
CT437

COMPUTER SECURITY AND FORENSIC COMPUTING

BUFFER OVERFLOW CASE STUDY – THE HEARTBLEED BUG

Dr. Michael Schukat

A Bug with its own Website (heartbleed.com) and Icon

2

XXX

Overview Heartbleed
3

 Discovered in 2014

 Exploits a bug in the OpenSSL

implementation of the TLS

“heartbeat hello” extension

 Can affect both client and server

side

XX

Recap TLS 1.2 Handshake (Server

Authentication only)
4

TLS Heartbeat Extension
5

 Originally TLS had no provisions to keep a client /

server connection alive without continuous data transfer

 Idle connections would timeout instead and a

(computationally) expensive handshake (224 ms in the

previous example) or a reconnect would have to take place

 The heartbeat extension provides a protocol for “keep-

alive” messages that prevent a timeout

 One endpoint could send out a HeartbeatRequest message,

which would be immediately responded with a

HeartbeatResponse message

Heartbeat with incoming Message

(correctly) buffered
6

Heartbeat Request / Response Message

7

heartbeat_request or heartbeat_response

16+ bytes of random

content, ignored by receiver

 The sender composes a request message containing a payload with a specified
length (i.e. payload_length)

 The receiver returns a response message containing a copy of the sender’s payload
(with length payload_length)

 “opaque” is a typdef (i.e., unsigned char)

Heartbleed Exploit
8

 The server receives a Heartbeat request message and copies it
into memory, for further processing

 However, memory also contains information from other sessions
including tokens, keys, session IDs etc.

 If payload_length is actually larger than the payload[..], the
server will copy memory content beyond the payload array into
the response message’s payload array (let’s call it ret_payload),
which is then sent back to the sender

 memcpy(ret_payload, payload, payload_length);

 Remember, this is C (and not Java or Python), so array
boundaries are not checked!

 This is a typical buffer over read attack

The Heartbleed Attack
9

Heartbleed Exploit Extract (Python

Code)
10

 https://gist.github.com/eelsivart/10174134

https://gist.github.com/eelsivart/10174134

What can be leaked?
11

What happened next?
12

 The Heartbleed bug was fixed (of course)

 Further checks and balances were added to validate

that payload length was correct

==

Heartbleed Impact
13

 The Heartbleed vulnerability was in all versions of OpenSSL released
between March 2012 and April 2014

 It was a zero-day (i.e., a vulnerability unknown to its owners, developers or
anyone capable of mitigating it) for almost 2 years

 According to CVE-2014-0160, the following operating system distributions
were potentially affected:

 Debian Wheezy (stable)

 Ubuntu 12.04.4 LTS

 CentOS 6.5

 Fedora 18

 OpenBSD 5.3

 FreeBSD 10.0

 NetBSD 5.0.2

 OpenSUSE 12.2

Lessons learnt
14

 OpenSSL core developer Ben Laurie claimed that a security
audit of OpenSSL would have caught Heartbleed

 Some other quotes from the security community:

 “Think about it, OpenSSL only has two fulltime people to write,
maintain, test, and review 500,000 lines of business-critical code”

 “The mystery is not that a few overworked volunteers missed this
bug; the mystery is why it hasn't happened more often”

 “There should be a continuous effort to simplify the code, because
otherwise just adding capabilities will slowly increase the software
complexity. The code should be refactored over time to make it
simple and clear, not just constantly add new features. The goal
should be code that is “obviously right”, as opposed to code that is
so complicated that “I can’t see any problems”

Related Problem: Buffer Overflow /

Stack Overflow

#include <string.h>

void foo (char *bar)

{

 char c[12];

 strcpy(c, bar);

}

int main (int argc, char **argv)

{

 foo(argv[1]);

 return(1);

}

What is the problem

in this example?

X

Example for a Stack Overflow

#include <string.h>

void foo (char *bar)

{

 char c[12];

 strcpy(c, bar);

}

int main (int argc, char **argv)

{

 foo(argv[1]);

 return(1);

}

• Lets assume the compiled

program is called test

• Test is invoked from command

line (next slide):

• “> test hello” will work fine

• “> test AAAAAAAAAAAA

AAAAAAAA” (> 11 charac-

ters) may crash the program

Background Info: The Call Stack

main()

{

 DrawSquare(1,1,4,4);

 …

}

…

void DrawSquare(int lux, int luy, int rbx, int rby)

{

 int t1, t2;

 DrawLine(lux, luy, rbx, luy);

 DrawLine(lux, luy, lux, rby);

 …

}

…

void DrawLine(int p1x, int p1y, int p2x, int p2y)

{

 int temp1;

 …

}

Background Info: The Call Stack

 Each stack frame contains a stack pointer to the top of the frame immediately
below

 The stack pointer is a mutable register

 The stack frame is the collection of all data on the stack associated with one
subprogram call. The stack frame generally includes:

 The return address

 Argument variables passed on the stack

 Local variables

 A frame pointer of a given invocation of a function is a copy of the stack pointer as
it was before the function was invoked

 If a stack frame is corrupted, i.e. overwritten, arguments, variables and / or return
address do change

 If the return address is manipulated, the program can crash, or malware can be
executed (with the return address being the start address of the malware im
memory)

Example for a Stack Overflow

Buffer Overflow Countermeasures
20

 Use a programming language that supports automatic
bounds checking of buffers

 Java or Python, but NOT C

 Use a language specific library module that implements
info validation in the form of safe buffer handling

 Compilers can produce a warning when an unsafe
function call is made, or can add code for buffer
overflow detection

 An Operating System can enforce more stringent
memory access control so that buffer overflows cannot
infringe into the protected areas of the main memory

Buffer Overflow Mitigation using

Electric Fence / Boundary Checks
21

 Here each data object (i.e., array) is guarded by a

boundary signature that is checked for its integrity

every time that object is accessed

 If the signature has changed as shown below, the

data object is deemed to be corrupted, and an

alarm will be raised

Before 0xDA 0xEF Array[0] Array[1] … Array[n] 0xFF 0xED

Attack 0xAA 0xAA 0xAA 0xAA … 0xAA 0xAA 0xAA

Example Code
22

…

char boundary0 = 0xDA;

char boundary1 = 0xEF

char array[n];

char boundary2 = 0xFF;

char boundary3 = 0xED;

…

// Access array[] only if boundary is intact.

If ((boundary0 == 0xDA) && (boundary1 == 0xEF) && (bounday2 == 0xFF) && (bounday3 == 0xED))
{

 // Access array

 …

}

else

{

 // Error handling

 …

}

	Slide 1: CT437 Computer Security and Forensic Computing Buffer Overflow Case Study – The HeartBleed Bug
	Slide 2: A Bug with its own Website (heartbleed.com) and Icon
	Slide 3: Overview Heartbleed
	Slide 4: Recap TLS 1.2 Handshake (Server Authentication only)
	Slide 5: TLS Heartbeat Extension
	Slide 6: Heartbeat with incoming Message (correctly) buffered
	Slide 7: Heartbeat Request / Response Message
	Slide 8: Heartbleed Exploit
	Slide 9: The Heartbleed Attack
	Slide 10: Heartbleed Exploit Extract (Python Code)
	Slide 11: What can be leaked?
	Slide 12: What happened next?
	Slide 13: Heartbleed Impact
	Slide 14: Lessons learnt
	Slide 15: Related Problem: Buffer Overflow / Stack Overflow
	Slide 16: Example for a Stack Overflow
	Slide 17: Background Info: The Call Stack
	Slide 18: Background Info: The Call Stack
	Slide 19: Example for a Stack Overflow
	Slide 20: Buffer Overflow Countermeasures
	Slide 21: Buffer Overflow Mitigation using Electric Fence / Boundary Checks
	Slide 22: Example Code

