N

CT437
COMPUTER SECURITY AND FORENSIC COMPUTING

BUFFER OVERFLOW CASE STUDY — THE HEARTBLEED BUG

Dr. Michael Schukat

OF Gaillimh
- NUI Galway

A Bug with its own Website (heartbleed.com) and lcon

The Heartbleed Bug

The Heartbleed Bug is a serious vulnerability in the popular Open3SL cryptographic software library. This weakness

allows stealing the information protected, under normal conditions, by the SSL/TLS encryption used to secure the
Internet. SSL/TLS provides communication security and privacy over the Internet for applications such as web, email,

instant messaging (IM) and some virtual private networks (VPNs).

The Heartbleed bug allows anyone on the Intemnet to read the memory of the systems protected by the vulnerable
versions of the OpenSSL software. This compromises the secret keys used to identify the service providers and to
encrypt the traffic, the names and passwords of the users and the actual content. This allows attackers to eavesdrop on
communications, steal data directly from the services and users and to impersonate services and users.

What leaks in practice?

We have tested some of our own services from attacker's perspective. We attacked
ourselves from outside, without leaving a trace. Without using any privileged information
or credentials we were able steal from ourselves the secret keys used for our X.509
certificates, user names and passwords, instant messages, emails and business critical
documents and communication.

How to stop the leak?

As long as the vulnerable version of OpenSSL is in use it can be abused. Fixed OpenSSL
has been released and now it has to be deployed. Operating system vendors and
distribution, appliance vendors, independent software vendors have to adopt the fix and
notify their users. Service providers and users have to install the fix as it becomes
available for the operating systems, networked appliances and software they use.

XXX

Overview Heartbleed

I I ——
00 Discovered in 2014
0 Exploits a bug in the OpenSSL

implementation of the TLS
“heartbeat hello” extension

0 Can affect both client and server
side

X X

Recap TLS 1.2 Handshake (Server

Authentication onlm
e

Sender Receiver

CELLE nms

28 ms

L.
SW9s -dil

— T Serverfiello
| ClientHello]E4m5 Certificate

) 4—””’/_— | ServerHelloDone |
ClientKeyEXChange ... et sesen e

1 112 ms

ChangeCipherSpec \ . - \
: Application Data]\ 68ms ’
, Application Data

196 [A R P R I TP ETT ST RETITRORI R SYRRT

—mm =

- -

i.......u. - 214 ms

swLl- Sl

TLS Heartbeat Extension

0 Originally TLS had no provisions to keep a client /
server connection alive without continuous data transfer
1 ldle connections would timeout instead and a

(computationally) expensive handshake (224 ms in the
previous example) or a reconnect would have to take place

0 The heartbeat extension provides a protocol for “keep-
alive” messages that prevent a timeout
0 One endpoint could send out a HeartbeatRequest message,

which would be immediately responded with a
HeartbeatResponse message

Heartbeat with incoming Message

‘correc’rlm buffered

o

SERVER, ARE YOU STiLL THERE?

Fso‘ N .mmm‘ (6 m}

Heartbeat Request / Response Message
N =

* The Heartbeat protocol messages consist of their type and an
arbitrary payload and padding.

heartbeat_request or heartbeat_response

* struct {
HeartbeatMessageType type;
uintl6 payload length;
opaque payload[HeartbeatMessage.payload length];

opaque padding[padding_length]; 16+ bytes of random
} HeartbeatMessage; content, ignored by receiver

0 The sender composes a request message containing a payload with a specified
length (i.e. payload_length)

0 The receiver returns a response message containing a copy of the sender’s payload
(with length payload_length)

0 “opaque” is a typdef (i.e., unsigned char)

Heartbleed Exploit
N

0 The server receives a Heartbeat request message and copies it
into memory, for further processing

O However, memory also contains information from other sessions
including tokens, keys, session IDs etc.

0 If payload_length is actually larger than the payload]..], the
server will copy memory content beyond the payload array into
the response message’s payload array (let’s call it ret_payload),
which is then sent back to the sender

O memcpy (ret_payload, payload, payload_length);

0 Remember, this is C (and not Java or Python), so array
boundaries are not checked!

O This is a typical buffer over read attack

The Heartbleed Attack

K/

SERVER, ARE YOU STiLL. THERE?

m
§
:
:
2

ser Meg wants these 500 letters: HAT. [.o

) wan

key to “148

pages about

wants to change account password to

snakes but not too long”. User Karen

35038534". Isabel wants

Heartbleed Exploit Extract (Python
Code

O https://qist.github.com/eelsivart/10174134

Heartbleed (CVE-2014-0160) Test & Exploit Python Script

E heartbleed.py Raw

#!1/usr/bin/python

Modified by Trawis Lee
Last Updated: 4/21/14

Version 1.16

-changed output to display text only instead of hexdump and made it easier to read

-added option to specify number of times to connect to server (to get more data)

-added option to send STARTTLS command for use with SMTP/POP/IMAP/FTP/etc...

-added option to specify an input file of multiple hosts, line delimited, with or without a port specified (host:port)

#

#

#

#

#

7

#

#

-added option to have verbose output
-added capability to automatically check if STARTTLS/STLS/AUTH TLS is supported when smtp/pop/imap/ftp ports are entered and automaticall
-added option for hex output

-added option to output raw data to a file

-added option to output ascii data to a file

-added option to not display returned data on screen (good if doing many iterations and outputting to a file)

-added tls version auto-detection

-added an extract rsa private key mode (orig code from epixoip. will exit script when found and enables -d (do not display returned data «
7

-requires following modules: gmpy, pyasnl

4

Quick and dirty demonstration of (VE-2014-8168 by Jared Stafford (jspenguin@jspenguin.org)

Wk

The author disclaims copyright to this source code.

import sys
import struct
import socket
import time
import select

import re

https://gist.github.com/eelsivart/10174134

What can be leaked?

38 20 3¢ 4 45 R 2.0.50727: .NE 63 63 66 30 (dIrect) utmccne S 30 CINET CLR 2.0.%0
30 37 32 » T CLR 3.5.30729: 63 60 &4 30 (direct) winied- 3 26 727 JNET CAR D
<€ 30 2¢ 33 JNATY LR 3.0.30 64 2L TA & L . . 3 4C S.30729: .NET €L " M‘
43 65 5¢ T4 729;: redia cente 42 48 42 34 S 64 R 3.0,30729; meg MeTvel
6L 66 & S0 r " 2 ora ;> 41 30 30 £ 3 13 Center X 6.0
2t 30 43 3s th.2; . N § 39 7¢ ©3 &0 LTS o E 48 : Inforath.2; .N
48 6 73 T4 SNETE, 08) . . HOSL: 30 41 37 47 -.)uBz.foken-ATG D45 E74.0C; .NETS,DE
6c 65 79 7T 45 4A 58 46 5-SaxS O8I0 0 4 89)..Accepr- (ntoﬂ
gL 65 63 T4 "we T T 62 64 32 lzszsofﬂsur&i‘z a1 7a ng- grip, v
€9 76 65 O on: xeep-Alive.. 38 33 &6 38 T249T THSOLESITS 2 61 . HOST :
Sg 7 gg :: cookle: doc-side 38 20 4a o«lanu lln. b 0 ?; h'e
‘. . . - -- - -- . ——— - - .- ., (o w. ...
3D 68 81 &K A2 -altlve., . Cwv'rw - o\.m.’- s,
49 44 n; 43 £ va seleestsnil 7O sathase. e
4 42 44 '
e Y ‘
i B Ju 2¢ A wiothelts: /p T ——————
0 (rn 00 (7)o v
LIPS LY oY e o/ &3 tnsusPeCHVINgS S 3% 58 a8 ':_M s St
* 25 37 34 25 32 30 €F 20amN2F 7 65 63 16 33 OBID-0IXF | 7echas
P64 61 79 2¢ 23 32 30 MROThUCSAAY.R20 D Gy Gy 05 3 6 dazZsMbas” 18566
£ 38 8- 8.8 3.7 ~ o ERE B8 €317 7 969a90 1115
- > 3 $3 53 1ouT:
' 3’ ,2 ” 4 9 36 37 .
* 38 79 O Ot 344 31 34 37 38 ABOSE1BADE 101478
. 30 & 72 2% 1 12 93 24 €6 S50F0....1.A...S.
i 33 B2 30 o4 0 3030308 ...cocnceelV....
| T4 oL 74 2% € JE 61 6F 60 IC quip————
: :g a g? :g < ;.0. 7% 7Y &£y mf-.:'.-:.
+ 2% 32 30 &
61 79 2% 32 CSRF tokens
oD & r2 72 ONIF N20TOMOT rows
« 70 74 g: :g 22%20EXCEPTRIONA
¢ 7
1 30 20 8% 31 10 3% D day.N20.CO-el0%- : e
53 53 435 43 0A 63 30 STriINgIPASSLED. €O 3 74 :997176. .Connect
) 62 65 72 3A 31 32 0A -el0t-numder:il, i$ 72 fon: close..user

ot 2w %% % . A 20 -Agent: Jakarta

What happened next?
R
0 The Heartbleed bug was fixed (of course)

0 Further checks and balances were added to validate
that payload length was correct

struct {

HeartbeatMessageType type;
Jint16 pay.oad_uength;%
opaque payload[HeartbeatMessage.payload“length];

opaque padding[padding length];
} HeartbeatMessage,;

Heartbleed Impact
I

0 The Heartbleed vulnerability was in all versions of OpenSSL released
between March 2012 and April 2014

O It was a zero-day (i.e., a vulnerability unknown to its owners, developers or
anyone capable of mitigating it) for almost 2 years

0 According to CVE-2014-0160, the following operating system distributions
were potentially affected:

Debian Wheezy (stable)

Ubuntu 12.04.4 LTS

CentOS 6.5

Fedora 18

OpenBSD 5.3

FreeBSD 10.0

NetBSD 5.0.2

OpenSUSE 12.2

Lessons learnt
B

0 OpenSSL core developer Ben Laurie claimed that a security
audit of OpenSSL would have caught Heartbleed

0 Some other quotes from the security community:

O “Think about it, OpenSSL only has two fulltime people to write,
maintain, test, and review 500,000 lines of business-critical code”

O “The mystery is not that a few overworked volunteers missed this
bug; the mystery is why it hasn't happened more often”

O “There should be a continuous effort to simplify the code, because
otherwise just adding capabilities will slowly increase the software
complexity. The code should be refactored over time to make it
simple and clear, not just constantly add new features. The goal
should be code that is “obviously right”, as opposed to code that is
so complicated that “I can’t see any problems”

Related Problem: Buffer Overflow /

Stack Overflow
I

#Hinclude <string.h>

void foo (char *bar)

{
char ¢[12];
strepy(c, bar); What is the problem
} In this example?
int main (int arge, char **argv)
{
foo(argv[1]);

return(1);

}

Example for a Stack Overflow
N

#Hinclude <string.h>

void foo (char *bar) Lets assume the compiled
{ char <121 program is called test

strepy(c, bar) « Test is invoked from command
} line (next slide):

e “>test hello” will work fine
int main (int argc, char **argv) o “>test AAAAAAAAAAAA
oot AAAAAAAA” (> 11 charac-

return(1); ters) may crash the program
}

Background Info: The Call Stack

main()

{

DrawSquare(1,1,4,4);
} Stack Pointer ——» top of stack \
Locals of
DrawLine stack frame
void DrawSquare(int lux, int luy, int rbx, for
{ . Return Address DrawLine
Frapr Pointer —— subroutine
: FParameters for
int 11, 12; - — ’
DrawLine)
Drawline(lux, luy, rbx, luy); TG
Drawline(lux, luy, lux, rby); DrawSguare
Return Address

DrawSqua
subroutine Parameters for

DrawSquare

void Drawline(int p1x, int ply, in

int temp1;

Background Info: The Call Stack

O

Each stack frame contains a stack pointer to the top of the frame immediately
below

O The stack pointer is a mutable register

The stack frame is the collection of all data on the stack associated with one
subprogram call. The stack frame generally includes:

O The return address

O Argument variables passed on the stack

O Local variables

A frame pointer of a given invocation of a function is a copy of the stack pointer as
it was before the function was invoked

If a stack frame is corrupted, i.e. overwritten, arguments, variables and / or return
address do change

If the return address is manipulated, the program can crash, or malware can be
executed (with the return address being the start address of the malware im
memory)

Example for a Stack Overflow
N

Unallocated Stack Space
Char c[12]

Buffer Overflow Countermeasures
N

0 Use a programming language that supports automatic
bounds checking of buffers

O Java or Python, but NOT C

0 Use a language specific library module that implements
info validation in the form of safe buffer handling

0 Compilers can produce a warning when an unsafe
function call is made, or can add code for buffer
overflow detection

0 An Operating System can enforce more stringent
memory access control so that buffer overflows cannot
infringe into the protected areas of the main memory

Buffer Overflow Mitigation using

Electric Fence / Boundary Checks
a1 |

0 Here each data object (i.e., array) is guarded by a

boundary signature that is checked for its integrity
every time that object is accessed

0 If the signature has changed as shown below, the
data object is deemed to be corrupted, and an
alarm will be raised

Before || |Auayl0l |Away[l] . JAwaylnl |

Attack OxAA OxAA OxAA OxAA ... OxAA OxAA OxAA

Example Code
T

char boundaryO = OxDA;
char boundary1 = OxEF
char array[n];

char boundary2 = OxFF;
char boundary3 = OxED;

// Access array[] only if boundary is intact.
If ((boundaryO == OxDA) && (boundary1 == OxEF) && (bounday2 == OxFF) && (bounday3 == OxED))

// Access array

}

else

{

// Error handling

	Slide 1: CT437 Computer Security and Forensic Computing Buffer Overflow Case Study – The HeartBleed Bug
	Slide 2: A Bug with its own Website (heartbleed.com) and Icon
	Slide 3: Overview Heartbleed
	Slide 4: Recap TLS 1.2 Handshake (Server Authentication only)
	Slide 5: TLS Heartbeat Extension
	Slide 6: Heartbeat with incoming Message (correctly) buffered
	Slide 7: Heartbeat Request / Response Message
	Slide 8: Heartbleed Exploit
	Slide 9: The Heartbleed Attack
	Slide 10: Heartbleed Exploit Extract (Python Code)
	Slide 11: What can be leaked?
	Slide 12: What happened next?
	Slide 13: Heartbleed Impact
	Slide 14: Lessons learnt
	Slide 15: Related Problem: Buffer Overflow / Stack Overflow
	Slide 16: Example for a Stack Overflow
	Slide 17: Background Info: The Call Stack
	Slide 18: Background Info: The Call Stack
	Slide 19: Example for a Stack Overflow
	Slide 20: Buffer Overflow Countermeasures
	Slide 21: Buffer Overflow Mitigation using Electric Fence / Boundary Checks
	Slide 22: Example Code

