [[1D 4]

(4) Egs [N2]

(3) Egs [TIN2) ]

n

a w IV -

. A—B:
B— A:
. A—B:

. A—=KDC:
. KDC— A:

ID 4 |[IDg||N,

E(Ka. [Ks|[IDg| N1 ||[E(Ks. [K || IDAD)])
E(Kp. [K,||1D 4])

E(K,. N,)

E(K,, f(N,))




Possible Attacks on the Needham—

Schroeder Protocol
e

Assume an attacker is positioned between |IA and KDC
The MitM intercepts (1), identifies IA and RB, and intercepts (2)
The protocol is completed as before, and K is used by |A and RB

At some stage in the future K, is compromised

The MitM can now

0 decode (2)

O impersonate |A (by using ID,)

o resend X = EKB(K,, ID,) to RB (3),
0 complete the protocol

0 RB believes it is talking to 1A

0 Solution:

O 0O 0 o O

O X must be complemented with a timestamp (when K was created) and / or Kq
validity period, so RB can validate that KS is not stale (and must not be used
any more)

O all entities must be time-synchronised (= NTP / PTP)



- Public Key Cryptosystems



Key Management via uncontrolled Public-

Key Distribution
.

0 Simplistic approach, but easy to forge, e.qg.,
anyone could pretend to be user A

KUa \KUb
;.
KU
at ‘/KUI::
KUa KUb



Key Management via Public-Key

Directory
_—

0 The directory is just a public platform where everybody can
upload their public key

0 Similar issues as before

Public-Key
Directory

SN

KUa KUb




Key Management using a Public-Key

Authority
—

(1) Request || Time, {(4) Request || Time;

(2) Exrauth | KUb || Request || Time |

(5) Expaun | KUa || Request || Time, |

—

3) Exup DA || N

(6) Ega N1 IIN2

(T Egip [ Ny |



Key Management using a Public-

Kex Authoritx
21

[

[

Based on the Needham—Schroeder Protocol, but with some
improvements

The public-key authority (PKA) has a public / private key pair
with:

O Private key K, .

O Public key K .., Peing shared with all clients

Initiator A (IA) and responder B (RB) have a public / private key
pair each

0 Ky, and Ki .
0 Ky and K

Kua and K ; are managed by the PKA
|A requests for K3 in order to setup a secure connection with RB



Key Management using a Public-Key

Authority
—

(1) Request || Time, {(4) Request || Time;

(2) Exrauth | KUb || Request || Time |

(5) Expaun | KUa || Request || Time, |

—

3) Exup DA || N

(6) Ega N1 IIN2

(T Egip [ Ny |



The Protocol explained

1. |Aissues a message to the PKA to get K ; it includes:

O The Request, containing the identity of |IA and RB (e.g., their network
addresses)

O The timestamp Time, of this transaction
2. The PKA responds with a message authenticated using K,_ ., that
contains
O RB’s public key K,
O The original Request and Time,

3. 1A

O Validates the authenticity of the response by decoding the message
using K, ., and validating Request and Time,; |A extracts K,

O  Use this key to encrypt a message containing its (network) id ID, and
a nonce N,

O |A sends the message to RB



The Protocol explained

24
0 RB:

O Decodes the message using K,
O Validates the message sender’s id to be ID,
O Extract N,
O Requests |As public key in steps (4) and (5)
6. RB sends a new nonce N, together with N, to IA, encrypted
using K,
7. lA:
O Decrypts the message using K,
O Validates the message origin (RB) by checking N,
O Encrypts N, using K ; and sends it to RB

0 RB:

O Decrypts the message using K,
O Validates the message authenticity by checking N,



Key Management via Public-Key

Authority
e

0 Main problem:

O The public-key authority is a single point of failure! If it is compromised
(e.g., via a DoS attack), keys cannot be distributed

0 Therefore:

O Introduction of digital certificates, that can be used by nodes to exchange
public keys without contacting a public-key authority

0 Requirements:

O Any participant can read a certificate to determine the name and public key
of the certificate’s owner

O Any participant can verify that the certificate originated from the certificate
authority and is not counterfeit

O Only the certificate authority can create and update certificates

O Any participant can verify the currency of the certificate



Key Management via Certificate
Authority (CA)

0 The CA is the root of trust

0 Participants (A and B in the diagram) acquire a digital certificate
each that binds their public key KU, to their identity ID,

0 These certificates are subsequently exchanged to
O setup a secure connection

O authenticate both endpoints

KUa

Ca = Fepaun | Timey, 1D, KUa |

Cp = Egpauen | Timey, [Dg. KUb |

(2) (‘[3



Key Management via a Certificate

_ Authoritx: Aguiring a Certificate

0 The CA receives a request from A (or B) to certify
their public key

0 The CA creates a document that contains A’s (or B’s)
identity IDy, public key KU, and the document’s
validity period Time,

0 The CA signs, i.e. encrypts, this document using its
private key Kg_ ., and returns it to A (or B)

0 Every entity that possesses CA's public key can
validate the authenticity of a (signed) document by
decoding it



Key Management via a Certificate

Authoritx
]

0 A and B have acquired their certificates from the CA at some
stage in the past, and have a copy of CA’s public key

0 Now A wants to securely communicate with B, resulting in the
following steps:

O A sends C, to B, and B in return sends C; to A
O Both mutually validate

B the other party’s certificate by decoding it using the CA’s public key

m the certificate's sender by comparing ID, in the received certificate with the
network address of the sender

0 However, certificates are public documents and either side’s
network address could have been spoofed by an attacker, that
impersonates A or B

0 Therefore, additional steps as shown shortly are required



Example for a simple unsigned XML-

based Certificate
N
<SimpleCertificate>
<Authority> NUI-Galway </Authority>
<SignatureType> SimpleSignature </SignatureType>
<Created> 15-NOV-2019 </Created>
<Expires> 14-NOV-2024</Expires>
<OwnerName> William Simpson </OwnerName>
<KeyType> RSA </KeyType>
<KeylLength> 256 </KeylLength>
<PublicKey>
gHJgih57 JKf#i'\;gkwg@45tRET46 $Ed
</PublicKey>
</SimpleCertificate>



Example for a sighed simple XML-

based Certificate
I

hi6IGHJ gu#”:HGLFdyUf56EEdx3X5XxXuAzyl;*6/.,:g
wqui®0QudfsgfhaspfajEw994HK51'fig095u321\er3f2875
gyor23ro32ri6yhgglGUoowqru07t99Y)*-36wrgwUluiill
No891 u['[cO t6Rt*(v858e3w70-v794x3x27c8c9799999s
Qudfsgfhaspfaj7t99 -v794x3xz7c8c9799 O0Qudfsqgfhaspfaj#
w994HK51'fjg095u32nfiewYU87Deffe7s%Rk9236-J0D9d

0 The signed certificate is just undecipherable text
0 Its validation requires the decoding of the entire document

0 Later =» X.509 digital certificates provide a much neater solution



In-Class Activity
—

0 Can you identify any “weak spots” in the CA system
below?

Kla

ertificate
Authority

Ca = Fepaun [ Time, [DA. KlUa |

KUb

Cp = Exraun | Timea. [Dg. KUb |






Symmetric-Key Distribution Using a

Public Key Encryption
_—

0 Public-key encryption is slow

0 Therefore, it is often used for the distribution of a secret (session) key to be
used for conventional symmetric encryption

0 This is an example for a simple secret-key distribution, where A shares its

public key KU, with B:

0 Problem: B cannot authenticate A or their public key (and vice versa),
therefore

(1) KU, || 1D 5

(2) Egua [Kq]

O A or B could be impersonated via network address spoofing

O A MitM attacker could place itself between A and B



Secret-Key Distribution with Confidentiality
and Authentication

* In this protocol both sides have already acquired and validated the other side’s
certificate (that contains the owner’s identity ID,) and public key
* The 4-step authentication process guarantees that
* mutual authentication is provided (no network address spoofing possible)
* a MitM attacker cannot place itself between A and B
* It is the logical continuation of the protocol “Key Management via Certificate

Authority (CA)”
Y ( ) (D Egpn [Ny [[1Dg]

(2) EXUa INT || N2

Responde

(3} EKUB INz/j

(4) EguplEgralKsl]
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Lecture Content
B

0 Recap motivation digital certificates

0 Digital certificates and certificate authorities
o Concepts
O Applications

o Case studies



Recap: Key Management via Public-

Key Authority
—

{1) Request || Time, {(4) Request || Time;

(2} Expautn | KUb || Request || Time |

(5) Expaun | KUa || Request || Time, |

(3) Excup MDA || Ny

(6) EK U [N1 [ N2]

(M Egip [ Ns |

0 Please see also lecture notes “Public Key Encryption”



Recap: Key Management via Public-

Key Authority
B

0 Drawback of public-key authority:
Authority is a bottleneck! If it is compromised (e.g. via a DoS
attack), public keys cannot be requested or distributed

0 Therefore: Introduction of certificates, that can be used by
participants to exchange keys without contacting a public-key
authority

0 Requirements:

O Any participant can read a certificate to determine the name and public
key of the certificate’s owner

O Any participant can verify that the certificate originated from the
certificate authority and is not counterfeit

O Only the certificate authority can create, renew and revoke certificates

O Any participant can verify the validity (i.e., expiration or revocation) of the
certificate



Recap: Key Management via

Certificate Authority
]

0 Architecture allows exchange of public-key

certificates (PKC):
ertificate
Authority

Ca = Igpawn | Timey, 1Dy, Kla |

"

Kla KlUh

(.IB EKRELU[]] | -[”l]'[]L‘z, [DB. Kb ]




Recap: Example for a Simple XML-Based

Signature: Plaintext
N

<SimpleSignature>
<Authority> NUI-Galway </Authority>
<SignatureType> SimpleSignature </SignatureType>
<Created> 15-NOV-2019 </Created>
<Expires> 14-NOV-2020</Expires>
<OwnerName> William Simpson </OwnerName>
<KeyType> RSA </KeyType>
<Keylength> 256 </KeylLength>
<PublicKey>
gHJgih57 JKf#'\;gkwg @4 5tRET46 $Ed
</PublicKey>
< /SimpleSignature>



Recap: Example for a Simple XML-Based
Signature: Ciphertext

!
hi6IGHJ gu#”:HGLFdyUf56EEdx3X5XxXuAzyl;*6/.,:g
wqui*0Qudfsqgfhaspfajtw994HK51'fig095u321 \er3f2875
gyor23ro32ri6yhgglGUoowqru07199Y)*-36wrqgwUluiill
No891 u['[cO t6Rt*(v858e3w70-v794x3x27c8c9799999s
Qudfsgfhaspfaj7t99 -v794x3xz7c8c9799 09udfsgfhaspfai#
w994HK5 1'fig0925u32nfiewYU87Deffe7s%Rk?36-J0D9d



X.509 Certificates

o X.509 is an International Telecommunication Union (ITU) standard
defining the format of Public Key Certificates (PKC)
O Public key management generally involves the use of PKCs
O PKCs bind an identity (the subject) to a public key,
m usually with other info such as period of validity, rights of use etc.
®m with all contents signed by a trusted Certification Authority (CA), the issuer
O Therefore, X.509 certificates are also called identity certificates

O In all PKC use cases (e.g., peer-to-peer data communication), involved

parties either already know, or can securely obtain and verify the public key
of the CA to verify the certificate

0 X.509 certificates are widely used in secure email (S/MIME -
Secure Multipurpose Internet Mail Extensions), secure web
browsing (TLS / HTTPS), secure software patching, etc.



X.509 Certificate Structure

0 The certificate is issued by a CA, who

& F Y &
Version signs the certificate
Certificate
Signature S“‘j‘;‘gﬁt“h“"‘]"” O The certificate is hashed, and the hash is
algorithm—« |- ------—-----—----- . o o
idontiﬁor{ Eo z encoded (signed) by the CA using its
Issuer Name A . .
Period of{ _____not before > % prlvate key
validity e ﬂN “| = 0 In the diagram below, M is the entire
Subject Name = v . . . .
Subject’s T k: certificate excluding the signature, which in
ublic key-4 |~~~ ~ parameters_ ~ " "~ .
o { h__iﬂkeljniquc v turn is the encrypted hash
Identifier
Subject Unique 0 The certificate can be validated by
Identifier v
T anyone who has a trusted (!) copy of
- v
signature § =5 the issuer’s (CA’s) public key:

" I M ) l
kR, Kly  Compane KR, = €A private key

P | f $ KU, = CA public key
T [ - (B




X.509 Certificate Specification

T
0 Digital certificates are described via ASN.1
0 Abstract Syntax Notation One (ASN.1) is a standard
interface description language for defining data structures

that can be serialised and de-serialised in a cross-platform
way (=2 later)

Certificate ::= SEQUENCE f{
warsion theCertificate TBSCertificate,
signatureAlgorithm BlgorithmIdentifier,
Certificate serial number signatureValue BIT STRING }
sgnaturs TESCertificate ::= SEQUENCE
version [0] EXPLICIT Versiom DEFAULT w1,
is5Lar sk Beslinrs serialWumber CertificateSeriallumber,
validity /./"-’ not aftar ?ignature RBlgorithmIdentifier,
thsCarfificate - issusx Name,
subject validity Validity,
signatura akgorithm aligorithm subject HName=,
- public key " public key subjectPublicEeyInfo SubjectPublicHeyInfo,
signaturs valus : _— issuerUniqueID [1] IMPLICIT Unigqueldentifier OPTIONAL,
Issuar umqua subjectUnigqueID [2] IMPLICIT Unigueldentifier OPTIONAL,
subject unique ID extensions [3] EXPLICIT Extensiocns OPTIOMAL ]-
exiensions
Y idantifiar
extension  |f———| criticaliy flag
o valua

extanson




X.509 Certificates and OID

varsion

sarial numbsar

sgnatura

issuer

thsCarfificats

validity /’/

signature algorithm

subject

signature valua

public key

issuar unique 1D

subject unique 1D

axEnsions

extension [H——

exctan sian

not befora

not after

algarithm

public key

idantifiar

criticality flag

O

O

O

X.509 digital certificates contain
various fields containing
mandatory and optional attributes

O Mainly extension are optional

These attributes are described /

encoded using Object Identifiers
(OID) = next slide

A digital certificate is a structured
list of OIDs and attribute values

This list is converted into a data
structure encoded using BER (Basic
Encoding Rules) =2 later



Obiject Identifiers (OID)

0 OIDs are a standardised identifier
mechanism for naming any object,
concept, or "thing" with a globally
unambiguous persistent name

0 OIDs are dotted numbers, with
similar concepts often having
identical or similar OID pre-fixes

0 X.509 attribute values are either

Algorithm Type Ol

MID5 Cryptographic hash function | 1.2.840.113549.2.5
5HAL Cryptographic hash function | [.3.14.3.2.26
SHA256 Cryvptographic hash function | 2.16.840.1.101.3.4.2.1
SHA3E4 Crvptographic hash function | 2.16.840.1.101.3.4.2.2
SHAS12 Cryptographic hash function | 2.16.840.1.101.3.4.2.3
SHAZ56withDSA Digital signature 2.16.840.1.101.34.3.2
SHAZ56withECDSA Digital signature I.2.B40.10045.4.3.2
SHAIB4wiIthECDSA Digital signature 1.2.B40.10045.43.3
SHAS12withECDSA Digital signature 1 .2.B40.10045.4.3.4
MD5withRSA Digital signature [.2B40.113549.1.1 4
SHAIwithRSA Digital signature I.2.B40.113549.1.1.5
SHA IwithDSA Digital signature I 2B40.10040.4.3
SHAIwithECDS A Digital signature 1.2.B40.10045.4.1

AES with 128 bit key in ECE mode

Secret key encryption

216840 L 101.3.4.1.1

AES with 256 bit key in CBC mode

Secret key encryption

216840, 1001.3.4.1.42

HMAC-MID5 MaC 1.3.6.1.3.5.8.1.1
HMAC-5HAI MAC 1.3.6.1.558.1.2
RSA Public key encryption 1.2.840.113549.1.1.1

instances of primitive data types (e.g., an integer for version
number), or are described by an OID

0 For example, all (standardised) cryptographic algorithms used /
supported by X.509 have their unique OID — see also the table

above




OIDs in Digital Certificates

* In the mock-up example attribute OIDs are replaced with their name
don’t appear in a certificate and are only added to increase readability

* Note that / and / attributes can be only distinguished via
their position in the cert (i.e, appears after the ; appears after )
Version: g3
Serial Number: 3c:50:33:c2:%:e7:5c:cq:O7:c2:4e.3:f2:e8:0e:4f OID of Version:

O=VeriSign, Inc., OU=VeriSign Trust Network,
OU=www.verisign.com
CN=VeriSign Class 1 CA
Validity Jan 13 00:00:00 2021 GMT Mar 13 23:59:59 2026 GMT

O=VeriSign, Inc., OU=VeriSign Trust Network, OU=www.verisign.com CN=Lawrie Brown
Email=lawrie.brown@canb.auug.org.au

Subject Public Key Info: rsaEncryption
00:98:f2:89:c4:48:e1:3b:2c:c5:d1:48:67:80:53: d8:eb:4d:4f:ac:31:a9:fd:
11:68:94:ba:44:d8:48: 46:0d:fc:5¢:6d:89:47:3f:9f:d0:c0:6d:3e:9a:8e:ec:
82:21:48:9b:b9:78:cf:00:09:61:92:f6:d 1:cf: 45:ca:ea:8f:df
SHA1 withRSA
5a:71:77:c2:ce:82 ...




In Class Activity: Inspect Digital

Certificates on zour Device ‘ Browser
TH

0 Android (version 11):

o Open Settings

o Tap “Security”

o Tap “Encryption & credentials”

o Tap “Trusted credentials.” This will display a list of all trusted certs on the device
0 In Chrome (Windows OS):

o Goto Settings

o Open “Security and Privacy” and “Security”

o Open “Manage device certificates”

O loS devices require you to open the keystore

0 loS devices:
O Tap Settings > General > About
o  Scroll to the bottom of the list
O Tap Certificate Trust Settings
o Follow the link

0 Generic: hitps://www.ssllabs.com/ssltest /2form=MGOAV 3



https://www.ssllabs.com/ssltest/?form=MG0AV3

Example: X.509 Certificates in Web

Browsers
N

0 In Chrome: see https:/ /www.ss|2buy.com/wiki/how-to-view-ssl-certificate-
details-on-chrome-56

a | Certificate x a | Certificate X
General Details Certification Path General Details Certification Path _ How to View SSL Certificate Det: X +
Show: |<A||> ~ i . . .
| Certificate Information & & & ssl2buy.com/wiki/how-to-view-ssl-certificate-details-
A
Field Value ~
This certificate is intended for the following purpose(s): [Elversion V3 Ss 2B UY
= Ensures the identity of a remote computer [FISerial number 05400a3c3f48d5bb...
= Proves your Identity to a remote computer [Zisignature algorithm  sha256RSA global sl provider
+2.16.840.1.114412.1.2 [Isignature hash alg... sha256
+2.23.140.1.21 [Hlssuer RapidSSL RSA CA 2...
[Fvalid from 11 March 2020 00:0...
* Refer to the certification authority's statement for details. Valit.j to 11 March 2022 12:0...
[Esubject *_s512buy.com
[ Public kev RSA (7048 Bits) v

Issued to:  *.ssl2buy.com

05400a303f48d5bh44eB8102101c85hiE

Issued by: RapidSSL RSA CA 2018

Valid from 11/03/2020 to 11/03/2022

Issuer Statement Edit Properties... Copy to File...



https://www.ssl2buy.com/wiki/how-to-view-ssl-certificate-details-on-chrome-56
https://www.ssl2buy.com/wiki/how-to-view-ssl-certificate-details-on-chrome-56

X.509 Certificates in Detail: Field

version

0 X.509 certificates went through three iterations before v3
was finally released in 1996 (!)

F Y F Y rF Y
Version
0 The value of the version field “Certificate
Signature Serial Number
N algorithm
(OID 2.5.29.19) is an integer alzorithm 3 |- 2emn |
identifier =
[ssuer Name =
s
n X.SOQV] 9 O Period Of{ _____l“_“_b_"‘f“_"f _____ - .E
validity not after E -
I:I X.509V2 9 ] Subject Name g
Suh!'ect’s — algorithms =
o X.509v3 > 2 pubic ky | 22 e :
Issuer Unique
Identifier
Subject Unique
Identifier v
Extensions
- v
Signature { E
g




Fields Issuer and Subject

I I ———

Attribute type String representation Ol

0O Issuer is the certificate authority [ counuyname C 2545
. . fo organizationMName i 2.54.10

(CA) ‘I'hC]‘l' $|g ned fhe Cerf|f|cq1'e organizationalUnitMName | OL 25411
commonMame M 2543

o ° localityMame L 2.5.4.7

O Subject is the owner of the cert 2= Lo s

00 Both their descriptions are provided via a string called the
Distinguished Name (DN)

0 A DN is a sequence of OID encoded attributes and their values

0 Example: CN=Alice, OU=Administration, O=TU Darmstadt, C=DE

O This DN describes a person with common name (CN) Alice, who belongs
to the organisational unit (OU) “administration” of the organization (O)
“TU Darmstadt” that operates in the country (C) Germany

O Here the DN reflects a logical hierarchy of a person belonging to an
organisational unit which is part of an organisation located in a country

O The DN as string would look like “2.5.4.3Alice2.5.4.11Administration ...”



Field serialNumber
T

0 The certificate issuer assigns a unique serial number to each signed
certificate, composed as follows:
O SerialNumber (OID 2.5.4.5)
O a positive 20 byte long integer

O E.g. “2.5.4.501234567890123456789”

m As we will see later, each item is in fact represented as a Type-Length-Value
triplet

0 The serial number field is mandatory

0 Therefore, the combination of the issuer name and the serial number
uniquely identifies a certificate

O Consider a subject could have multiple certificates signed by the same
CA

O Note that different CA can issue a certificate that has the same serial
number



Field signature

0 The issuer of an X.509
certificate signs the certificate

0 The mandatory field signature
describes the signature
algorithm that was used by the
issuer to sign the certificate

0 The field is of type
Algorithmldentifier (OID
1.3.6.1.1.15.7)

0 It is complemented by the OID
of the signature algorithm that
is used (see table) and
optional additional
parameters

Algorithm Type Ol

MD3 Cryptographic hash function | 1.2.840. 11354925
5HAL Cryptographic hash function | [.3.14.3.2.26
SHA256 Cryvptographic hash function | 2.16.840.1.101.3.4.2.1
SHA3E4 Cryvptographic hash function | 2.16.840.1.101.3.4.2.2
SHAS12 Cryptoeraphic hash function | 2.16.840.1.100.3.4.2.3

SHA256withDSA Digital signature 2.16.840.1.101.3.4.3.2
SHA256withECDSA Digital signature | .2B40.10045.4.3.2
SHA3B4withECDSA Digital signature | .2B40. 10045433
SHAS12withECDSA Digital signature | 24010045434
MD5withR5A Digital signature [.2B40.113549.1.1.4
SHAIwithRSA Digital signature .2.B40.113549.1.1.5
SHAlwithDSA Digital signature I 240 10040.4.3

SHAIwithECDS A
Wit 28 DIl Key in mode

Diigital signature
SECrel key encrypion

[.2.840.10045.4.1

s

AES with 256 bit key in CBC mode

Secret key encryption

216840, 101.3.4.1.42

HMAC-MID3

MaAC

1.3.6.1.3.5.8.1.1

HMAC-5HAI

MAC

1.3.6.1.558.1.2

RSA

Public key encryption

1.2.840.113549.1.1.1




Field validity

T [ ——
0 The validity field (OID

2.5.29.16) indicates the o

validity period of the pr—

certificate | = e
0 This field contains just two e O

dates, which have no OID pp—

and are just referenced as = .

notBefore and notAfter tonson |+l sy g
0 Between these two dates the -

certificate is valid unless it
has been revoked (=2 later)



Field subjectPublicKeylInfo

0 The subjectPublicKeylnfo field (OID
1.2.840.113549.1.1.1) contains the public key data
that is certified by the certificate

0 This data is described as a sequence containing the
OID of an algorithm followed by optional
parameters and the public key

0 The example below shows the ASN.1 structure of an
EC public key and its parameters

ECParameters ::= SEQUENCE {
version ECFVer,
fieldID FieldID,
curve Curve ,
base ECPoint,
order INTEGER,

cofactor INTEGER OFTIONAL }



Fields issuerUniquelD and

subjectUniquelD
mb

0 The subjectUniquelD and issuerUniquelD fields were introduced with X.509v2

0 It may happen that the same distinguished name is assigned to different
entities

0 For example, if a subjectDN is used twice by an issuer, then the owner of the
corresponding certificate is not uniquely determined by the subject DN

0 To make the owner description unique, the subjectUniquelD field may be
added

00 The content of that field is a binary string that is a unique identifier for the
owner of the certificate

0 Likewise, several issuers may share the same DN
0 In this case the issuerUniquelD field resolves the situation

0 However, the use of these fields is not recommended because they make
certificate use more complicated



Field signatureAlgorithm and

signatureValue
m—

0 The signature algorithm that was used to sign the
certificate is specified twice in an X.509 certificate:

o In the tbsCertificate structure (under signature), as seen before

o In the signatureAlgorithm field

0 signatureValue holds the ——
signature on the tbsCertificate —— T
— .'-"’F//' not aftar
validity

signature algoritim X aligorithm

i.e. the encrypted hash of o I— TN g
tbsCertificate (but not signature

content of the certificate, \ canicas o

subject uniqua ID

axEnsions

algorithm) —— s

extansian




X.509 Certificate Extensions

0 The contents of X.509 version 1 and version 2 certificates turned out to be
insufficient in practice

0 X.509v3 certificates may contain extensions which support various PKI
processes

0 The ASN.1structure of X.509 certificate extensions can be seen below:

O The first field in such an extension is extnID, which contains the OID of
the extension

O Next, any extension contains a criticality indicator critical

m [f its value is true, then all applications that use this certificate must evaluate the
extension; If an application is unable to do so, then it must consider the
certificate to be invalid

O The third field contains the extension description

Extension ::= SEQUENCE |
extnID OBJECT IDENTIFIER,
critical BOOLERN DEFAULT FALSE,

extnValue OCTET STRING }



Extension Field AuthorityKeyldentifier
I

0 Problem:
O Anissuer / CA may have multiple key pairs to sign a digital certificate
o If a given certificate is to be validated, the correct public key must be chosen

O The information in the issuer field just points to the CA, but not to the correct key

0 Solution:

O This extension, also known as AKI extension or AKIE, is to support applications in
identifying the public key of the issuer, to be used to verify the certificate signature

0 The authority key identifier extension must be present in any X.509v3
certificate unless the certificate is self-signed (=2 later)

0 Also, this extension must not be marked critical

0 Typically, this value is a 20-byte SHA-1 hash of the public key
belonging to the private key of the issuer that was used to sign the
certificate

0 Similarly, the extension field SubjectKeyldentifier can be used to hash
the subject’s public key (more later)



Extension Field KeyUsage
T

° . ° KeylUzage ::= BIT ESTRING {
0 The KeyUsage extension indicates what the ﬁigii'algimtm ©.
. . . ofe nonRepudiation 1},
public key contained in a certificate can be keyEncipherment (2
dataEncipherment (3},
Used fOI’ keyRAgreemaent (4),
keyCertSign {5},
. cRLS4 (6),
0 Possible uses are: R e
decipherOnly (s) }

o digitalSignature
The public key can be used to verify digital signatures, for example, to
validate the authenticity and origin of signed emails

O nonRepudiation
The public key can be used to verify signatures to provide nonrepudiation

m E.g. denial of a digitally contract being signed

O keyEncipherment
The public key may be used to encrypt symmetric session keys

O dataEncipherment
The public key may be used to encrypt data

O keyAgreement
The public key may be used in a key agreement scheme (i.e., Diffie-Hellman)



Extension Field KeyUsage
B

0 Possible uses are: i L
. nonRepudiation (1),

O keyCertSign STl e

. . . o taEncipherment 3},

The private key corresponding to the public key in the keyAgrasment (4)
certificate may be used to sign certificates. The public il o

key is then used to verify certificate signatures encipherinly (73,
decipherinly (s} }

O cRLSign
The private key corresponding to the public key in the certificate may be used to sign
certificate revocation lists (= later)

O encipherOnly
Undefined in the absence of the keyAgreement bit
When the encipherOnly bit is asserted and the keyAgreement bit is also set, the subject
public key may be used only for enciphering data while performing key agreement

O decipherOnly
ditto

0 Many clients and applications evaluate the key usage extension

O Example: An email client that has access to several certificates of the recipient of an
email can tell by the key usage extension which certificate is to be used for
B email encryption
m verifying signatures of received emails



Extension Field SubjectAlternativeName
BT

0 Up to now a subject is identified via its subject field that contains the
distinguished name (DN) with all the aforementioned attributes

0 This extension binds additional names to the public key in the certificate
not covered by the DN

0 Typical names contained in this extension are owner’s

X509v3 Subject Alternative Name:

. DNS:*.wikipedia.org, DNS:*.m.mediawiki.org, DNS:*.m.wikibooks.org, DNS:*.m.wikidata.org,
n emC”I Gdd reSS DNS:*.m.wikimedia.org, DNS:*.m.wikimediafoundation.org, DNS:*.m.wikinews.org, DNS:*.m.wikipedia.org,
DNS:*.m.wikiquote.org, DNS:*.m.wikisource.org, DNS:*.m.wikiversity.org, DNS:*.m.wikivoyage.org, DNS:*.m.wiktionary.org,
DNS:*.mediawiki.org, DNS:*.planet.wikimedia.org, DNS:*.wikibooks.org, DNS:*.wikidata.org, DNS:*.wikimedia.org,
n IP Gddress DNS: *.wikimediafoundation.org, DNS:* . wikinews.org, DNS:*.wikiquote.org, DNS:*.wikisource.org, DNS:*.wikiversity.org,

DNS: *.wikivoyage.org, DNS:*.wiktionary.org, DNS:*.umfusercontent.org, DNS:*.zero.wikipedia.org, DNS:mediawiki.org,
DNS:w.wiki, DNS:wikibooks.org, DNS:wikidata.org, DNS:wikimedia.org, DNS:wikimediafoundation.org, DNS:wikinews.org,

Ll
n domqln nqme (DNS nqmeS) DNS:wikiquote.org, DNS:wikisource.org, DNS:wikiversity.org, DNS:wikivoyage.org, DNS:wiktionary.org,

O uniform resource identifier (URIs)

0 For example, if the public key in the certificate is used for authentication
of the web server of an organisation, the DNS name or the IP address
of that server is typically contained in this extension
o Clients that connect securely to such a server verify that the IP address or the

DNS name of the server matches the IP address or DNS name contained in
this extension (more later)

0 Example: UoG certificate



Attribute Certificates
D ————

1 An attribute certificate binds certain privileges or
attributes to their owners

Serial Number

0 It is signed by an attribute authority (AA)

Signature Algorithm

1 For example, attribute certificates are used in
smartphones to provide apps with the permission to
access certain phone resources, e.g., a user’s
address book

Issuer

Validity period
Holder

0 In contrast to identity certificates, an attribute SO

certificates does not contain the owner’s public key Iss. Unique Identifier

7 On the other hand, identity certificates could be
complemented by additional attributes encoded as AA ss'g\ahrc
new extension fields, and to some extend mimick
attribute certificates

O Such a certificate is also called a combined certificate




Attribute Certificates

1 Attributes are TLV triples as well, uniquely
idenﬁfied b)’ their OID Serial Number

Signature Algorithm

1 Attribute certificates are often used in

I
conjunction with X.509 public key certificates st

Validity period

1 For example, consider a firmware update for a Holder

mobile phone:

o It is signed by its issuer and the signature
verification key is authenticated by a certificate

o In addition, an attached verifiable attribute
certificate specifies whether or not this update may
be used for a certain type of mobile phone



Example Home Automation
B

HOME SMART HOME

0 Consider a range of wireless loT
home automation devices that require

1. secure inter-device communication

2. end-point authentication

3.  optimised inter-device communication
(i.e. the smart fridge and the electricity
smart meter only exchange energy consumption data)

4. the exclusion of 3™ party devices

0 All devices are integrated in a home-automation network (HAN)
and form P2P connections via some handshake protocol

0 Each device has its own X.509 public key certificate

O Certificates are exchanged between paired devices to provide end-

point authentication (1) and secure session keys for secure wireless data
communication (2)



Example Home Automation
N

0 However, in order to address 3. and 4., additional
information must be encoded:

0 The device manufacturer
O The device type
O Rules that describe other devices it can talk to

0 This info can be encoded in
0 an additional attribute certificate, or

0 additional extension fields of the public key certificate (creating a
combined certificate)

0 Subsequently, a device that during the handshake
O cannot present these credentials, or
0 has the incorrect attribute values (e.g. different manufacturer)

cannot complete the process and is excluded from the HAN



Trust Models and Digital Certificates

0 Problem: Public key cryptography (and subsequently
digital certificates) can only be used in practice if users
trust the authenticity of the CAs public keys

0 For example, in the diagram below, how do A and B
acquire the public key of the CA, and why / how can
they trust this key?

0 The CA is the root of trust,
but how can this trust be
justified?




Direct Trust

0 Trust in the authenticity of a public key is direct if the public key is
directly obtained from the key owner or its owner directly confirms
the authenticity of the key in a way that is convincing for the user

0 Example:

O Most Linux systems allow the installation of additional software such as
updates or services from trusted servers located on the Internet

O The authenticity of those software packages is established by a digital
signature

O The verification of the signature requires a public key, which is
embedded in the Linux distribution

O The authenticity of this key is guaranteed by the authenticity of the Linux
installation image

O Such public keys are usually internally stored as self-signed certificates

O Similarly, self-signed certificates can be found in web browsers



Self-Signed Digital Certificates
T

0 Self-signed digital certificates are | Certficate X
issued by the public key owner
themselves, as opposed to a

General Details Certification Path

certificate authority (CA) issuing them @ Certificate Information
Ll SUbieCT dnd iSSUGF fields pOinT to The Thisoertiﬁcat;is;ntendefd for the following purpose(s):
. . . . ()= i ti te te
same identity and the cert is signed ures the ety of a remote computer

using the owner’s private key

0 Obviously, they do not provide any
trust value per see

Issued to: TestVM2
o However, root CA have self-signed

certificates (=2 later) Issued by: Test/M2

0 See also self-signed browser Valid from 3/7/2023 to 3/7/2024
ce rﬁfiCCﬂ'eS USing OpenSSL ? You have a private key that corresponds to this certificate.

O https:/ /www.akadia.com/services/ssh R —
test certificate.html



https://www.akadia.com/services/ssh_test_certificate.html
https://www.akadia.com/services/ssh_test_certificate.html

Commercial CAs
S

0 Self-signed certificates have no value to 3" parties, as

different users that need to exchange their certs need a

common root of trust

0 This is achieved by hundreds of companies worldwide that

provide digital certificates to clients

o e.g. Verisign (www.verisign.com) and

SSL (www.ssl.com)

0 These CAs form a CA hierarchy

Rank

Lo T 5 O o o e R

Issuer
IdenTrust
DigiCert
Sectigo (Comodo Cybersecurity)
Let's Encrypt
GoDaddy
GlobalSign

Usage
43.4%
16.6%
13.8%
7.2%
5.4%
2.4%

Market Share
45.9%

18.7%

15.5%

8.2%

5.1%

2.7%


http://www.verisign.com/
http://www.ssl.com/

Certificate Classes
S

0 Certificate classes in digital certificates are typically
encoded using specific OIDs within the certificate's
extensions

0 These classes can indicate different levels of validation
and trust, such as
0 domain validation (DV)
0 organization validation (OV)
O extended validation (EV)



Certificate Classes
T

Ceriificate Type_| Validation Level | Issuance Time _| Use Case ___| Assurance Lovel_

Domain
Validation (DV)

Organization
Validation (OV)

Extended
Validation (EV)

Basic

Intermediate

Highest

Minutes

Few days

Several days to
weeks

Personal
websites, blogs,
small businesses

Business
websites,
organizations

E-commerce sites,
financial
institutions,
websites
handling
sensitive data

Low, does not
verify the
identity of the
subject

Medium,
validates the
subject's identity

High, as the CA
conducts a
thorough vetting
process, including
verifying the
legal, physical,
and operational
existence of the
organization



Domain-Validated Certificates
T

0 Digital certificates are usually issued to websites

O The public key in it is used to setup a secure connection between client
browser and server (by negotiating a symmetric key -> later)

0 Practically, many CAs often do not do a thorough check on a
website (e.g. malware check) or their owners (id, credentials etc.)

0 Instead, automatic checks are done, where it is validated that the
applicant has control over the website and the DNS of the website
domain, e.qg.,

O Place a specific file at the specific URL on the website
O Add a specific DNS record to the website domain

O Create an email address in the site domain and receive a password at
that email

0 As a result, such (HTTPS) certificates are called domain-validated
certificates



Certificate Signing Request (CSR)

O

O

O

DNE

CN

ou

5T

C

EMATL

A CSR is a Base64-and BER-encoded message (formally described using ASN.1)
sent from an applicant to a CA of the PKI in order to apply for a digital certificate

The most common format for CSRs is the PKCS #10 specification
O PKCS stands for "Public Key Cryptography Standards*

Before creating a CSR, the applicant first generates a key pair, keeping the
private key secret

The CSR subsequently contains the public key, as well as the following fields
(source: Wikipedia):

Information Description Sample
Common Name This is fully qualified domain name that you wish to secure * wikipedia.org
Organization Usually the legal name of a company or entity and should include any suffixes such as Lid_, Wikimedia Foundation,
Name Inc., or Corp. Inc.

Organizational o .
i Internal organization department/division name IT
Locality Town, city, village, etc. name San Francisco

Province, region, county or state. This should not be abbreviated (e.g. West Sussex, -
State California
Normandy, New Jersey).

Country The two-letter IS0 code for the country where your organization is located us

Email Address The organization contact, usually of the certificate administrator or IT department



In-class Activity: Generating a Digital

Certificate
o |

0 Generate certificate signing request (CSR) via

https: / /csrgenerator.com/
0 View the CSR hitps://lapo.it /asn1js/
0 Create a CSR and submit it to htips://getacert.com/

A certificate will be returned
0 View the content of this certificate via
O https://lapo.it/asnljs/
0 “Open in PEM format” in htips:/ /getacert.com/



https://csrgenerator.com/
https://lapo.it/asn1js/
https://getacert.com/
https://lapo.it/asn1js/
https://getacert.com/

Hierarchical Trust
I

0 In this simple hierarchical PKI, a single CA has issued certificates to
the entities Alice, Bob, and Carl

0 The CA is the trust anchor. It has generated a self-signed
certificate, which is issued to Alice, Bob, and Carl too

O The self-signing is depicted by a loop arrow from the CA to itself
1 All entities in the PKI establish direct trust in the trust anchor

0 Since the PKI users trust the trust anchor to sign certificates, the PKI
users trust the authenticity of the public keys of Alice, Bob, and
Carl, after validating their certificates

0 Also, if entities outside the PKI trust the =

Certification Authority (CA)

trust anchor and its public key, then they
also accept the public keys of Alice,
Bob, and Carl as authentic

Carl

Alice




Simple Hierarchical Trust Example

Alice receives Bob’s digital certificate (let’s call it BDC)
signed by the CA

Alice checks the issuer section of BDC, which determines
the CA being the issuer

Alice has already a copy of the CAs self-signed
certificate (let’s call it CDC) and extracts the public key

O Alice may even check the integrity of CDC in a similar
way as she checks Bob’s certificate below

varsion

sarial number

signature

issuar

thsCarfificate

validity

signature algorithm

subject

signature valua

pubiic key

issuar unique 1D

subject unique 1D

ax@nsions

not bafare

not aftar

algorithm

public kay

identifier

extension

|
[ ]

criticality flag

valus

Alice validates that BDC has not expired

She checks that the signature algorithm in BDC
is compatible to CAs public key (e.g. RSA versus ECC)

Alice decrypts BDC’s signature value and compares
it against the hash calculated over BDC excluding the

A
G2

(¥

Certfication Authority (CA)

Alice

signature value itself

Carl

If both values match, the certificate and Bob’s public key stored in it is valid

Next, Alice validates Bob’s authenticity via a challenge-response protocol




O O

O O O

CA Hierarchy |

,7-“/
CAl | CA
.0 .
/ N [\
| CA3 [ CA4
- \ L ¥ )

| Alice | EEe | Diasia l'}mil-rl

Assume a scenario, where multiple CAs provide certificates

These CAs form a tree-like hierarchy with a “parent CA* providing
certificates for its “children”:

O CA1 and CA2 are intermediate CAs whose certificates were signed by RCA
O CA3 and CA4 are intermediate CAs whose certificates were signed by CA1
O Alice and Bob have certificates signed by CA1

O Carl’s certificate was signed by CA4

O Dianad’s and Emil’s certificate was signed by CA2

Note that the leaves of this tree are end-entities (or end users)

RCA could in principal sign end-entity certificates too

End users and even CAs have no visibility of the entire CA hierarchy



CA Hierarchy I

l Alice Bol

I Carl

——— S —

0 The RCA is the root of trust, and has a self-signed certificate

0 Remember that anybody could issue a self-signed cert to themselves!

0 This RCA root certificate is distributed to all nodes in the hierarchy

in a trustworthy fashion, for example via their

O internet browser (a browser installation includes typically 200+ intermediate and

root certificates) or

O operating system installation



CA Hierarchy I

1 During operations, an endpoint may
receive a certificate from another user that
was signed by a CA unknown to them

O E.g., Alice receives Emil’s certificate that was
signed by CA2

Y E

/SR -
| cas [ CAL

- \\ _
[ Alice [ Ban | [ Carl | ‘ Diann Ewil

1 Therefore, the user needs to get and validate the public key from
an unknown CA (that is referenced in the received certificate), via
a secure methodology, in order to validate the other user’s

certificate

O E.g., Alice needs to acquire CA2’s public key, and validate its authenticity,

before validating Emil’s certificate

1 This process is called Certification Path Construction



Certification Path Construction
e

0 Consists of two phases:

O Path construction
Involves building one or more candidate certification paths;
"candidate" indicating that although the certificates may chain
together properly, the path itself may not be valid for other
reasons such as exceeding a maximum path length

o Path validation
Involves making sure that each certificate in the path is within
its established validity period, has not been revoked, and any
constraints (e.g. maximum path length) are honoured



Certification Path Construction via

Name Chainin
nh

0 A candidate certification path must "name chain”

between the recognised trust anchor (example RCA) and
the target (example Alice’s) certificate

0 Working from the trust anchor to the target certificate,
this means that the Subject Name in one certificate must

be the Issuer Name in the next certificate in the path,
and so on



Name Chaining Example

nnnnnnn

.

[Self-Signed Certificate]

Issuer = RCA .

[Intermediate CA Certificate]

Issuer = RCA .

Subject= CA1

—

[Intermediate CA Certificate]

Issuer= CA1 .

Subject = CA3

i

[End-Entity Certificate]

Issuer = CA3 L

L ]

Subject = Alice




Certification Path Construction via Key

|dentifier Chainin
n*

0 Recall certificate extensions AuthorityKeyldentifier
(AKID) and SubjectKeyldentifier (SKID)

Equal
[Self-Signed Certificate]
. . » tﬁﬁlr[;;u:}ﬂ . s SKID =W . . » RCA
% [Intermediate CA Certificate
- & @ AKID =W . SKID =X - & & CA'I
% [Intermediate CA Certificate]
L AKID = X .« = = SKID=Y .« = 2 CA3

”*‘ % [End-Entity Certificate]

. & =& AKID =Y - & @ SKID=Z . & & .
Alice




Example Certificate Path Construction

request web site
i s oriee= celthﬁcate ¥ Certification
web site B} autbanty
‘“‘iss"e“”‘-v—sign/
~— | \
—A % |
. ‘ b3
| CA2 23 5%
S m— 29 © 2
£ 0% Sz =3
\ g |
Ty / /
/ \ : v
CA:
| Al user at PC ) E| browser
7 with browser [ distribute =21 ongor
; \ with browser
/ ,“' \ =
i r . Vs
; [ N verify - ;
I Allce T Bob J l Carl [ Dinna | Euil CA root certificate
- —— e —— -web site certificate

0 Consider an example with
o “Alice” (left) being “secure website” (right)
o “Emil” (left) being “user at PC” (right)
o “RCA” (left) being “Certificate Authority (CA)” (right)
Emil sends a HTTPS connection request to Alice and receives a response containing her digital certificate
Emil cannot validate Alice’s certificate directly, because it was signed by CA3 (and not RCA or CA2)

However, if Emil can construct a Certification Path between Alice’s certificate and the RCA, he can
validate Alice’s certificate (assuming he acknowledges the RCA as the root of trust)



Certification Path Construction

0 In order for Emil to build the path, he must get copies of
CA3’s and CATl’s certificates

o RCA’s self-signed cert is already in Emil’s possession
0 This can be done in 2 ways:

1. Alice tags both certificates to hers and send all 3 of them to
Emil

2. Emil uses a directory service to

retrieve both CA certificates, for /E
example via LDAP (Lightweight Lz ] [ e |
. / e |
Directory Access Protocol) [m]  [Cen]
" \.
| | | [ca | | | Buil_|




Path Validation
T

0 Now that Emil has a candidate path and all certificates, he must validate
everything

1. Firstly, Emil checks if all certificates have not expired yet (more later!)

2. Then, using RCA’s public key, he validates CA1’s certificate as seen
before

3. If CAl’s certificate is ok, Emil extracts its public key to validate CA3’s
certificate

4. If CA3’s certificate is ok, Emil extracts its public key to validate Alice’s
certificate

5. |If Alice’s certificate is ok, and if her
domain name (remember Alice is a i
secure website) matches the URL (o] o]
Emil entered, Emil goes ahead with the Z %
connection -




HTTPS Server Authentication

Process (=2 later)
—

request web site D HTTPS is q Secure

i celttjﬂcate M Certification R
b st 2 Authorty version of HTTP
‘—-issue——*-t sign”| ;
5 In HTTPS, HTTP

o

gﬁ =8
?5: 4 operates on top of TLS
) ] (Transport Layer
st P NN~ rovser Security), a secure
with browser [ ———— dIStribute "—===—"1 " yendor
- with browser
= | transport layer
\ f
verfy [ CA root certificate

protocol
.web site certificate




Basic Constraints
T

BasicConstrainkts ::= SEQUENCE |

0 Another X.509v3 extension... Ty
0 It is marked critical if the subject of the certificate is a CA

0 cA is a Boolean value which is true if the certificate
belongs to a CA and false otherwise

o If this value is true, then the public key contained in the
certificate can be used to verify signatures



Basic Constraints
A

BasicConstrainkts ::= SEQUENCE |

D III. hqs TWO fieldsl the 2nd field: ::thLenEanst:raint ?DNgELEEz ?ﬁFAE]FEE?IZaM}

0 pathLenConstraint is used only for CA certificates in which the cA
field is true and the keyCertSign bit is set in the key usage
extension

O The value of this field is an integer; it sets a A
limit on the number of intermediate CA [+ ]
certificates that may be found after this -

7 o]
[ ¢ ]

certificate in the certification path before the
path is invalid (i.e., when A generates B’s
certificate, it inserts its pathLenConstraint - 1 Ceticate | Pal lenglh constraint

Cs 1
Ci 0

0 Self-issued certificates do not count cr o

o If such a limit is not desired, then this field is empty
0 This parameter allows to limit the depth of a CA hierarchy



Combining Trust Hierarchies: Trusted

Lists
N

0 Assume two independent PKls with their own trust anchor

0 How can Alice validate Greg’s
certificate? /"-’”\ /cr-—w\

0 Solution 1: Trusted lists /m\ /“\ o /‘“ﬁ\
0 Here Alice accepts CA2 as Aos | | Bob | | Cad | | Disna Buil | | Fruok | | Gree

another trust anchor (note that her cert is signed be CA3 only)
m CA2 cert is pre-installed on her browser / OS

o She is then able to construct a certification path (Greg — CA6 —
CA?2, potentially using a directory service), subsequently
m validating CA&6’s cert using the public key in CA2’s cert
m validating Greg'’s cert using the public key in CA6’s cert



Combining Trust Hierarchies: Provide a

common Root
I

0 Here each end entity of the

combined PKls replaces

its original trust anchor T T

CAl CaAZ

by the new common root N\ /\

CA3 CA4 CAS CAG

FANINA [ 7

Bob LATIA Emil Frank Greg

0 As a consequence, certification paths that establish the
authenticity of a public key have to be changed by
prepending the common root



Combining Trust Hierarchies: Cross

Certification
Teo |

00 Cross-certification allows users of two PKls to authenticate

each other’s public keys — cea —
without replacing their trust Ve ' \ o 7 "\
anchors oA o oas

CAB
Frank B

Greg

0 The idea is that the two root _/ \ | / \.
CAs certify each other’s e ) W s
public keys using so-called cross-certificates

0 In fact, the two CAs that cross-certify each other may also be
only intermediate CAs

0 However, this implies that only the users covered by these CAs can
validate each other’s public keys

o E.g. a single cross-certificate between CA4 and CA5 provides only
interoperability between Carl, Diana and Emil




Certificate Revocation
T

0 The validity period of certificates may be quite long

O For example, X.509 server certificates issued by SSL are
typically valid for at least 2 years
0 However, it may happen that during the validity period
a certificate has to be invalidated

O Example: the private key that corresponds to the public key
in the certificate has been compromised

0 The process of invalidating the certificate before its
expiration time is called revocation



Certificate Revocation Lists (CRL)

O

A CRL is a list of revoked certificates which is digitally signed to prove its
authenticity

CRLs are regularly updated and made available at predictable points in time
0 When a CRL is updated, newly revoked certificates are inserted into the CRL

There are direct CRLs and indirect CRLs:

O Direct CRLs only contain certificates of one issuer and are issued and signed by that
issuer

O Indirect CRL may contain certificates of several issuers and is signed by the so-called CRL
issuer

Users who wish to obtain revocation information
O download the CRL and verify its digital signature
O check whether the certificate that they are interested in is contained in the CRL

CRLs may become quite large since expired certificates are not always removed

Therefore, delta CRLs have been introduced which only contain the certificates that
have been revoked after the publication of the last full CRL

The full CRL (i.e. complete CRL) contains all revoked certificates



Online Certificate Status Protocol

SOCSPI
i

0 CRLs may become very large, downloading them becomes time consuming,
and storing may need a lot of (unavailable) space

0 Also, due to the potentially long time intervals between the publication of
two subsequent lists, revocation information may not be up to date when it
is used, in particular, shortly before the next update

0 OCSP allows clients to query an OCSP server about the revocation status
of individual certificates

0 Here users may obtain revocation information immediately after the
certificate is revoked

O Unless of course the server just queries a CRL

0 OCSP responses are digitally signed by the OCSP server, so they can be
validated for their authenticity

0 On the other hand, in contrast to the CRL method, OCSP requires the
applications that need revocation information to be online



Validity Models for Digital Signatures
T

0 Certificates in a validation path may have different expiry
dates (because they were generated by different entities
with different policies at different times), which poses the
question, for how long an end-user certificate may be
deemed valid, i.e. when does its path validation invalidates

0 Simple example:
o0 Assume Paul sells his house to Anna on 1 October 2023
O Paul signs the sales contract digitally

O The certificate that authenticates Paul’s signature verification key
expires on 31 July 2024

O Should Paul’s signature still be considered valid after his certificate
has expired?



The Shell Model
T

0 In this model all certificates Carsicne 1 | |
along the certification path Costonoz | | |
must be valid when the sig- costcans ||| A S
nature is checked - .

D This mOdeI is qppropriate 21:I11E:I1I'.'I1 :2&115'35&1 " o 3311!12‘31ﬁ :2&12iﬂ4‘3ﬂ Srma
in all applications, where 2011000 f I /mw /
signing and verification #r Stratra raaten T anea  FEECT 22000
times are very close to O Sgraure vashoan
each other

0 Examples of such applications are
O challenge-response authentication

0 mechanisms or email authentication

0 However, for contract signing (with a legal binding long into the future)
this model is inappropriate



The Chain Model

I I ———

0 In the chain model the validity - |
of a signature is independent ooz | o
of the verification time for this comcans || 4 : |
signature ]

0 The chain model is often used for marer | oo T m””ﬁmﬂﬁ” e
verifying legally binding electronic - o Zm
signatures because such signatures | ... ... e

may be used for contract signing
0 The chain model supports long validity periods for digital signatures

0 However, it has certain drawbacks:

o If Alice issues a signature and later a certificate in the chain that certifies
Alice’s verification key is revoked, the signature remains valid

O This may have serious effects if the revocation reason is key compromise

0 In the above example, the “2011-06-01" signature is valid at the point
“2012-06-06", the signature “2012-05-12" is not



PKI Architecture Components

0 A CAis a very well protected infrastructure that should only
generate / sign certificates and CRLs

0 Often, a RCA is only turned on on-demand (as a means of
protecting it against attacks) to generate certificates for
intermediate CA

0 Such intermediate CA do all the signing work
O It accepts CSRs (as seen before) from clients

0 However, in order to reduce the attack surface of such a CA, client

/ end user communication including the processing of CSR, is done
by a registration authority (RA)

o Similarly, CRL are distributed via dedicated CRL distribution points



Example for a PKI Architecture
I

0 Putting all components together, results in an architecture as shown below
0 The Relying Party may be a web browser

0 The Subject may be a web server

Root
HER
Issuing CA 32 '
Certificate t\ ‘‘‘‘‘‘‘
Issuing

Certificate A
Authonty
: (CA) % Mo,
Registration 7 TP I3\ covificate ™

! , Certificate
Authontyl i v Revocatton List (CRL)

). A‘f)ind Entity 3 S
~§ Certificate N oo cm_
; e ~ Distribution
Subject == J8¥ ‘

...... Point

o




FYIl: ASN. 1

B2
0 Abstract Syntax Notation One (ASN.1) is a standard
interface description language for defining data structures

that can be serialised and de-serialised in a cross-platform
way

0 Originally introduced to describe network data packets
exchanged between endpoints, it is also widely used in
cryptography and biometrics

0 It is closely associated with a set of encoding rules that
specify how to represent a data structure as a series of
bytes, i.e.,

O Basic Encoding Rule (BER)
o Distinguished Encoding Rules (DER)

0 Here encoded elements are typically type-length-value
(TLV) sequences



FYl: ASN.1 Basic Syntax

T
0 ASN.1 is case sensitive
0 Keywords start with capital letter
0 Comments start with “--*
00 The underscore is forbidden in identifiers and keywords
00 Assignments use symbol “:: ="

0 The top-level container of a type declaration is @
module, e.g.

myModule DEFINITIONS ::= BEGIN

END



FYl: ASN.1 Basic Syntax
T

0 The available basic types are:
o BOOLEAN
o INTEGER
O ENUMERATED
O REAL
o NULL

0 Examples:
O Avutomatic ::= BOOLEAN
O Color ::= ENUMERATED {red, blue, green}
O PiREAL ::= 3.141

0 Important: All types are abstract, e.g. there is no length of size associated with an
INTEGER

0 There are 3 types of strings (character, binary and hexadecimal), e.g.
0 |AS5STRING ::= “Hello World” — International alphabet 5 with 7-bit characters
O encryptionKey BIT STRING ::= ‘00100’B
o encryptionKey OCTET STRING ::= ‘ABCO1'H



FYl: ASN.1 Restricted Types

T
0 Range:
0 Example: Age ::= INTEGER (0..50)
0 Value set:
0 Example: Age ::= INTEGER {5, 10, 15, 20}
0 Enumerated values
0 Example: Color ::= ENUMERATED {red(1), blue(2)}

0 Default type
O Example: Age ::= INTEGER DEFAULT 42



FYl: ASN.1. Structured Types

e P
0 SEQUENCE

O Like a struct in C
O Example: See next slide

0 SEQUENCE OF

O Sequence of the same type
O Example: myCars ::= SEQUENCE OF Car

0 SET
O Like a set

0o SET OF
O Set of the same type

0 CHOICE

0 Similar to a union in C



Example ASN.1 (Wikipedia)

.00
Consider the following ASN.1 definition:
FooProtocol DEFINITIONS ::= BEGIN

FooQuestion ::= SEQUENCE {
trackingNumber INTEGER(O..199),
question IA5 String

} }

FooAnswer ::= SEQUENCE {
questionNumber INTEGER(0..199),
answer BOOLEAN

}
FooHistory ::= SEQUENCE {

questions SEQUENCE(SIZE(O..10)) OF FooQuestion,
answers SEQUENCE(SIZE(1..10)) OF FooAnswer,
anArray SEQUENCE(SIZE(100)) OF INTEGER(0..1000),

Example for FooQuestion:
FooQuestion ::= SEQUENCE {
trackingNumber INTEGER(5),

question “Anybody there?2"

ASN.1 description of a
simple application layer

question / response protocol

between a client and a
server

END



ASN.1 Encoding Formats

I =
00 There are three ASN.1 encoding formats:

O Basic Encoding Rules (BER)
The original rules laid out by the ASN.1 standard for encoding
data into a binary format

o Canonical Encoding Rules (CER)
o Distinguished Encoding Rules (DER)

1 Both CER and DER are subsets of BER

0 Whereas BER gives choices as to how data values may be
encoded, CER (together with DER) selects just one encoding from
those allowed by the basic encoding rules

® For example: In BER a Boolean value of true can be encoded as any
positive integer up to 255, while in DER it has to be a 1



BER Overview
2

0 BER specifies a self-describing and self-delimiting format for
encoding ASN.1 data structures

0 Each data element is encoded as a type identifier, a length
description, the actual data elements (TLV format), and, where
necessary, an end-of-content marker

O These types of encodings are commonly called type—length—value (TLV)
encodings

|dentifier octets Length octets Contents octets End-of-Contents octets
Type [ ength Value (only if indefinite form)
First length octet /
Bits
Form
8/ 7|6 |6 |43 |21
Definite, short | 0 | Length (0—127) Long form example, length 435
Indefinite 1l0 Octet 1 Octet 2 Octet 3

Definite, long | 1 | Number of following octets (1—126) | ™ 1 0jojoj0j0 100000000 T|1 /0110011

Reserved 1197 Long form | 2 length octets 110110011, = 435, content octets



Some BER Identifier Octets and their

Encodings (Wikipedia)
T

Tag number
Name Permitted construction ° efe
oecgat vesscecmat| [ The identifier octets encode the
End-of-Content (EOC) Primitive L '
e — T ASN.1 tag's class number and
_— N
INTEGER Primit 2 2
rmiive type number
BIT STRING Both 3 3
OCTET STRING Both 4 4 -
NULL Primitive 5 5 oniv i 20
nly if ta e
OBJECT IDENTIFIER Primitive 6 6 y it tag fyp 0
Object Descriptor Both 7 7 8 1 8 7654321
EXTERNAL Constructed 8 8 / Tag type (if 0=%04,) Long Form
- Tag class | PIC
REAL (floa) Primitive ? ? / 349 = Long Form | 1=More | 7 bits of Tag fype
ENUMERATED Primitive 10 y
EMBEDDED PDV Constructed 1 /B \ J
UTF8String Both 12 /, C !
RELATIVE-OID Primitive / Normqlly all 0
TIME Primitive // 14 E
|dentifier octets Length octets Contents octets End-of-Contents octets

Type Length Value (only if indefinite form)




}

Example BER Encoding (Wikipedia)

.00V
Consider the following ASN.1 definition:

FooProtocol DEFINITIONS ::= BEGIN
FooQuestion ::= SEQUENCE {

trackingNumber INTEGER(0..199),
question IA5String

FooAnswer ::= SEQUENCE {

}

questionNumber INTEGER(10..20),
answer BOOLEAN

FooHistory ::= SEQUENCE {

END

questions SEQUENCE(SIZE(O..10)) OF FooQuestion,
answers SEQUENCE(SIZE(1..10)) OF FooAnswer,
anArray SEQUENCE(SIZE(100)) OF INTEGER(0..1000),

The FooQuestion structure “5Anybody
there?” encoded in DER format:
301302010516 0e 41 b6e 79 62 6f
6479 2074 68 6572 65 3f

with

o 30 —type tag indicating SEQUENCE

] 13 — length in octets of value that follows

o 02— type tag indicating INTEGER (see previous slide)
o 01 — length in octets of value that follows

o 05— valuve (5)

| 16 — type tag indicating IA5String (i.e. ASCII)

0  Oe — length in octets of value that follows

O 416e79626f6479207468 657265 3f ("Anybody
there?” in plain ASCIl format)



ASN.1 Encoding of OIDs
B

0 Practically, OIDs need to be | | Tag number
encoded as TLV triplets Name Permitted construction Decimal | Hexadecimal

. . . End-of-Content (EOC) Primitive 0 0

0 The TLV triplet begins with a Tag OOLEAN — 1 1

value of 0x06 (see table on the INTEGER primitie 2 2

rig h'l') BIT STRING Both 3 3

OCTET STRING Both 4 4

| ECICh OID in’reger (i.e., node) is NULL Primitive 5 5

encoded as fO”OWS: OBJECT IDENTIFIER Primitive 6 6

. Object Descriptor Both 7 7

O The first two nodes of the OID are — — . .

encoded onto a single byte, by REAL (float) Primitive 5 9

mul’riplying the first node with 40 and ENUMERATED Primitive 10 A

adding the result to the value of the EMBEDDED PDV Constructed 11 B

second node UTF8String Both 12 €

RELATIVE-OID Frimitive 13 D

O Subsequent bytes are represented e — ” -

using Variable Length Quantity, also
called base 128



Example: BER Encoding of an OID

0110.=3.5.1.1.1.311.21.20 (ClientId Attribute) D This edeple Shows hOW the Clienfld
1) Encoding the Fist T Nodes attribute (OID: 1.3.6.1.4.1.311.21.20) of
Lx 40+ 3 = 43a = 0x2m = a certificate request is encoded:

IS ) I

2 ® 1.3.6.1.4.1.311.21.20vich3d.jdomcsc.nette

2) Single byte encoding of all remaining nodes other than 311: . e o
s = oxon s’r.ml,c,rosof’r.comJ DOMCSCadministratorcer
6§ = 0x06 = treq

4 = 0x04 = [0]0[0[0]0]i[0]0]
21 =15
- F EEEEEEEE]

N ) 0 CIE) LI BN 86 89 ; OBJECT_ID (9 Bytes)
| 2b @86 @1 84 B1 82 37 15 14 g 1.2.6.1.4.1.311.21.28
3) Multiple byte encoding of 311: 31 4a ; SET (4a Bytes)
311d = 0x0137 = [O[0[0[o[0[o[o]r] [E[O[T[r[o]T]r]T] 3@ 48 ; SEQUENCE (48 Bytes)
- = = 82 o1 ; INTEGER (1 Bytes)
This is encoded to 0x82 D37 by: | ed
1) Satting bit 7 of the lefimost byte to 1. Bc 23 ; UTF8_STRING (23 Bytes)
2} Ignoring bit 7 of the rightmost byte. -
3) Shifting the right nibble of the leftmost byte ta the left by 1 bit. | 76 69 63 68 33 64 2e 6a 3 wvich3d.j
8 N NN =4 E N E N E N | &4 6f 6d 63 73 63 2e 6Ge H domcse.n
| ISy E— L .
8 2 3 2 | 74 74 65 73 74 2e 6d 69 ; ttest.mi
When decoded, the bits are assembled in the following manner; | T P TP IR e i : SrEL
Doojooos nm—m | = - =
1 Bc 15 ; UTF8_STRING (15 Bytes)
°°°1 ofofij 0111 | 4a 44 4f 4d 43 53 43 &5¢ H JDOMCSCH,
| 61 64 6d 62 6e 69 73 74 ; administ
| 72 61 74 &6f 72 :  rator
3) Summary encoding of OID :1.3.6.1.4.1.311.21.20
Bc @7 ; UTFE STRING (7 Bytes)
Ox2B Ox06 Ox01 Ox04 Ox01 OxB82 0x37 0x15 Oxl4 B3 RS 72 74 72 65 71 H cer‘treq




Baseb64 Encoding
B

0 Problem: How can BER encoded binary data (including
certificates) be stored or transported in channels that
only reliably support (readable) text content?

0 Examples:

O Embedding (binary) images inside textual assets such as
HTML and CSS files

0 Embedding attachments (e.g. images) in emails

0 Solution: Apply a binary-to-text encoding scheme, e.g.
Baseb4



Base64 Encoding
B

B 6 4 d. . d Index Binary Char| | Index Binary Char| |Index Binary Char | Index  Binary Char
L basée Ivides 0 | 000000 A 16 | 010000| Q 32 |100000| g 48 | 110000 | w
a binqry inpu’r 1 | 000001 | B 17 |010001| R 33 | 100001 | h 49 | 110001 | x
into 6_bi-|- 2 | 000010 ¢ 18 | 010010| s 34 (100010 | i 50 |110010| vy
. . 3 | 000011| D 19 | 010011 | T 35 | 100011 | 3 51 | 110011 z
snippets, with
. 4 | 000100 | E 20 |010100| U 36 |100100| k 52 110100 | e
each Snlppet 5 |000101| F 21 (010101 V 37 [100101| 1 53 |110101| 1
represented by 6 |o000110| 6 22 | 010110 | W 38 | 100110 m 54 | 110110 2
a prin’rqble 7 | 000111 | H 23 | 010111 | X 39 (100111 | n 55 | 110111 | 3
8 |001000| I 24 | 011000 | v 40 |101000| o 56 | 111000 | 4
character 9 | 001001 | 3 25 | 011001 | Z 41 [101001| p 57 |111001| 5
[ Example 505664 10 | 001010 | K 26 | 011010 | a 42 101010 | q 58 | 111010 6
table from RFC 1 | 001011 | L 27 | 011011 | b 43 101011 | r 59 | 111011 | 7
12 | 001100 | M 28 | 011100 | 44 101100 | s 60 |111100| 8
4648 13 | 001101 | N 29 | 011101 | d 45 101101 | t 61 | 111101 | 9
14 | 001110 | © 30 |01M110 | e 46 101110 | u 62 | 111110 | +
15 | 001111 | P 31 [ oMl | 47 [ 101111 | v 63 | 111111 | /
Padding =




Base64 Encoding Examples

SWikiEedioi
o

0 “Many hands make light work” is converted into
TWEueSBoYWOkcyBtYWt1IGxpZzZ2hOIHdvcmsu

0 Generally, 3 bytes are converted into 4 printable
Baseb4 characters (with padding character “=" added
if input length is not multiple of 3), as follows:

Text (ASCII) M a n
Source
Octets 77 (Ox4d) 97 (0x61) 110 (OxGe)
Bits o{1|o|o|1|1|o|1|o0|1|1|o|o|o|O|1]|0|1|1]0|1[1]1]|0
Sextets 19 22 5 46
Base64
Character T W F u

encoded
Octets 84 (0x54) 87 (0X57) 70 (0x46) 117 (0X75)



Example: Base64 Encoded Certificate
lﬂSi ning Request (more later

----- BEGIN NEW CERTIFICATE REQUEST-----

MIICkzCCAXsCAQAWTELMAKGA 1UEBhAMCQOExCzA JBgNVBAgTAMdmMQswCQYDVQQH
EwInZiIELMAKGA1UECxMCZ2Y xCzA JBgNVBAoTAMdmM QswCQYDVQQDEw JnZ]CCASIw
DQY JKoZIhveNAQEBBQADggEPADCCAQoCggEBAMIwsZ Xhim 1CY sCcz 5SMOwHILhkxU
3KAEhr 1 pg 3tOPmzImuXTnWW1t4sDb / /fsadcZ 9EBInUMoRur TLLo8 TuNnNhAIkG DO
9PPSEZPb+lo YLASA8DG4SkRyrl 2sVhIVmzq8w7 /zp56 1ur5m3wV+c5ru3W/ CvidT

Z7 8RelUTIul2nCJ46PQIYky +2IPGtj+VY /9IDe+iXLsQi /u7k20ppBo70qdzR3vR
hmI55noblm+eUcVL21 w2iMTzb6nZ Ansat+4fnrAgM6ZmNzXyaoj3PNWoB YtSBuiYe
QArBhiOpR10g9E2XGOvbsyc4 +ORNWPSFXOH4uFYZNASS5n4fBrFTSkJ9MKEUCAWEA
AaAAMAOGCSqGSIb3DQEBBQUAA4IBAQCTLS7EW[qVewqrotQ5NZa8IXIFSoGaNOeU
WV JoXWUIkhd6CSOgxXiDdYIDIVe 1 EUGUQS5Lx9bVnniByOF7ssUFBgehG 6maxWrq7
AEPFQESgfsEYH6 JGvhZM1 Fa9WixaCiOXpozP1SIF?j6RzNvJud xpDOd80RSjojfg
fFAQXNFdW 1fpXa56ED2NBgozXb11Weu/Kb2JU7 AlUmY6Xde 1tAy W517glbFapAacy
//edvQZm1Zfq0/CVSKhxwcg8K8gf 1rLfgTNPz7FbvGhDO9YFir7qVK1 xx7HEaBe9
BkQqxArSzTCtK pFbNPQ+AémxBnV XXFhEOtNeaU /foqOk71+3k9LD

0 See http://lapo.it/asnljs/



http://lapo.it/asn1js/
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Lecture Overview

0 This lecture will look in more detail into
how data encryption and hashing
mechanisms can be applied
to provide secure peer-to-peer data
communication over an (unsecure)
network

Information
source

O0——0

(a) Normal flow

Information
destination

o— O

(b) Interruption

Q—?O

(c) Interception

o—g—o

(d) Modification

L

(¢) Fabrication




Lecture Overview

Symmetric block and stream ciphers allow o——0

Information Information

the encryption of data in transit desimion

(a) Normal flow

O Needs robust key management and distribution

Hash functions / MACs allow G O
authentication of data in transit

(b) Interruption (c) Interception

Digital certificates allow end-point
authentication O

Hashing and encryption provide mechanisms
to address some of security attack types on
information in transit

(d) Modification (¢) Fabrication

O Example Wireshark

Encryption I

This lecture will look in more detail into how
L] o L] ‘ ) l
these mechanisms can be applied to provide ‘
secure peer-to-peer data communication over o —E—
Secure Channel
a network




Issues with the IP Protocol

0 IP payload is not encrypted (no confidentiality) and can be manipulated in
transit

0 IP header fields can be manipulated in transit (CRC can be adjusted on-the-fly
- next slide)

O IP addresses can be spoofed (no authentication)

0 IP header has mutable fields that can change during datagram transport

~ 32 Bits -
Lo oo b o b o e e b ey
Version IHL Type of service Total length
Identification E I\Iél Fragment offset
Time to live Protocol Header checksum

Source address

Destination address

((
))

Options (O or more words)

((
))

Mx?2



Recap: Cyclic Redundancy Check (CRC)
R

[original message| Generator polynomial If CRC generator is of n
1010000 g ¥+l bit then append (n-1)
@x3+@.xl+@.x1+@x° zeros in the end of
@ means X-OR | CRC generator original message
1001 4-bit
e
9
1001{1010000000 1001{1010000011
@1001 @1001
0011000000 0011000011
@1001 @1001
01010000 01010011  gm Receiver
@1001 @1001
0011000 0011011
@1001 @1001
01010 01001
@1001 @1001
001D 0000
_ 7
Message to be transmitted Zero means data is
1010000000 accepted
+011
1010000011




Issues with the Transport Layer

Protocol ‘Examele TCP:
]

0 TCP payload is not encrypted (no confidentiality) and can be
manipulated in transit

0 TCP header fields can be manipulated in transit (CRC can be
adjusted)

O TPDUs can be rearranged in transit via manipulating sequence and
acknowledgement numbers

Source port Destination port

Sequence number

Acknowledgement number

TCP
header
length

PIR|S|F

S|[S|Y]| I Window size
H| T|{N|N

OIC
A0>»

Checksum Urgent pointer

== Options (O or more 32-bit words)

:I:: Data (optional)

-




TCP/ IP Header Hierarchy

On what level(s)
should authentication
and / or encryption

take place?

- TCP header

TCP segment

-
-

v

TCP header

IP datagram

TCP header

Ethernet frame

v

Mx3

L5 /6

L4

L3

L2



Example MACsec

Ethernet frame and its payload

MAC src | MAC dst | EtherType Payload

Ethernet

Ethernet frame and its payload.
using MACsec (encryption enabled)

MAC src | MAC dst 0x88E5 SecTAG ICV

Ethernet



Encryption Coverage Implications

Link-H | Net-H IP-H | TCP-H Data Link-T

(a) Application-level encryption (on links and at routers and gateways)

Link-H | Net-H | 1P-H | TCP-H | Data Link-T
On links and at routers
Link-H | Net-H | IP-H | TCP-H Data Link-T
In gateways
(b) TCP-level encryption
TCP-H = TCP header
IP-H - IP header
M NetH =  Network-level header (e.g.. X.25 packet header. LLC header)
Link-H = Data link control protecol header
Link-T = Data link control protocol tratler



Encryption Coverage Implications

Link-11 | Netett [ -t | 1epn | Data Link-T
On links
Link-H | Net-H IP-H | TCP-H Data Link-T

In routers and gateways
(¢) Link-level encryption

Shading indicates encryption.  TCP-H
IP-H

TCP header

IP header

Net-H Network-level header (e.g., X.25 packet header, LLC header)
Link-H Data link control protocol header

Link-T Data link control protocol trailer

Il



T

Example for an unsecure network security
protocol



Wire Equivalent Privacy (WEP)

0 The first attempt of encrypting 802.11 (Wi-Fi)
communication

0 It was the de-facto 802.11 security protocol for a
couple of years, implemented in all Wi-Fi routers at the
time

0 However, it has a flawed design and has been broken in
the early 2000s

O It is completely obsolete by now — Don’t use it!

0 Nonetheless it makes a good case study...

M



802.11 Summary

0 Wireless network protocol, operates on 2.4 GHz or 5 GHz carrier
frequency

0 The base version of this IEEE standard was released in 1997, with
various amendments since

0 In the common infrastructure mode networks are organise as
wireless network basic service set (BSS)

0 A BSS consists of one redistribution point (i.e., an access point)
together with one or more client stations that are associated with it

0 Each BSS has a
O unique id (BSSID), like a 48 medium access sublayer (MAC) address
o Customisable name, the Service Set ID (SSID)

0 802.11 is based on the exchange of plaintext messages and as such
prone to Wi-Fi eavesdropping too (= Wireshark)



BSS, BSSID and SSID

Distributed
System




Recall: The 802.3 MAC Sublayer

Protocol
.

Trailer Source Destination
address address

0 Simpler than 802.3 packet structure:

Bytes 7 1 20r6 20rb6 2 0-1500 0-46 4
Destinati S j”ﬁ
Preamble estination ource Data Pad Checksum
f address address s
| | 1))
Start of Length of
frame delimiter data field




WEP Overview

L
0 WEP was ratified as a Wi-Fi security standard in 1999

0 Two main flavours,
O WEP-40 (40-bit secret key plus 24-bit shared initialisation vector), i.e., 64-bit WEP
O WEP-104 (104-bit secret key plus 24-bit shared initialisation vector), i.e., 128-bit WEP

0 WEP uses

O the stream cipher RC4 for confidentiality
O the CRC-32 checksum for integrity

0 Both flavours were
deprecated in 2004 (!)

0 The WEP header is shown
on the right with encrypted Logical Link Control

sections highlighted in dark Sub Network Access Protocol Header

O Note the (24-bit) plaintext
initialisation vector is
incremented with every packet Integrety Check Value (CRC32)

802.11 Header

BSS ID || Initialization Vector (IV) Destination Address

Data




WEP Encoding

0 A secret BSS key Ky (40 bit or 104 bit) is shared between the AP
and all clients

0 Every Wi-Fi packet contains a random 24-bit initialisation vector
IV chosen by the sender

0 IV 11 Kgss is the seed for an RC4 stream cipher (WEP PRNG)

0 The payload M is complemented by a 32-bit CRC (cyclic-
redundancy-checksum) and bitwise EXORed with the key stream

0 The resulting encrypted message is complemented with the IV and
transmitted



WEP Encoding

seed

WEP ] Keystream

PRNG

Message

CRC Algorithm

Ciphertext

802.11 Header

BSS ID || Initialization Vector (V)

Destination Address

Logical Link Control

Sub Network Access Protocol Header

Data

Integrety Check Value (CRC32)

— Encrypted / authenticated




Recap: RC4 as used in WEP

N
0 RC4 is a stream cipher
0 It consists of a
O key-scheduling algorithm (KSA) and o
O pseudo-random generation algorithm (PRGA)

0 The KSA uses IV | | Kyss as a key to initialise the
algorithm

0 Subsequently the PRGA returns pseudo-random byte at
a time



WEP Weaknesses
T

0 Because RC4 is a stream cipher, the same traffic key
must never be used twice

0 The purpose of an |V, which is transmitted as plain text,
is to prevent any repetition, but a 24-bit IV is not long
enough to ensure this on a busy network

0 16,777,216 different RC4 cipher streams when the |V is just
incremented

0 Even worse, when a new |V is randomly picked for each
packet, there is a 50% probability the same IV will repeat
after 5,000 packets (Birthday paradox)

0 There’s a range of WEP attacks that takes advantage
of that



Summary

0 Network security (i.e., data encryption and / or
authentication) is important for obvious reasons

0 The layered structure of the TCP/IP stack allows positioning
the extra security layer in different levels

0 Each of these options has its advantages and disadvantages
/ limitations, for example with regard to
O the portions of a packet that can be secured
O compatibility with network routing, NAT, etc.

0 WEP as a much weaker and depreciated option shows how

encryption / authentication may take place on data-link
layer
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A Bug with its own Website (heartbleed.com) and lcon

The Heartbleed Bug

The Heartbleed Bug is a serious vulnerability in the popular Open3SL cryptographic software library. This weakness

allows stealing the information protected, under normal conditions, by the SSL/TLS encryption used to secure the
Internet. SSL/TLS provides communication security and privacy over the Internet for applications such as web, email,

instant messaging (IM) and some virtual private networks (VPNs).

The Heartbleed bug allows anyone on the Intemnet to read the memory of the systems protected by the vulnerable
versions of the OpenSSL software. This compromises the secret keys used to identify the service providers and to
encrypt the traffic, the names and passwords of the users and the actual content. This allows attackers to eavesdrop on
communications, steal data directly from the services and users and to impersonate services and users.

What leaks in practice?

We have tested some of our own services from attacker's perspective. We attacked
ourselves from outside, without leaving a trace. Without using any privileged information
or credentials we were able steal from ourselves the secret keys used for our X.509
certificates, user names and passwords, instant messages, emails and business critical
documents and communication.

How to stop the leak?

As long as the vulnerable version of OpenSSL is in use it can be abused. Fixed OpenSSL
has been released and now it has to be deployed. Operating system vendors and
distribution, appliance vendors, independent software vendors have to adopt the fix and
notify their users. Service providers and users have to install the fix as it becomes
available for the operating systems, networked appliances and software they use.

XXX



Overview Heartbleed

I I ——
00 Discovered in 2014
0 Exploits a bug in the OpenSSL

implementation of the TLS
“heartbeat hello” extension

0 Can affect both client and server
side

X X
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TLS Heartbeat Extension

0 Originally TLS had no provisions to keep a client /
server connection alive without continuous data transfer
1 ldle connections would timeout instead and a

(computationally) expensive handshake (224 ms in the
previous example) or a reconnect would have to take place

0 The heartbeat extension provides a protocol for “keep-
alive” messages that prevent a timeout
0 One endpoint could send out a HeartbeatRequest message,

which would be immediately responded with a
HeartbeatResponse message



Heartbeat with incoming Message

‘correc’rlm buffered

o

SERVER, ARE YOU STiLL THERE?

Fso‘ N .mmm‘ (6 m}




Heartbeat Request / Response Message
N =

* The Heartbeat protocol messages consist of their type and an
arbitrary payload and padding.

heartbeat_request or heartbeat_response

* struct {
HeartbeatMessageType type;
uintl6 payload length;
opaque payload[HeartbeatMessage.payload length];

opaque padding[padding_length]; 16+ bytes of random
} HeartbeatMessage; content, ignored by receiver

0 The sender composes a request message containing a payload with a specified
length (i.e. payload_length)

0 The receiver returns a response message containing a copy of the sender’s payload
(with length payload_length)

0 “opaque” is a typdef (i.e., unsigned char)



Heartbleed Exploit
N

0 The server receives a Heartbeat request message and copies it
into memory, for further processing

O However, memory also contains information from other sessions
including tokens, keys, session IDs etc.

0 If payload_length is actually larger than the payload]..], the
server will copy memory content beyond the payload array into
the response message’s payload array (let’s call it ret_payload),
which is then sent back to the sender

O memcpy (ret_payload, payload, payload_length);

0 Remember, this is C (and not Java or Python), so array
boundaries are not checked!

O This is a typical buffer over read attack



The Heartbleed Attack
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Heartbleed Exploit Extract (Python
Code

O https://qist.github.com/eelsivart/10174134

Heartbleed (CVE-2014-0160) Test & Exploit Python Script

E heartbleed.py Raw

#!1/usr/bin/python

Modified by Trawis Lee
Last Updated: 4/21/14

Version 1.16

-changed output to display text only instead of hexdump and made it easier to read

-added option to specify number of times to connect to server (to get more data)

-added option to send STARTTLS command for use with SMTP/POP/IMAP/FTP/etc...

-added option to specify an input file of multiple hosts, line delimited, with or without a port specified (host:port)

#

#

#

#

#

7

#

#

# -added option to have verbose output
# -added capability to automatically check if STARTTLS/STLS/AUTH TLS is supported when smtp/pop/imap/ftp ports are entered and automaticall
# -added option for hex output

# -added option to output raw data to a file

# -added option to output ascii data to a file

# -added option to not display returned data on screen (good if doing many iterations and outputting to a file)

# -added tls version auto-detection

# -added an extract rsa private key mode (orig code from epixoip. will exit script when found and enables -d (do not display returned data «
7

-requires following modules: gmpy, pyasnl

4

Quick and dirty demonstration of (VE-2014-8168 by Jared Stafford (jspenguin@jspenguin.org)

Wk

The author disclaims copyright to this source code.

import sys
import struct
import socket
import time
import select

import re


https://gist.github.com/eelsivart/10174134

What can be leaked?
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What happened next?
R
0 The Heartbleed bug was fixed (of course)

0 Further checks and balances were added to validate
that payload length was correct

struct {

HeartbeatMessageType type;
Jint16 pay.oad_uength;%
opaque payload[HeartbeatMessage.payload“length];

opaque padding[padding length];
} HeartbeatMessage,;




Heartbleed Impact
I

0 The Heartbleed vulnerability was in all versions of OpenSSL released
between March 2012 and April 2014

O It was a zero-day (i.e., a vulnerability unknown to its owners, developers or
anyone capable of mitigating it) for almost 2 years

0 According to CVE-2014-0160, the following operating system distributions
were potentially affected:

Debian Wheezy (stable)

Ubuntu 12.04.4 LTS

CentOS 6.5

Fedora 18

OpenBSD 5.3

FreeBSD 10.0

NetBSD 5.0.2

OpenSUSE 12.2



Lessons learnt
B

0 OpenSSL core developer Ben Laurie claimed that a security
audit of OpenSSL would have caught Heartbleed

0 Some other quotes from the security community:

O “Think about it, OpenSSL only has two fulltime people to write,
maintain, test, and review 500,000 lines of business-critical code”

O “The mystery is not that a few overworked volunteers missed this
bug; the mystery is why it hasn't happened more often”

O “There should be a continuous effort to simplify the code, because
otherwise just adding capabilities will slowly increase the software
complexity. The code should be refactored over time to make it
simple and clear, not just constantly add new features. The goal
should be code that is “obviously right”, as opposed to code that is
so complicated that “I can’t see any problems”



Related Problem: Buffer Overflow /

Stack Overflow
I

#Hinclude <string.h>

void foo (char *bar)

{
char ¢[12];
strepy(c, bar); What is the problem
} In this example?
int main (int arge, char **argv)
{
foo(argv[1]);

return(1);

}



Example for a Stack Overflow
N

#Hinclude <string.h>

void foo (char *bar)  Lets assume the compiled
{ char <121 program is called test

strepy(c, bar) « Test is invoked from command
} line (next slide):

e “>test hello” will work fine
int main (int argc, char **argv) o “>test AAAAAAAAAAAA
oot AAAAAAAA” (> 11 charac-

return(1); ters) may crash the program
}




Background Info: The Call Stack

main()

{

DrawSquare(1,1,4,4);
} Stack Pointer ——» top of stack \
Locals of
DrawLine stack frame
void DrawSquare(int lux, int luy, int rbx, for
{ . Return Address DrawLine
Frapr Pointer —— subroutine
: FParameters for
int 11, 12; - — ’
DrawLine )
Drawline(lux, luy, rbx, luy); TG
Drawline(lux, luy, lux, rby); DrawSguare
Return Address

DrawSqua
subroutine Parameters for

DrawSquare

void Drawline(int p1x, int ply, in

int temp1;



Background Info: The Call Stack

O

Each stack frame contains a stack pointer to the top of the frame immediately
below

O The stack pointer is a mutable register

The stack frame is the collection of all data on the stack associated with one
subprogram call. The stack frame generally includes:

O The return address

O Argument variables passed on the stack

O Local variables

A frame pointer of a given invocation of a function is a copy of the stack pointer as
it was before the function was invoked

If a stack frame is corrupted, i.e. overwritten, arguments, variables and / or return
address do change

If the return address is manipulated, the program can crash, or malware can be
executed (with the return address being the start address of the malware im
memory)



Example for a Stack Overflow
N

Unallocated Stack Space
Char c[12]




Buffer Overflow Countermeasures
N

0 Use a programming language that supports automatic
bounds checking of buffers

O Java or Python, but NOT C

0 Use a language specific library module that implements
info validation in the form of safe buffer handling

0 Compilers can produce a warning when an unsafe
function call is made, or can add code for buffer
overflow detection

0 An Operating System can enforce more stringent
memory access control so that buffer overflows cannot
infringe into the protected areas of the main memory



Buffer Overflow Mitigation using

Electric Fence / Boundary Checks
a1 |

0 Here each data object (i.e., array) is guarded by a

boundary signature that is checked for its integrity
every time that object is accessed

0 If the signature has changed as shown below, the
data object is deemed to be corrupted, and an
alarm will be raised

Before || |Auayl0l |Away[l] . JAwaylnl |

Attack OxAA OxAA OxAA OxAA ... OxAA OxAA  OxAA



Example Code
T

char boundaryO = OxDA;
char boundary1 = OxEF
char array[n];

char boundary2 = OxFF;
char boundary3 = OxED;

// Access array[] only if boundary is intact.
If ((boundaryO == OxDA) && (boundary1 == OxEF) && (bounday2 == OxFF) && (bounday3 == OxED))

// Access array

}

else

{

// Error handling



N

CT437
COMPUTER SECURITY AND FORENSIC COMPUTING

TRANSPORT LAYER SECURITY

Dr. Michael Schukat




Background
N

0 The exponential growth of the internet in the 1990s resulted
in a need for better security, thereby considering support of
0 ad-hoc and short-lived client /server connections

o casual and untrained users

® No awareness of risks and key concepts (confidentiality, integrity,
authentication)

0 web browsers as the main vehicle for client / server communication

0 The first attempt was Secure Socket Layer (SSL)
O Introduced by Netscape in the 1990s

0 Embedded in web browsers / servers

HTTP FTP SMTP
O Later became Internet standard known [ 1 ™ | SSL or TLS
TCP TCP
as TLS (Transport Layer Security) — —

(a) Network Level (b} Transport Level



TLS (Transport Layer Security)

0 This application layer protocol is widely used for
applications such as email, instant messaging and VolP

0 Mainly known for securing HTTP (i.e. HTTPS)

0 TLS provides
O privacy (confidentiality) of exchanged data
O integrity of exchanged data

O authentication of server (and optionally client) through the
use of digital certificates

0 Composed of two layers:
o TLS handshake protocol (main focus)
O TLS record protocol

0 It operates on top of TCP, which in turn is gradually
replaced by the QUIC (also called TCP/2) protocol



Sequence of a TLS Session
=

0 Handshake Protocol
O Agree a cipher suite

O Agree a master secret
0 Authentication using certificate(s)

0 Record Protocol Handshake =<
0 Secure data communication ¢ i
B Symmetric key encryption —* Application Data .
® Data authentication 1
m Often in combination with HTTP ¢ }
O Alerts Alert .
®m Graceful closure, or l

m Problem detected
Close Socket



Website Protocol Support (Wikipedia)
I

Protocol | Websita

Securityl’ <73
version | support’’ Y

SSL20  04% Insecure
o SSL 2.0 / 3.0 contain a number of SSL3.0 | 3.0% insecure!”
security flaws TLS1.0  438% Deprecated!®I 10111}
0 Support for TLS versions 1.0 and TLS14 | 47.8% Deprecateq! 1011
1.1 was widely deprecated by TLS1.2 | 996% | Depends on cipheri” ! and client mitigations™ 2!
web sites around 2020 TLs13 | 297% cecure

o TLS 1.3 was released as RFC 8446
in August 2018. It is a streamlined version of the earlier TLS 1.2 specification with
someone notable changes:

O Streamlined handshake

0 Focus on elliptic curve cryptography using a reduced list of curves, RSA is not supported any more
O Removing support for the MD5 and SHA-224 cryptographic hash functions

O No more backwards compatibility beyond TLS 1.2

0 As we'll see later, TLS 1.3 presents itself as 1.2 (well almost), this is apparently
for compatibility reasons

0 Today, only TLS 1.2 and TLS 1.3 are in use, that’s the focus of this lecture!



Issues with Legacy TLS Versions: The Heartbleed
Vulnerability in TLS 1.0 (2014)
s 4

The Heartbleed Bug

The Heartbleed Bug is a serious vulnerability in the popular Open3SL cryptographic software library. This weakness

allows stealing the information protected, under normal conditions, by the SSL/TLS encryption used to secure the
Internet. SSL/TLS provides communication security and privacy over the Internet for applications such as web, email,

instant messaging (IM) and some virtual private networks (VPNs).

The Heartbleed bug allows anyone on the Intemnet to read the memory of the systems protected by the vulnerable
versions of the OpenSSL software. This compromises the secret keys used to identify the service providers and to
encrypt the traffic, the names and passwords of the users and the actual content. This allows attackers to eavesdrop on
communications, steal data directly from the services and users and to impersonate services and users.

What leaks in practice?

We have tested some of our own services from attacker's perspective. We attacked
ourselves from outside, without leaving a trace. Without using any privileged information
or credentials we were able steal from ourselves the secret keys used for our X.509
certificates, user names and passwords, instant messages, emails and business critical
documents and communication.

How to stop the leak?

As long as the vulnerable version of OpenSSL is in use it can be abused. Fixed OpenSSL
has been released and now it has to be deployed. Operating system vendors and
distribution, appliance vendors, independent software vendors have to adopt the fix and
notify their users. Service providers and users have to install the fix as it becomes
available for the operating systems, networked appliances and software they use.



Issues with Legacy TLS Versions: Apple ‘goto fail;’

Vulnerability in TLS 1.0 and TLS 1.1 (2014)
S

0 Affected iOS and Mac OS X operation systems

0 This vulnerability enabled MitM attacks on TLS connections

if ((err = ReadyHash (&SSLHashSHAl, &hashCtx)) != 0)
goto fail;

if ((err = SSLHashSHAl.update (&hashCtx, &clientRandom)) != 0)
goto fail;

if ((err = SSLHashSHAl.update (&hashCtx, &serverRandom)) != 0)
goto fail;

if ((err = SSLHashSHAl.update (&hashCtx, &signedParams)) != 0)

goto fail;
goto fail;

1f ((err = S5LHashSHAl.final (&hashCtx, &hashout)) = 0)
goto fail;

err = sslRawVerify(ctx,
ctx->peerPubKey,

dataToSign, /* plaintext */
dataToSignlen, /* plaintext length */
signature,
signaturelen);
if (exrxr) {
sslErrorLog ("SSLDecodeSignedServerReyExchange: sslRawVerify "

"returned %d\n", (int)err):
goto fail;

fail:
SSLFreeBuffer (&signedHashes);
SSLFreeBuffer (&hashCtx);
return err;



TLS Record Protocol Characteristics
I

0 The connection is private because a symmetric-key algorithm
(i.e., AES) is used to encrypt the data transmitted

0 The identity of the communicating parties is authenticated via
digital certificates that are exchanged and validated during
the initial handshake
O This (server-side) authentication is required for the server and

optional for the client (i.e. client-side authentication)
B We focus on server-side authentications for now

0 The connection is reliable, because each message transmitted
includes a message integrity check using a message
authentication code to prevent undetected loss or alteration
of the data during transmission



TLS Handshake Protocol Overview
N

0 Secure (TLS) connection is initiated by client

O Typically, via dedicated port, e.g. HTTP port 80 versus HTTPS port 443

0 It uses public key cryptography to establish cipher settings and session-
specific shared private keys with which further communication is encrypted
using a symmetric cipher
o Client and server agree on a cipher suite (a cipher and a hash function)

0 The server also presents its digital certificate to the client for authentication

0 To initiate the generation of session keys used for a secure connection, the
client either:

1. Encrypts a random number (PreMasterSecret) with the server’s (RSA or EC) public key and
sends the result to the server (only up to TLS 1.2)

® Forward secrecy is not provided!

2. Uses (Elliptic Curve) Diffie—Hellman key exchange (in TLS 1.2 and TLS 1.3)

m This key may have the property of forward secrecy, but MitM attacks need to be mitigated



Recall Forward Secrecy
N

0 Consider an attacker who

O intercepts and records all client / server messages, including
the handshake

O recovers the server’s private key sometime in the future, using
the public key in the server’s digital certificate as a starting
point

0 In option 1 the PreMasterSecret can now be retrospectively
recovered, session keys can be calculated, and all subsequent
messages can be decrypted by the attacker

0 However, the DH key negotiation in option 2 is based on other
secret token not linked to the server’s private key

O Nonetheless the key exchange has to be protected to
prevent a MitM attack as seen before



Ephemeral Diffie-Hellman vs static

Diffie-Hellman
I

0 Static Diffie-Hellman key exchange (in TLS 1.2 only)
O Always use the same Diffie-Hellman private keys (this saves CPU cycles)

O Each time the same parties do a DH key exchange, they end up with the
same shared secret > only partial forward secrecy

0 Ephemeral Diffie-Hellman key exchange (compulsory in TLS 1.3)

O A temporary DH key is generated for every connection and thus the
same key is never used twice

O This enables forward secrecy, which means that if the long-term private
key of the server gets leaked, past communication is still secure

0 This distinction also holds for the Elliptic Curve DH variants

0 ECDHE (ephemeral, provides Forward Secrecy) and
o ECDH (static)



TLS Handshake Overview

Sender Receiver

TLS 1.3 also
supports a

faster variation
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In-Class Activity: Analysis of TLS

Handshake
e

0 Option 1:
O Open Wireshark and start packet recording

O In your browser open a HTTPS secured website you never
visited before (e.g. fussball.de)

O Stop packet recording and filter all TLS-related packets
(Filter option ‘tls’)
0 Option 2:

O Load pcap file “revenue tls” (Blackboard file name
“Example Wireshark TLS Handshake”)

0 Wireshark does a great job analysing the content of
the packets



TLS Handshake

1 TCP connection establishment
o SYN — SYN/ACK — ACK

0 The ClientHello message

0 The client initiates the handshake by sending a (plaintext) “hello”
message to the server

O The message includes
m the highest TLS version the client supports (1.2 or 1.3)

m the cipher suites supported (i.e. what algorithms are available to client,
see next slide),

m a session identifier

® Note that the session id is kept empty if the clients starts an entirely new
session

B a string of random bytes known as the "client random*



Cipher Suite Naming Scheme

0 Examples:

TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384

0 Here:

TLS defines the protocol that this cipher suite is for

ECDHE indicates the key exchange algorithm being used (Elliptic Curve Diffie-Hellman
Ephemeral)

RSA or ECDSA (Elliptic Curve Digital Signature Algorithm) authentication mechanism
during the handshake

® Remember the ServerHello message contains the server’s public DH parameter signed with its
private (RSA) key or signed via ECDSA

AES cipher for symmetric data encryption
128-bit or 256-bit AES key size
GCM type of encryption (Galois/Counter Mode, covered before)

SHA256 / SHA384 hash function (HMAC) indicates the message authentication
algorithm which is used to authenticate a message

m 256-bit or 384-bit digest size



Cipher Suite (Wireshark Screenshot)
B

¥ Cipher Suites (16 suites)

Cipher
Cipher
Cipher
Cipher
Cipher
Cipher
Cipher
Cipher
Cipher
Cipher
Cipher
Cipher
Cipher
Cipher
Cipher
Cipher

Suite:
Suite:
Suite:
Suite:
Suite:
Suite:
Suite:
Suite:
Suite:
Suite:
Suite:
Suite:
Suite:
Suite:
Suite:
Suite:

Reserved (GREASE) (@x7a7a)

TLS_AES 128 GCM_SHA256 (@x1381)
TLS_AES 256 GCM SHA384 (@x1382)

TLS_CHACHA2@ POLY1385 SHA256 (@x1383)
TLS_ECDHE_ECDSA_WITH AES 128 GCM_SHA256 (@xc@zb)
TLS_ECDHE_RSA WITH_AES 128 GCM_SHA256 (@xc@2f)
TLS_ECDHE_ECDSA_WITH _AES 256 GCM_SHA384 (@xc@2c)
TLS_ECDHE_RSA WITH_AES_256_GCM_SHA384 (@xc@30)
TLS_ECDHE_ECDSA WITH CHACHA2@ POLY1385 SHA256 (@xccad)
TLS_ECDHE_RSA WITH CHACHA2@ POLY13@5 SHA256 (@xccad)
TLS_ECDHE_RSA WITH AES 128 CBC_SHA (@xc@l3)
TLS_ECDHE_RSA WITH AES 256 CBC_SHA (@xc@ld)

TLS_RSA WITH_AES 128 GCM SHA256 (@xee9c)

TLS_RSA WITH_AES 256 GCM SHA384 (@xeead)

TLS_RSA WITH_AES 128 CBC_SHA (@x@e2f)

TLS_RSA WITH_AES 256 CBC_SHA (@x%8035)

Two bytes specify a cipher suite

Suits have different levels of
robustness

See also for details

https: / /ciphersuite.info /cs/


https://ciphersuite.info/cs/

Cipher Suite (Wireshark Screenshot)

I I —————

¥ Cipher Suites (16 suites)

Cipher

Cipher
Cipher
Cipher
Cipher
Cipher
Cipher
Cipher
Cipher
Cipher
Cipher
Cipher
Cipher

Suite:
Suite:
Suite:
Suite:
Suite:
Suite:
Suite:
Suite:
Suite:
Suite:
Suite:
Suite:
Suite:
Suite:
Suite:

O

TLS_AES 128 GCM_SHA256 (@x13@1)
TLS_AES 256 GCM _SHA3B4 (@x1382)

TLS CHACHA2@8 POLY1385 SHA256 (@x1383)
TLS_ECDHE_ECDSA WITH AES 128 GCM SHA256 (@xc@2b)
TLS_ECDHE_RSA_WITH_AES 128 GCM SHA256 (@xc@2f) N
TLS_ECDHE_ECDSA WITH_AES 256 _GCM SHA3B4 (@xc@2c)
TLS_ECDHE_RSA_WITH_AES 256 GCM_SHA3B4 (@xc@3@)
TLS_ECDHE_ECDSA WITH CHACHA2® POLY13@5 SHA2SE (@xccad)
TLS_ECDHE_RSA WITH_CHACHA2@ POLY13@85 SHAJS6 (@xccas)
TLS_ECDHE_RSA WITH AES 128 CBC_SHA (@xc@13)
TLS_ECDHE_RSA WITH AES 256 CBC_SHA (@xc@14)

TLS_RSA WITH AES 128 GCM SHA256 (@x@89c)
TLS_RSA_WITH_AES 256 GCM _SHA384 (@x@89d)

TLS_RSA WITH_AES 128 CBC_SHA (@x@azf)

TLS_RSA WITH_AES 256 CBC_SHA (@x@@835)

Two bytes specify a cipher suite

o Suits have different levels of
robusthess

O See also for details
https: / /ciphersuite.info /cs/

Cipher suits Ox1301, Ox1302
and Ox1303 do not describe the

O server authentication mechanism
(e.g., RSA)

O key exchange algorithm (e.g.,
ECDHE)

This is a simplification introduced
with TLS 1.3 (more later!)


https://ciphersuite.info/cs/

TLS Handshake

IR
0 The ServerHello message

o In reply to the ClientHello message, the server sends a
(plaintext) message containing
m the server’s digital certificate

® a certificate chain that includes all intermediate certificates up to
the root CA along the certification path

m the server's chosen cipher suite,
m its chosen session id (session resumption =2 later), and

m the "server random," another random string of bytes that's
generated by the server



TLS Handshake

0 Avuthentication

O The client verifies the server’s digital certificate with the certificate authority that issued
it using the intermediate certificates

o This confirms that the public key is linked to the certificate owner, but does not confirm
the authenticity of the server yet (as any threat actor could use the server’s certificate
in a spoofing attack)

0 Key negotiation (next slides)
o Option 1: RSA handshake (not supported anymore with TLS 1.3)
O Option 2: DH handshake (ECDH to be exact)
0 Change Cipher Spec (not shown in the diagrams in the following slides)

O In due course both parties will send a ChangeCipherSpec message which is used to
indicate that their subsequent messages will be sent encrypted using the negotiated key
and algorithm

0 Finished (not shown in the diagrams on the following slides)

O This is an encrypted message (more later)



Option 1 Overview: RSA Handshake
20

Now the visitor can request content from CloudFlare.
(also sent is a session ticket for session resumption)

@
Visitor CloudFlare
T — Rt T T L R T B KL £ L= R = W e S R R N
1 1 1 1
1 1 H i i i 1 1
. u m Client random '_o Visitor sends hello, client random, and cipher suites supported S - n m Client random .
1 1 1 1
G L e 1 L 1
O SPP- D SO S P - SO S SO S S P S 3+ < O - S (T 20T OSSR SO £ S S| S - S SR < D PP S P T . SN
i i ) i
: n E Server random : y 2 - n E Server random -
H : = Server sends server random and public key certificate H :
|} 1 — s B z : 1 1
= (also sent is a session ID for session resumption) +
- Public key certificate | : Public key certificate !
! 1 ! [
S e e e e e e e e T e 7 e e e e e e e e e e e e e e e -
l’ } Visitor encrypts premaster secret with public key 1’ }
' On—> | !
t Premaster secret 1 1 Encrypted premaster secret 1
[} 1 <% ' 1
b e __l e e i e e e o e o <arag e !
ST I P o v S Sy S L i e, S o e N
1] 1
1 1
f § ‘ ,l_ Private ke !
1 Y 1
el i e e e e s '
e e e s
i 3
CloudFlare decrypts the premaster : Premaster secret :
secret with the private key ' 1
b e e e e e e e e e e e e _l
o — — — e T R U R KR N R P —y P S S N R R R RO N
: \' Both the visit: d CloudFl t ion k fre - }
[} 1 oth the visitor an oudFlare create session keys from 1
1 m Session key 1 the client random, server random, and premaster secret. ] %
1 1 1
1 ] 1



Option 1: RSA Handshake
I

0 Premaster secret generation

O The client generates a random string of bytes, the "premaster
secret”

O The premaster secret is encrypted with the server’s public key

0 Premaster secret distribution
O The client sends the encrypted secret to the server
O The server decrypts the premaster secret

0 Master secret creation

O Both client and server generate a master secret (which is not the
encryption key used), using

® the client random,
® the server random,
® and the premaster secret



Option 1: RSA Handshake

0 Session keys generation

O Using the master secret both client and server generate 4 session keys (see next
slide):
® Client-write symmetric encryption key
B Server-write symmetric encryption key
m Client-write MAC key (for client message authentication)
m Server-write MAC key (for server message authentication)

0 Client is ready
O The client sends a finished message that is encrypted with the session key
0 Server is ready

O The server sends a finished message encrypted with the session key

m This validates the authenticity of the server, i.e. the client has proof that the server is in
possession of the private key linked to the server certificate

0 Secure symmetric encryption can be provided
O The handshake is completed, and communication continues using the session keys



Recall: Authenticated Encryption with
Additional Data

0 Links back to the use of hash functions

crrypion [+—EET]
1@

Hash function |

(<> previous lecture):

0 Encrypt-then-MAC (EtM) = top right

O Encrypt-and-MAC (E&M) = bottom right
0 MAC-then-Encrypt (MtE) =2 bottom left

LKy ' '
Encryption < K&y yash function

Hash function ™7 |
' ' MAC

Encryption ™

oo




Option 2 Overview: DH Handshake

and client DH parameter.

®
Visitor

ANR N SUR SR S0 VR CON (SN, SRR SVD S SRR GO SR SR S SR 50, 99 \

I |

: n m Client random : o Visitor sends hello, client random, and cipher suites supported

I I

e I

Frifepiphis g aatainintin it

[ )

: n E Server random !

1 :4 Server sends server random and public key certificate
_: X _ 5 (also sent is a session ID for session resumption)

' Public key certificate :

! 1 .

o s s e s ) Server protection

e e e e

! }. against MitM attack

I 1

I ﬁ Server DH parameter 1

| |

| |

| |

| | :

‘ , Signature from key server ¢ Server sends the server DH parameter and a signature

| |

| |

L\ S S S S V]

05 o e e e G, e, e, S o o e o \

| |

[} 3 ! Visitor sends the client DH parameter

i Client DH parameter r—o >

I |

b e e i e A o

D AP D AP FP.IN AN SN S PECR IS g, oy >, 3

L} I

| 1 Both the visitor and CloudFlare derive identical

1 Premaster secret | premaster secrets from the server DH parameter

| |

| |

\
: : Both the visitor and CloudFlare derive identical
' m Session key 1 session keys from the client random, server random,
1 1 and premaster secret. The visitor can request content
1 1 from CloudFlare, and the request will be encrypted.
---------------- (also sent is a session ticket for session resumption)

CloudFlare
Fo—r—r_r %Y S _NK_F_N_Y = K _S_F_&_N_%_{ Y
1 |
: n m Client random |
| 1
] 1

S S T o R D N R o S e e o 7
Tt TTTrT T )
1

ﬁ Server DH parameter b3
i 1
L T e R e SRR N PO _I
X SR PR RN P, SO0 O S e P SR TR SN A FRD AT, SPP VL SPP , FOL, O Ay
1
| 1
| O“ Private key :4—-——
s ]
eSS e e O R e St

m E Server random

1
|
1
|
ﬂ Public key certificate :
|

The key signs for client
random, server random,
and public key certificate



Option 2: DH Handshake
B

0 Server Key Exchange

O This message contains either ECDH parameters (elliptic curve + primitive
root + public ECDH parameter) or DH parameters (modulus, primitive
root, public DH value) to be used by the client

O The values are signed by using the private (RSA or EC) key of the server

so that the client can verify (using corresponding public key in the
certificate) that the parameter indeed came from the server it is talking

to and not an attacker that impersonates the server

® Note that in
m TLS 1.2: DH, ephemeral DH (DHE), ECDH, or ECDHE can be used

m TLS 1.3: only ECDHE is allowed

0 Client Key Exchange
o Contains the client’s public parameters for the DH algorithm

o Client parameters are not signed (as the client does not have a
certificate)



Option 2 Overview: DH Handshake

0 Client and server calculate the premaster secret

O Instead of the client generating the premaster secret and sending it to
the server, as seen before, the client and server use the DH parameters
they exchanged to calculate a matching premaster secret separately

0 Master secret creation

O The client and server calculate the master secret using the premaster
secret, client random, and server random

0 Session keys generation
O Same as before
0 Client is ready
O Same as before
O Server is ready
O Secure symmetric encryption achieved



ClientHello (Wireshark Screenshot)

Transmission Control Protocol, Src Port: 63377, Dst Port: 443, Seq: 1, Ack: 1, Len: 517 D Highes-l- TLS version Supported

v Transport Layer Security
¥ TLSv1.3 Record Layer: Handshake Protocol: Client Hello
Content Type: Handshake (22)
Version: TLS 1.8 (@x@3el)

Length: 512
* Handshake Protocol: Client He
Handshake Type: Client Hello

Length: 588
Version: TLS 1.2 (@x@383)

0 32-byte random structure (contains
a 4-byte timestamp and a 28-byte
random = next slide)
Random: 5628afelaSafa352d8a3336c393

da39bl3ec3de@@9edcafiefa22ae H H
Fandon: Seameterasets 3sb13ec %W 0 Random 32-byte session id

Session ID: @7c2d4934554al463c42der9738cWbe45dbc5691c381e26bb3663dT24c . .
Cipher Suites Length: 32 0 List of supported cryptographic
algorithms

Cipher Suites (16 suites)
Compression Methods Length: 1
Compressicn Methods (1 method)
Extensions Length: 483
Extension: Reserved (GREASE) (len=8)
Extension: server_name (len=38)
Extension: extended_master_secret (len=8)
Extension: renegotiation_info (len=1)
Extension: supported_groups (len=18)
Extension: ec_point_formats (len=2)
Extension: session_ticket (len=@)
Extension: application_layer_protocel_negotiation (len=14)
Extension: status_request (len=5)

Extension: signature_algorithms (len=13)
Extension: signed_certificate_timestamp (len=8) . .
Extension: key_share (len-43) 0 Version of the record protocol (still
Extension: psk_key exchange_modes (len=2)

Extension: supported_versions (len=7) ] 0())

Extension: compress_certificate (len=3)

Extension: application_settings (len=5)

Extension: Reserved (GREASE) (len=1)

Extension: padding (len=198)

0 List of supported data compression
methods, obsolete with TLS 1.3

0 List of extensions

O Note that all is plaintext!



Client Hello: 32-Byte Random Structure

N
0 From RFC 5246 Section 7.4.1.2:

The ClientHello message includes & random structure, which is used

later im the protocol.

struct {
uint32 gmt_unix_time;
opaque random_bytes[28];
} Random;

gmt unix time
The current time and date in standard UNIX 32-bit format
(seconds since the midnight starting Jan 1, 1978, UTC, ignoring
leap seconds) according to the sender's internal clock. Clocks
are not reguired to be set correctly by the basic TLS protocol;
higher-level or application protocols may define additional
requirements. MNote that, for historical reasons, the data
element is named using GMT, the predecessor of the current
worldwide time base, UTC.

random_bytes
28 bytes generated by a secure random number generator.




The Version Rollback Attack

0 This MitM attack targets SSL 3.0 2ol
Server is fooled into thinking he S version,=2.0, suite, N,
0 Here the attacker intercepts the 55321“n3;3ﬁ2t5n"9'y\23?’“m rfiﬂ:ﬁiéz:é'
plaintext ClientHello message, )
that includes the highest TLS —— —
version the client supports Cand'S e Wy Commiunicating tadng S5 20
(i.e. SSL 3.0) Gt Wiy Pl o)

0 The attacker changes the message content to “SSL 2.0, thereby
tricking both server and client to accept a weaker (i.e. flawed)
protocol

O The server assumes the client only understands SSL 2.0

O The client assumes the server only understands SSL 2.0



TLS Protection against MitM Attacks

0 MitM attacks cannot be mitigated, as Client Hello and Server
Hello messages, as well as the client key exchange messages for
DH key negotiation are sent as plaintext

0 Instead, the Finished messages of both client and server contain
the result of the HMAC of the negotiated cyphersuite, truncated to
12 bytes (therefore called a pseudo-random function (PRF)), of:

0 The master secret

O A hash of all the previous handshake messages (from ClientHello up to
but excluding the Finished message)

O The finished-label string (“client finished” for client message and “server
finished” for server message)

0 Therefore, both sides can retrospectively validate the integrity of
the handshake protocol

O This includes all MitM attacks during the key exchange protocol
(remember only the server value was signed)
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TLS Handshake Extensions
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TLS Handshake

Hello Message

* Server Name Indication extension
Server Name list length: 28
Server Name Type: host _name (@)
Server Name length: 25
Server Name: lh3.googleusercontent.com

Extension:
Extension:
% Ewxtension:

extended _master_secret (len=8)
renegotiation_info (len=1)
supported_groups (len=18)

Type: supported groups (18)

Length: 1@

Supported Groups List Length: 8

¥ Supported Groups (4 groups)

Supported Group: Reserved (GREASE) (@x3 )
Supported Group: x25519 (@x@8ld)
Supported Group: secp256rl (8xee17)
Supported Group: secp384rl (@w8e13)

Extension:
Extension:
Extension:
Extension:
Extension:
Extension:
Extension:
Extension:
Extension:
Extension:
Extension:
Extension:
Extension:

ec_point_formats (len=2)
session_ticket (len=8)
application_layer protocol negotiation (len=14)
status_request (len=5)
signature_algorithms (len=18)

signed certificate_timestamp (len=8)
key_share (len=43)

psk_key ewchange_modes (len=2)
supported wversions (len=7)
compress_certificate (len=3)
application_settings (len=5)
Reserved (GREASE) (len=1)

padding (len=198)

Extensions in the Client

0 These provide additional info to
the server

0 A few notable examples:

O Supported elliptic curves
o Server Name Indication

®m A client indicates which hostname it is
attempting to connect to at the start
of the handshake process

® This allows a server to present one of
multiple possible certificates on the
same IP address and TCP port
number and hence allows multiple
secure (HTTPS) websites to be served
by the same IP address without
requiring all those sites to use the
same certificate



TLS Handshake Extensions in the Client

Hello Message

Extensions Length: 483
> Extension: Reserved (GREASE) (len=@)
¥ Extension: server_name (len=38)

Type: server_name (@)

Length: 3@

» Server Name Indication extension

A Y L "

Extension: extended_master_secret (len=8)

Extensicn: renegotiation_info (len=1)

Extension: supported_groups (len=1@)

Extensicn: ec_point_formats (len=2)

Extension: session_ticket (len=8)

Extensicn: application_layer protocol negotiation (len=14)
Extensicn: status_request (len=5)

Extensicn: signature_algorithms (len=18)

Type: signature_algorithms (13)

Length: 18

Signature Hash Algorithms Length: 18
¥ Signature Hash Algorithms (8 algerithms)

Signature
Signature
Signature
Signature
Signature
Signature
Signature
Signature

WO W W W W W W

Algorithm:
Algorithm:
Algorithm:
Algorithm:
Algorithm:
Algorithm:
Algorithm:
Algorithm:

ecdsa_secp256rl_sha256 (8x@483)
rsa_pss_rsae_sha256 (@x0384)
rsa_pkecsl _sha256 (@x84a81)
ecdsa_secp384rl_sha3s4 (8x@583)
rsa_pss_rsae_sha384 (8x8885)
rsa_pkecsl_sha384 (8x8581)
rsa_pss_rsae_sha5l2 (8x88@6)
rsa_pkcsl_sha512 (@xe6al)

> Extension: signed_certificate_timestamp (len=8)
¥ Extension: key_share (len=43)
Type: key_share (51)

Length: 43

v Key Share extension
Client Key Share Length: 41

> Key Share Entry: Group: Reserved (GREASE), Key Exchange length: 1
> Key Share Entry: Group: x25519, Key Exchange length: 32

0 Signature hash algorithms

O In TLS1.2 only, the client MAY include the
signatureAlgorithms extension indicating
what types of signatures it supports
verifying

O This includes the signatures on the
certificates in the server's chain

o This feature is dropped again in TLS 1.3



ServerHello (Wireshark Screenshot)
I

¥ Transport Layer Security
¥ TLSv1.3 Record Layer: Handshake Protocel: Server Hello
Content Type: Handshake (22)
Version: TLS 1.2 (@x@3@3)
Length: 122
¥ Handshake Protocol: Server Hello
Handshake Type: Server Hello (2)
Length: 1138
Version: TLS 1.2 (@x@303)

Random: ??b42be2bd?8b5c553da9zfﬂa24bf3ff99biff?ifffﬁi%f§z§§@ﬂ5b52ﬁﬁ4ﬂ6§F””””"’——’¥'
Session ID Length: 32

Session ID: @7c2d49a4554a146342de69738c7hA45dbc5691c3A1226bh366
Cipher Suite: TLS AES 128 GCM_SHA2S6 (Bx13@1)

Compression Method: null (@)
Extensions Length: 46  _}

¥ Extension: key share (len=36)
Type: key share (51)

Length: 36
» Key Share extension
¥ Extension: supported versions (len=2)
Type: supported_versions (43)
Length: 2
Supported Version: TLS 1.3 (@x@304)
[1A35 Fullstring: 771,4865,51-43]
[1A35: ebld94daa7ed344597e756a1fh6e7054]
¥ TLSv1.3 Record Layer: Change Cipher Spec Protocol: Change Cipher Spec
Content Type: Change Cipher Spec (2@)
Version: TLS 1.2 (@x@383)
Length: 1
Change Cipher Spec Message

v

O

Highest TLS version supported

Random 32 byte nonce (contains a
timestamp)

Client session id
Chosen cipher suite

List of supported data compression
methods, obsolete with TLS 1.3

List of extensions

Again, all plaintext!



TLS 1.2 Session Resumption
T

0 Assume a client wants to reconnect to a server it has previously
communicated with

0 If the client still has the negotiated cipher suite and keys from the previous
handshake cached, it can send the server the previously used session id in
the ClientHello message

If the server has cached all this data too, it can shorten the handshake

However, it still requires a round trip to verify the session, which can
infroduce some latency

o Otherwise, a full new session negotiation is required, which will generate a new
session ID, and which will take longer

0 If a browser requires multiple connections to the same host (e.g., when
HTTP/1.x is used), it will often wait for the first TLS negotiation to complete
before opening additional connections to the same server, such that they can
be "resumed" and reuse the same session parameters

0 On the other hand, caching the parameters of many client sessions over long
periods of time does not scale and it rarely used



TLS 1.2 Session Resumption

Client Server
Client Hello
Session Ticket (PSK) - S:e";"é,';'a‘:'f

key Share

<

—>
data (e. g HTTP
< Answer)

0 Here all key negotiation steps are excluded



TLS 1.3 and 1-Round Trip Time (1-RTT)
.

0 Beside only supporting a streamlined ciphersuite for
key negotiation (ECDHE only), TLS 1.3 also supports
a new accelerated handshake process called 1-RTT

versus




The key_share Extension
N

Transmission Control Protocol, Src Port: 63377, Dst Port: 443, Seq: 1, Ack: 1, Len: 517
v Transport Layer Security
¥ TLSv1.3 Record Layer: Handshake Protocol: Client Hello
Content Type: Handshake (22)
Version: TLS 1.8 (@x@3el)
Length: 512
* Handshake Protocol: Client Hello
Handshake Type: Client Hello (1)
Length: 588
Version: TLS 1.2 (@x@383)
Random: 5628afelaSafa352d8a3336c39387da39bl3ec3dB@dedcIfoefr22ae51dTEe49

0 This seems to suggest that the client

is requesting a TLS 1.2 handshake

0 A TLS 1.3 client hello looks
superficially exactly like a TLS 1.2

Session D Length: 32 handshake, right down to the
Session ID: @7c2d49a34554a1463c42de69738c7b645dbc5691c3@1e26bb3663dF24c965F37
Cipher Suites Length: 32 version number

Cipher Suites (16 suites)
Compression Methods Length: 1

Compression Methods (1 method) 0 If the server only understands TLS

Extensions Length: 483

Ext i : R d [:GRE.&SE:] (l ='3') . ° ° .

Extension: server_name (lens30) 1.2, it will just negotiate a TLS 1.2
Extension: extended_master_secret (len=8)

Extension: renegotiation_info (len=1) hqndshqke as before

Extension: supported_groups (len=18)
Extension: ec_point_formats (len=2)

Extension: session_ticket (len=@) | However, The new CIieaneIIo

Extension: application_layer_protocel_negotiation (len=14)

xteneion: imacire arearstnme (1en-15) extension key_share indicates that
Extension: signed_certificate_timestamp (len= . .
Extension: key_share (len-43) the client understands version 1.3

Extension: psk_key exchange_modes (len=2)
Extension: supported_versions (len=7)
Extension: compress_certificate (len=3)
Extension: application_settings (len=5)
Extension: Reserved (GREASE) (len=1)
Extension: padding (len=198)



The key_share Extension
N

Extensicns Length: 483
Extension: Reserved (GREASE) (len=8)
¥ Extension: server name (len=3@)

Type: server_name (@)

Length: 3@

Server Name Indication extension
extended_master_secret (len=8)
renegotiation_info (len=1)
supported_groups (len=18)
ec_point_formats (len=2)
session_ticket (len=8)

Extension:
Extension:
Extension:
Extension:
Extensien:
Extension: application layer protocel negotiation (len=14)
status_request (len=5)
signature_algorithms (len=18)
signed certificate_timestamp (len=8)
key share (len=43)
Type: key share (51)
Length: 43
¥ Key Share extensicn
Client Key Share Length: 41
Key Share Entry: Group: Reserved (GREASE), Key Exchange length: 1
¥ Key Share Entry: Group: x25519, Key Exchange length: 32
Group: x25519 (29)
Key Exchange Length: 32
Key Exchange: el7fc347fe2e7@BalbebdbB57a224161ca7e71b2328868 de
Extension: psk key exchange modes (len=2)

Extension:
Extensicn:
Extension:
¥ Extension:

O

%

In TLS 1.2, the ClientKeyExchange message is
used fo kick-off the key exchange

This is now complemented by a method where
the client presents the server with a ECDHE key
exchange right at the start

The idea is that the client just goes ahead and
assumes that the server will select its preferred
key exchange method and returns its ECDHE
parameter

If the server selects a different key exchange
method, it will respond with a RetryHelloRequest
message (not shown here) which restarts the
handshake; this can be the result of either:

o An ECDHE group that is not supported by the server

O A server (security) policy that necessitate the use of
different ECDH parameters than those proposed by the
client

In most cases the server will support the
preferred key exchange method, so the
handshake is shorter



The key_share Extension in both ClientHello
(Left) and ServerHello (Right)

Extensions Length: 483
Extension: Reserved (GREASE) (len=8)
¥ Extension: server name (len=38)
Type: server_name (@)
Length: 3@
» Server Name Indication extension
Extension: extended master_secret (len=8)
Extension: renegotiation_info (len=1)
Extension: supported _groups (len=18)
Extension: ec_point formats (len=2)
Extension: session_ticket (len=8)
Extension: application layer protocel negotiation (len=14)
Extension: status_request (len=5)
Extension: signature_algorithms (len=18)
Extension: signed certificate_timestamp (len=8)
Extension: key share (len=43)
Type: key share (51)
Length: 43
¥ _Vag7snare extension
Client Key Share Length: 41
» Key Share Entry: Group: Reserved (GREASE), Key Exchange length: 1
¥ Key Share Entry: Group: x25519, Key Exchange length: 32
Group: x25519 (29)
Key Exchange Length: 32
ey Ewchange: el7fc347fe2e786alb6bdb857a224161ca727102328868 de
Extension: psk key excharpe wdues (icii--)

L L T R e A

¥ Handshake Protocel: Server Hello
Handshake Type: Server Hello (2)
Length: 113
Version: TLS 1.2 (@xB3@3)
Random: 77b42be2bd78b5cE53da92f8624bf3To0b742badach32f6726008b5)
Session ID Length: 32
Session ID: @7c2d49a4554a1463c42de69738c7b645dbe5691c301e26bb36E]
Cipher Suite: TLS_AES 128 GCM SHA256 (@x13@1)
Compression Method: null (@)
Extensions Length: 46
¥ Extension: key share (len=3g)
Type: key_share (51)
Length:.22
¥ Key Share extension
¥ Key Share Entry: Group: x25519, Key Exchange length: 32
Group: x25519 (29)
Key Exchange Length: 32
Key Exchange: ff218582cc@c2bcflafd@S4chi45459fc82a325dd]
¥ Extensicn: supported versions (len=2)
Iypatsunported versions (43)
Length: 2
Supported Version: TLS 1.3 (@x@3@4)
[1A35 Fullstring: 771,4865,51-43]
[JA35: ebld34daa?eR3445972756alfhee7054 ]
TL5v1.3 Record Layer: Change Cipher Spec Protocol: Change Cipher Spec

- . P -1 ' Fmmy

0 Note that in the server response all messages after the ServerHello message are already

encrypted



Cipher Suite (Wireshark Screenshot)
B

¥ Cipher Suites (16 suites)

Cipher

Cipher
Cipher
Cipher
Cipher
Cipher
Cipher
Cipher
Cipher
Cipher
Cipher
Cipher
Cipher

Suite:
Suite:
Suite:

Suite:

Suite:
Suite:
Suite:
Suite:
Suite:
Suite:
Suite:
Suite:
Suite:
Suite:
Suite:

0 The highlighted cipher suits are
used in TLS 1.3

0 The negotiable bits are:
‘ O 128- or 256-bit AES in GCM

TLS_AES 128 GCM_SHA256 (@x13@1)
mode, or

TLS_AES 256 GCM_SHA3E4 (@x1382)
TLS CHACHA28 POLY1385 SHA256 (@x1383) . .

o 256-bit ChaCha20 combined
with POLY1305

TLS_ECDHE ECDSA WLTH AES 128 GUM_SHAZ56 (@xce2b)
m ChaCha20 is a stream cipher

TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 (Bxc@2f)
TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 (@xc@2c)

m POLY1305 is a hash function, here
used for authenticated encryption

TLS_ECDHE_RSA_WITH_AES 256 GCM SHA3B4 (@xc@3@)
TLS_ECDHE_ECDSA WITH CHACHA2® POLY13@5 SHA256 (@xccad)
TLS_ECDHE_RSA WITH CHACHA2@ POLY13@5 SHA256 (@xccasd)

o SHA256 or SHA384 hashing
0 The fixed elements are:
o ECDHE using Curve25519

TLS_ECDHE_RSA WITH AES 128 CBC_SHA (@xc@13)
TLS_ECDHE_RSA WITH AES 256 CBC_SHA (@xc@14)

O Message authentication using RSA
or ECDSA

TLS_RSA_WITH_AES 128 GCM_SHAZ56 (@x@89c)
TLS_RSA_WITH_AES_256_GCM_SHA384 (@x@89d)

m Depending if the server certificate
contains a public RSA or EC key

TLS_RSA WITH_AES 128 CBC_SHA (@x@azf)
TLS_RSA WITH_AES 256 CBC_SHA (@x@@835)



Review a TLS Handshake with OpenSSL
s

1. Init TLS connection:

openssl s_client -connect universityofgalway.ie:443

2. Review the output on screen

3. You may decode the server certificate via
https: / /www.sslshopper.com/certificate-decoder.html



https://www.sslshopper.com/certificate-decoder.html

Review a TLS Handshake with OpenSSL
e

O

Connection Status:
o CONNECTED(0O0000003): Indicates that the connection to the server was successful.
Certificate Verification:

o depth=2, depth=1, depth=0: These lines show the verification process of the certificate chain. Each
depth level represents a certificate in the chain, starting from the root CA (depth=2) to the server's
certificate (depth=0).

o verify return:1: Indicates that the certificate at each depth level was successfully verified.
Certificate Chain:

O Lists the certificates in the chain, including the subject (s:) and issuer (i:) details. The chain starts from the
server's certificate and goes up to the root CA.

Server Certificate:

0 The server's certificate is displayed in PEM format, including details like the subject and issuer.
Peer Information:

O No client certificate CA names sent: Indicates that no client certificate authority names were sent.
O Peer signing digest: SHA256: Specifies the digest algorithm used for signing.

O Peer signature type: RSA-PSS: Specifies the signature algorithm used.

o  Server Temp Key: X25519, 253 bits: Indicates the temporary key used for key exchange.



The HTTPS Protocol

2 ==
0 HTTPS (Hypertext Transfer Protocol Secure) is
syntactically identical to the HTTP protocol, but
operates on top of TLS (rather than TCP)

0 TLS on the other hand operates on top of TCP
0 It provides secure client / (web) server HTTP data

communication, while also allowing a client (i.e. web
browser) to authenticate the (web) server, as part of

the TLS handshake
0 The default HTTPS port is 443



The Importance of Server-Side

Authentication: Pharming Scams
n*

How can it be achieved — Simple Pharming!

0 Pharming scams use domain 0 Copy a website 1:1 and present it
spoofing (in which the domain to the victim using a slightly
appears authentic) to redirect different domain name

users to copies of popular
websites where personal data
like usernames, passwords
and financial information can

tand share witl C
be ‘farmed’ and collected for ST e e S R L s
X
fraudulent use O e TN s e st o
1 '''''' G e Page Your Email
X £y =2 N -1 Re-enter Email

New Password




The Importance of Server-Side

Authentication: Pharming Scams
n*
o —

0 Pharming scams use domain o Similar to simple pharming, but also
spoofing (in which the domain manipulate the DNS server to redirect
appears authentic) to redirect DNS queries to the attacker’s website,
users to copies of popular i.e. the same domain name is used
websites where personal data 0 Known as DNS poisoning, DNS cache
like usernames, passwords poisoning or DNS spoofing
and financial information can
be ‘farmed’ and collected for @
fraudulent use Atacker

ARy Request resolves Fake website
1 Tie etste
@ ——E
e lis,”:‘f;%:offé =Em e




Anti-Pharming Support in your Browser
N

0 In DNS spoofing, the malicious server cannot support HTTPS
or TLS, as its doesn’t have the spoofed server’s private key

O It has its certificate though, but that’s not enough to complete the
TLS handshake

0 All modern browsers pick up » | obers
on this and abort the
connection | A
. | Your connection is not private
D AISOI Use rs q re Wq rned If TC P i ﬁmack:rs might be ‘t’ryi:\fg to steallyourinfnrmdationfrom omop-leadf.- .
rather than TLS is used (se e T8 GENT COUNON AN NIALD

Q To get Chrome's highest level of security, turn on enhanced protection

°
image)
Advanced




Certificate Stapling
I

0 In certificate stapling, the server appends all certificates in the path up
to the root CA / RCA in a “Certificate” message, which is sent together
with its ServerHello message to the client

0 These stapled certificates are sent as
O plaintext in TLS 1.2 (see Wireshark screenshot below)

O ciphertext in TLS 1.3 (as all messages after the “Server Hello”
message are already encrypted

Frame 12: 1872 bytes on wire (8576 bits), 1872 bytes captured (8576 bits) on interface \Dewvice\NPF_{D65A8A53-7DBC-4AE2-93E1-1C9B99DCACE2}, id &
Ethernet II, Src: Sagemcom 5b:a3:57 (5c:bl:3e:5b:a3:57), Dst: IntelCor a6:2e:6c (18:5e:8f:a6:2e:6¢c)
Internet Protocol Version 4, Src: 13.79.243.64, Dst: 192.168.1.185
Transmission Control Protocol, Src Port: 443, Dst Port: 56944, Seq: 2921, Ack: 518, Len: 1818
[3 Reassembled TCP Segments (3938 bytes): #18(146@8), #11(1468), #12(1018)]
v Transport Layer Security
~ TLSv1.2 Recerd Layer: Handshake Protocol: Multiple Handshake Messages
Content Type: Handshake (22)
Version: TLS 1.2 (@x@3e3)
Length: 3933
Handshake Proteocol: Server Helle
¥ Handshake Protocol: Certificate
Handshake Type: Certificate (11)
Length: 3@57
Certificates Length: 3854
¥ Certificates (3854 bytes)
Certificate Length: 1838
Certificate: 3082072a30520612a00302010202100b183ee5deb9b4c931506d59591F7ecf300d@6092a.. (id-at-commonName=www.revenue.ie,id-at-organizationName=0ffice of the Revenue Commissioners,id-at-localityName=Dublin,id-at-countryName=IE,..
Certificate Length: 1218
Certificate: 385284b6305208300aB0302010282100C79a944b@8c11952092615Fe26b1d53300de6092a.. (id-at-commonName=DigiCert SHA2 Extended Validation Server CA,id-at-organizaticnalUnitName=www.digicert.com,id-at-organizationName=DigiCert..
Handshake Proteocol: Certificate Status
Handshake Protocol: Server Key Exchange
Handshake Protocol: Server Hello Done



Example Certificate Path Validation
—

Certificates X
request web site
m . !\ —— certificate | Cettification Intended purpose: <All> ~
‘ secure 2
b si [2J Authority Intermediate Certification Authorities  Trusted Root Certification Authorities  Trusted publ 4+ | »
o web site = (ca
-Sign
_/ g R Issued To Issued By Expiry Date  Friendly Name &~
- / 0
P ey ® { \ " mA\phaSSL CA -SHA... GlobalSign Root CA 20/02/2024  <None>
. e i 5 ‘. | @Cullaburatun Certif... WVeriSign Class 2 Public... 01/09/2019 <None>
“ "9 § 2 § § % [53/coMODO ECC Cert... AddTrustExternal CA...  30/05/2020  <None>
( \ | ( ‘\.. 2 g o a E g_' [=;/COMODO RSA Dom... COMODO RSA Certific...  11/02/2028  <None>
———— 2 g % £ c [5JCOMODO RSA Org...  COMODO RSA Certific... 11/02/2028  <None>
// \. = e ‘ln [ ]DFN-verein Certific... T-TeleSec GlobalRoot ... 22/02/2031  <Nonex
\ e | [55/DFN-verein Global 1... DFN-Verein Certificati...  22/02/2031  <None>
mD\giCert Assured ID... DigiCert Assured IDR... 10/02/2026 <None>
’ 3

\ |
/ f \ !
/ \ /
{ / \ ) A 4 |5/ DigiCert Assured ID... DigiCert Assured ID R 15/01/2038  <None> b
n / \ 1
(‘A3 ('.\,l \ user at PC " | browser
p y | \ with browser || ——— ,dismbu.e — vendor Import... Export... Remove Advanced
7= ' - \ — with browser
\\ / \ -"_& = Certificate intended purposes
f \ \
\ / \ verify s
’ 4 1 CA root certificate

-
Alie | Bob ' [ Carl ’ ”f"',“f,J Eanil | [ weo st corcte

0 For Alice (Client PC with web browser) to authenticate Diana (Server that hosts secure
website), she requires CA2’s (Certification Authority) certificate

0 This may be already installed in Alice’s browser (right image) together with RCA’s
certificate

0 However, there’s no guarantee that a browser contains the certificates of all
intermediate CAs

0 On the other hand, the handshake process should not be delayed by the client collating
all the certificates belonging the Diana’s certificate path

0 Therefore, the server (Diana) provides Alice with the chain of certificates up to RCA level
via certificate stapling



OCSP Stapling

0 Recall: The Online Certificate Status Protocol (OCSP) is a standard
for checking the revocation status of X.509 digital certificates

o An OCSP response is digitally signed and time-stamped by the CA (OCSP
server) that confirmed the revocation status of a certificate

0 In OCSP stapling
O The client includes a "status_request” extension in its ClientHello message

O The server includes the OSCP response “Certificate Status” message in the
ServerHello response

0 This eliminates the need for a client to contact the CA, thereby
improving overall performance

0 However, the status of intermediate and root certificates is typically
managed by separate OCSP checks



The ServerHello OCSP Response
I

. 0 Type (BasicResponse)
Handshake Protoccl: Certificate Status
Handshake Type: Certificate Status (22) O
Length: 475
Certificate Status Type: OCSP (1)
OCSP Response Length: 471
¥ 0C5FP Response
responseStatus: successful (@)
¥ responseBytes
ResponseType Id: 1.3.6.1.5.5.7.48.1.1 (id-pkix-
% BasicOCSPResponse
“ thsResponseData

esponderID identifies the
OCSP server via its DN issuer
information, or its hashed
public key (as shown here)

ertld determines the cert
that is being validated; using
a hash algorithm (SHA-1) a
hash of the issuer’s DN, a

’ resfgderlgédggegdéag deef34a600a65d321d4T8Fad60T hash of it's public key, and
ey : asdealadeef34ac0ba o fe .
producedAt: Mar 18, 2823 23:86:29. 008000088 GMT Standard Time the Cel’flf.ICCﬂ'eS serial number
¥ responses: 1 item are prowded
v SingleRespons
v certl
» hashAlgorithm (SHA-1)
issuerNameHash: 49f4bd3alsbf760698c5ded4b2de

O certStatus (good)

Validity period of OCSP
response

seriallumber: @x@bl@3eesd The entire message us
7 certStatus: good (@) digitally signed by the OCSP

thisUpdate: Mar 1@, 2823 22:51:81.220220080
: responder
nextUpdate: Mar 17, 2823 22:86:081. Standard Time

» signaturefAlgorithm (sha25eWithRSAEncryption hat’s the signq'rure
Padding: @ k_’ﬁ‘/E/T
signature [..]: 6d3ld2blededlblebiSecd7d494facc5989T395 c4ch364815 e



Mutual Authentication (Server-Side and

Client-Side Au’rhen’rica’rioni
s

1 Consider a scenario where both the server and the
client need to mutually authenticate, e.g.

1 Server-to-server data communication
0 loT sensor network communication

O Online Revenue services where client (browser) needs to be
authenticated too

0 Mutual authentication is just an extension of the process
as seen before with the difference that the client sends
it certificate (chain) to the server too for verification



Mutual Authentication |
B 5

Client Server

Phase 1

Establish security capabilities, including
protocol version, session ID, cipher suite,
compression method, and mnitial random
numbers.

y

nge

yﬁ““”/
uest

certificate B

gerver ,.he“O _don®

Phase 2
Server may send certificate, key exchange,

andrequest certificate Server signals end

of hello message phase.




Mutual Authentication Il
B 5

Client Server
Certificay
client ke Phase 3
=—J_€Xchap ge Client sends certificate 1f requested. Client
] sends key exchange. Client may send
Certificata verify certificate verification.

w‘
Phase 4

Change cipher suite and finish

Cha“ge __Cipher —-Spec handshake protoc ol.




In Summary
I

0 TLS is the de-facto security protocol used in Internet data
communication

0 It went through a series of versions, and today only TLS 1.2
and TLS 1.3 are used

0 TLS combines a lot of the foundation topics we've discussed
in recent weeks

0 Practically it is very hard to break TLS security, as the
protocol went through various improvements over the years

0 Therefore, from an attacker perspective, it is more promising
to compromise a system by attacking either the client, the
server, or the end user directly



N

CT5191
NETWORK SECURITY & CRYPTOGRAPHY

IPSEC

Dr. Michael Schukat




Recap: TCP/ IP Header Hierarchy

On what level(s)
should authentication
and / or encryption

take place?

- TCP header

TCP segment

-
-

v

TCP header

IP datagram

TCP header

Ethernet frame

v

L5 /6

L4

L3

L2



Recap: Issues with the IP Protocol

0 IP payload is not encrypted (no confidentiality) and can be manipulated in
transit

0 IP header fields can be manipulated in transit (CRC can be adjusted on-the-fly
- next slide)

O IP addresses can be spoofed (no authentication)

0 IP header has mutable fields that can change during datagram transport

~ 32 Bits -
Lo oo b o b o e e b ey
Version IHL Type of service Total length
Identification E I\Iél Fragment offset
Time to live Protocol Header checksum

Source address

Destination address

((
))

Options (O or more words)

((
))




|IPsec Overview
4

0 Protocol Standard to protect IP datagrams
0 It provides: O0——0

Information Information
O Data origin authentication o
® - Protection against IP address

spoofing O— O
O Connectionless data integrity authentication

(b) Interruption (c) Interception
p

(a) Normal flow

® = Protection against modification

o0 Data content confidentiality O
® - Protection against interception

(d) Modification (e) Fabrication

O Anti-replay protection
® Protection against replay attacks / modification

O Limited traffic flow confidentiality
® - Protection against interception
m > (Limited) obfuscation of endpoint IP addresses



Organisational Use of IPsec

Transparent to
applications and users

User system
with [PSec

P IPSec Secure [P
Header| Header Payload

Public (Internet)
or Private

Minimising intranet
security overheads Complements
firewalls

== . .
il - Networking device
with 1PSec £S5

= -' Networking device

F—— ———mamar with [PSec

1P P [P P
Header Payload Header Payload




IPsec Virtual Private Networks (VPN)

for Individual Users
I

0 VPN service providers enable their customers to protect
their identity, as well as their data communication
between their computer, across Wi-Fi / LAN and WAN to
a trusted gateway (VPN server)

Transparent to applications
and users

Internet Service
Provider

VPN VPN VPN
Client félTJ\>Lj Tunnel Server Internet
HHHI R
Dt : 3 iKreased

Your

VPN client is app on GJjE fl(-?l]

device Advertisers Government Hackers
agencies




IPsec Services by Header Type
N

0 IPsec is a network-layer security protocol that provides

O IP payload encryption (for confidentiality) via ESP
(Encapsulating Security Payload)

o IP header and playload authentication via AH
(Authentication Header)

0 Key management (not covered here)

0 As an IP layer protocol extension, it prowdes secure
Internet, LAN, and WAN i L et
Comm Unlcq'l'lon Access control V

Connectionless integrity

Data origin
authentication

Rejection of replayed
packets

AN BV AYAN

Confidentiality

Limited traffic flow
confidentiality

ANAN AN AN ANAN

AN AN




Security Associations (SA)
S =

0 Key concept for authentication and confidentiality for IP

0 One-way relationship between sender and receiver

O e.g. for a two-way secure peer relationship, two SAs (one for
each host) are required

0 A SA is uniquely identified by

O Security parameter index (SPI)
Unique identifier, which is carried in the IPsec AH and ESP
headers

O IP destination address
O Security Protocol Identifier: indicates AH or ESP association



SA and the Security Association Database

(SAD)
N s

0 The SAD contains the parameters associated with each SA,
including

O Sequence number counter:
32-bit value for packet identification, which is part of AH or ESP
header

O Sequence Counter Overflow flag

O Anti-replay window
®m Remark: The above 2 parameters are important to prevent replay attacks

0 AH information: Algorithm, key and key lifetime, etc.
o0 ESP information: ditto
O Lifetime of SA (and SPI)

O IPSec protocol mode: Tunnel or transport mode



Security Policy Database (SPD)
S =

0 Each point-to-point link (e.g. host-to-host) is associated with one or
more SAs

0 This association between links and SA(s) is stored in the SPD, using
the following IP header fields (i.e. selectors) as keys:
O Source / Destination IP address
O Transport layer protocol
O Source and destination ports

0 For example, in order to process an outgoing IP packet,
O its selectors are extracted and compared against the SPD entries

0 Zero or more SA references are returned, and their respective SA
parameters are retrieved from the SAD

O Subsequently each SA is processed

0 In contrast, The SAs of incoming IPsec packets can be identified by
their SPI



The Anti-Replay Window

0 A received protected package contains SA selectors, which allow to
determine the required SA(s) in the SPD

0 The SA entry within the SAD contains state information, e.g.
parameters for replay window

0 A protected package also contains a unique packet sequence number

Advance window if
valid packet to the
right is received -
< Fixed window size W »
| LT T T T Jal T T fad Joowe DL Il [ [ INJaf [ ] ] ][]
/ z - \
N-W / \ N+ 1
marked if valid unmarked if valid
packet received packet not yvet received




The Anti-Replay Window

0 Three scenarios for a received packet:

o If packet falls within existing window, is new and is
authenticated, the corresponding slot will marked, and
packet will be processed

o If packet is right to the window, is new and is
authenticated, the window will be advanced, slot will be
marked, and packet will be processed

o If packet is left to the window or authentication fails, it will
be discarded, and an alarm will be raised

m As this could be an indication for a replay attack



Example

0 Consider a receive

r with W =5 and N = 33

0 Which of the following incoming (and authenticated)

packets will be deemed as a replayed packet and

discarded:
0 32, 29, 36, 38, 31

, 35

Advance window if
valid packet to the
right is received

/

marked if valid
packet received

-
< Fixed window size W >
[ LT T P T dal PP [l Joewe DL Il T [ [Nfal [ T T [ ]|
/ ™
N - W N+ 1

N\

unmarked it valid
packet not yet received




IPsec Transport Mode
N

0 Here, the IP header is untouched, and only the payload can
be encrypted (via ESP)

0 Therefore, the packet routing is kept intact

0 Certain IP header fields (i.e. IP source / destination address)
and the payload can be authenticated (via AH)

O This prevents IP address spoofing, but also NAT, as network address
translation invalidates the authenticator (see also NAT traversal)

0 Also, transport and application layer are authenticated too, so
they cannot be modified in any way in transit, for example by
translating the port numbers, unless NAT traversal is used

Transport layer Transport layer payload |

IPsec layer IPsec-H | |IPsac-T | H: header
l T: trailer

Metwork layer m IP payload |




IPsec Tunnel Mode
T e

0 Tunnel mode embeds an entire IP packet (as payload) into another

(outer) IP packet

O It secures the IP packet as a whole including its header(s)

0 The IP datagram is delivered according to the outer IP header

0 Typically for router-to-router or firewall-to-firewall VPN

0 Here IPsec is implemented in a security gateway (router /firewall) that

secures all packets coming from within the intranet

e

-

YPH Ciafaway 1

N

vy

Slte-to-mho IPEec YFN

m =
@ .=

VI'H Lalewary 2

Helwirh 3



Transport versus Tunnel Mode
S =

Transport Mode SA Tunnel Mode SA
AH Authenticates IP pavload and | Authenticates entire inner [P
selected portions of IP header | packet (inner header plus [P
and [Pv6 extension headers. payvload) plus selected portions

of outer [P header and outer
[Pv6 extension headers.

ESP Encrypts IP payload and any Encrypts inner IP packet.
[Pv6 extension headers
following the ESP header.

ESP with Authentication Encrypts IP payload and any Encrypts inner IP packet.
[Pv6 extension headers Authenticates inner 1P packet.
following the ESP header.
Authenticates IP payload but
not IP header.




IPsec: AH In Transport Mode
-3 0000000000000

1Pv4

orig IP extension headers

T ¥
IPvé (if present) TCE
+—authenticated except for mutable fields—j»
| orig IP —
1Pv4 hdr AH TCl Data
-+ authenticated except for mutable fields >
, hop-by-hop, dest,
[Fvé routing, fragment




IPsec: AH In Tunnel Mode

IPv4

extension headers
IPvih

(if present)

authenticated except for mutable

4 fields in the new IP header P

IPv4

authenticated except for mutable fields in
new [P header and its extension headers

IPvH




The Authentication Header

0 AH provides data integrity and authentication for |P
packets

0 AH prevents address spoofing and replay attacks
0 Authentication Data is based on keyed hash function (=2
later), so both parties share a secret key

Bit: 0 8 16 31

Next Header | Payload Length RESERVED

Security Parameters Index (SPI)

Sequence Number

Authentication Data (variable)




AH Fields

0 Next header (8 bits): Identifies type of header following
this header

0 Payload Length (8 bits): Length of AH in 32-bit words
minus 2

0 Reserved (16 bits)
0 SPI (32 bits): Identifies SA

0 Sequence Number (32 bits): Unique incremented counter
value

0 Authentication Data (variable): Contains Integrity Check
Value, i.e. the keyed hash value (next slide)



FYI: ICV for AH Authentication

"""""" In
. — .. Tots
blocksize '
Secret Key | nul pad 0x3636363636. . .
[T R . | %; ;
Ha_qz'ic M i
numl:rers XOR'd key Message to hash (full IP packet}
e l:::;s.
- |I|l T \-_ _.J
¥
0x5C505CH0HC. .
KOR'd key intermediate hash
b A
Integrity Check Value
in the AH header ...
o
222147a2983a5655612292b5e1e08c2d




ESP Encryption and (optional)

Authentication in Transport Mode
I

H—authenticated -

L | encrypted ——

- encrypted >

hop-by-hop. dest
IPvG p=Dy P. .

routing, fragment

{a) Transport Mode




ESP Encryption and (optional)

Authentication in Tunnel Mode
e

< authenticated >
4 encrypted -

IPv4

- authenticated o
4 encrypted o

IPv6

(b) Tunnel Mode




The IPsec ESP Header
S

16 24 31

=
=
=

Security Parameters Index (SPI)

Sequence Number

Payload Data (variable)

Padding (0 - 255 bytes)
Pad Length Next Header

df—— Authentication Coverage ————

— Confidentiality Coverage —J

Authentication Data (variable)




ESP Header and Trailer

0 ESP provides encryption using Triple-DES (obsolete by
2025) or AES, in CBC mode

0 ESP header contains SPI and sequence number
0 Hatched fields contain encoded payload

0 ESP trailer contains
O padding bytes
O padding length
O next header field

0 Optional ESP auth trailer contains authentication data



Combining Security Associations
S =

0 SA are complementary and provide different scope in tunnel and
transport mode

44— authenticated———p
o ESP+Auth (top) covers less fields than AH 4——encrypted———p
(bottom), as non-mutable fields of IP header

are not covered

0 Therefore, ESP and AH SA can be
combined to provide more comprehensive
encryption and authentication

+f—authenticated except for mutable fields—p

0 Likewise different SA can be applied at || orig IP
different locations, i.e. within different hdr
devices

AH| TCP Data




Combining Security Associations
S =

0 AH-SA and ESP-SA bundled in transport mode, i.e. ESP-
SA inside an AH-SA

One or More SAs




Combining Security Associations

0 VPN tunnel with added end-to-end security

0 The gateway-to-gateway tunnel provides confidentiality

and/or authentication

O Individual users can add
any additional IPsec
service to meet their
needs

Local
Intranet

Tunnel SA

= One or Two SAs
I ! I

: Security
I Gateway™

(c) Case 3

: Security
I Gateway™

Local
Intranet




Combining Security Associations
S =

[0 Remote host connection to server using tunnelling

Tunnel SA

One or Two SAs

: Security
' Gateway®

Local
Intranet

(d) Case 4




Recap Network Address Translation

NAT

192.168.1.1

PRIVATE IP:
192.168.1.100

PUBLIC IP: _§ L
101.8310112 /" NTERNET l\_-'

NAT ROUTER HOST

PUBLIC IP:68.1.31.1

192.168.1.2

NAT TABLE

INSIDE PRIVATE IP:PORT j§ INSIDE PUBLIC IP:PORT § OUTSIDE PUBLIC IP:PORT

192.168.1.1:9688 101.89.101.12:8801 68.1.31.1:23
192.168.1.2:1253 101.89.101.12:5123 68.1.31.1:23
192.168.1.3:1025 101.89.101.12:102 68.1.31.1:23




IPsec and NAT

I T

0 With NAT a single public IP address can be shared by
multiple endpoints (e.g. Wi-Fi network)

0 This requires the NAT router (i.e., access point) to change
the sender’s
O IP address in the IP header
O port number in the transport layer header (UDP or TCP)

0 If IPSec is installed on a client, this causes problems:
O In AH, the datagram authentication by the receiver will fail

O In ESP, the NAT router cannot change the encrypted port
number



IPsec and NAT Traversal
B

0 NAT traversal is a technique that allows IPSec ESP to

work with a NAT router

0 It adds a UDP header and a special payload to the
IPSec packet, which makes it look like a normal UDP

packet to the NAT router

0 The router can then perform the address translation on
the UDP header, without affecting the IPSec payload

0 The IPSec receiver endpoint can then remove the

UDP header and process
the IPSec packet normally

Original
packet

el ]

ESP padket
header
encapsulated
using UDP
{transport
mode)

l«—To be authenticated—»|

—ESF-podeet
header
encapsulated

using UDP
{tunnel
| e




Summary

36
0 Network security (i.e., data encryption and / or
authentication) is important for obvious reasons

0 The layered structure of the TCP/IP stack allows positioning
the extra security layer in different levels

0 Each of these options has its advantages and disadvantages
/ limitations, for example with regard to
O the portions of a packet that can be secured

O Compatibility with network routing, NAT, etc.

0 IPsec provides one possible option with encryption /
authentication taking place on network layer
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Cybersecurity versus Computer Security
N

0 Cybersecurity is the practice of protecting systems,
networks, and programs from digital attacks. These
cyberattacks are usually aimed at accessing, changing,
or destroying sensitive information; extorting money
from users; or interrupting normal business processes
Source: Cisco

0 Computer Security is the historically older term coined
at a time when the focus was on individual stand-alone
computers rather than entire systems



What is Computer Forensics?

0 Computer forensics is a branch of digital forensic
science pertaining to evidence found in computers and
digital storage media
The goal of computer forensics is to examine digital
media in a forensically sound manner with the aim of
identifying, preserving, recovering, analysing and
presenting facts and opinions about the digital
information
Source: Wikipedia



Some Housekeeping ...



Disclaimer
]

0 Please adhere to the ACM Code of Ethics and
Professional Conduct!

0 See Canvas

ACM Code of Ethics and
Professional Conduct

ACM Code of Ethics and Professional Conduct

Preamble

Computing professionals’ actions change the world. To act responsibly, they should reflect upon
the wider impacts of their work, consistently supporting the public good. The ACM Code of
Ethics and Professional Conduct ("the Code") expresses the conscience of the profession.

The Code is designed to inspire and guide the ethical conduct of all computing professionals,
including current and aspiring practitioners, instructors, students, influencers, and anyone who
uses computing technology in an impactful way. Additionally, the Code serves as a basis for
remediation when violations occur. The Code includes principles formulated as statements of
responsibility, based on the understanding that the public good is always the primary
consideration. Each principle is supplemented by guidelines, which provide explanations to
assist computing professionals in understanding and applying the principle.

Section 1 outlines fundamental ethical principles that form the basis for the remainder of the
Code. Section 2 addresses additional, more specific considerations of professional



Use of Canvas
I

0 Announcements
O Main communication mechanism, urgent messages may be circulated by email
o Syllabus
o Contains module outline, breakdown of marks, etc.
0 Modules
o Compulsory and optional reading materials
Assessment
0 Quizzes
O In-class quizzes
O End-of term student feedback questionnaire
0 Discussion Forum
O Mainly used for assignment-related questions
0 Quickly attendance (used later for every lecture)
0 Virtual Classroom

O Possibly used for virtual labs



Lecture Organisation / Breakdown of

Marks
N

0 2 hours of lectures per week
0 Wednesday 10:00 — 11:00 in Tyndall Theatre
0 Wednesday 13:00 — 14:00 in ENG-2002

0 2 hours of labs per week (from week 3, tbc)

0 There will be a continuous assessment (CA) component worth 30%
consisting of

O 2 assignments

O in-class quizzes

O lab worksheets
0 The exact CA structure will be shared with you in coming days
0 The summer exam has a weight of 70%

o See Canvas for 2022/23 summer exam
o Ill be also using Mentimeter or Vevox for in-class feedback



In-Class Quizzes

S
0 Canvas MCQ)s, during the lectures

0 Open book, addressing content covered during the
current or previous week

o | will provide you with details beforehand

0 Typically, 5 randomised questions out of a pool of 20+
questions

0 One question is presented at a time, there is no
backtracking allowed

0 5 minutes duration



Flipped Learning
e
0 In some lectures we’ll apply the concept of
flipped learning:

OYou'll be notified via Canvas and study the
learning materials prior to the weekly lectures

olf you have specific questions about content,
please let me know in good time, so that | can
incorporate them into my lecture slots that week



Assignment Content Overview
B

0 The assignments will require you to do the following:

1. Software development / benchmarking in C using the
OpenSSL library

2. Installation and demonstration of ethical hacking tool
(i.e., Metasploit)

m Extensive use of VM or container

0 Because of various campus restrictions you
need to use your own computer / laptop for the
assignments



Some important Ethical Hacking /

Penetration Testing Tools
-*

0 Kali Linux
An Advanced Penetration Testing Linux distribution used
for Penetration Testing, Ethical Hacking and network
security assessments

0 Metasploit
A software platform for developing, testing, and
executing exploits

0 Shodan
Shodan is a search engine for Internet-connected devices

https: / /www.youtube.com /watch?2v=Db5TPYTgy9c



https://www.youtube.com/watch?v=Db5TPYTgy9c

Learning Materials and Textbooks
N

0 Weekly presentations

0 There’s no single primary textbook, but William
Stalling’s
O Cryptography and Network Security
0 Data & Computer Communications
provide a good overview

0 I'll provide you with links to additional sources, e.g.
O articles
O eBooks
O source code

as we go along



Main Learning Outcomes
N

On successful completion of this module you will:

1.

Have a knowledge of fundamental cybersecurity principles,
including confidentiality, integrity, and availability (CIA
triad), as well as an understanding of threats and attack
techniques by threat actors

Have a solid understanding of modern cryptographic
algorithms, modern cryptographic network protocols, and
their applications

Synthesize cryptographic concepts into algorithms /
frameworks to address a given cybersecurity problem

Be able to conduct simple information / computer system
security assessments using ethical hacking / pen-testing
strategies and tools

Proficient in the use of cryptographic libraries (i.e., OpenSSL)
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