
CT420 REAL-TIME SYSTEMS

SCHEDULING ALGORITHMS FOR RTS

Dr. Michael Schukat

Motivation
2

 Assume you work as an engineer in the automotive industry

 You are the firmware lead for an engine control unit project
(a RTSCS) for a fuel-efficient Diesel engine

 Previous designs you worked on were based on a CE, i.e.
based on a manually constructed schedule with well-defined
tasks with known WCETs

 This design worked very well, meeting consistently task time
constraints (as exercised in the examples before)

 Now your project manager asks you to go with a modern
design, i.e. use the VxWorks RTOS (or OSEK) for the product

 How can the feasibility of a task schedule be proven?

Recap POSIX FIFO Process

Scheduling

T1

T2

T3

Process Tx:

int main() {

// Initialise process

// Setup timer x to notify Tx

// about begin of every cycle, e.g.

// T1: 25ms; T2 = 50ms; T3 = 100ms

while (1) {

 do_something();

 block_until_timer_signal();

}

}

Question:

Considering only one task per

priority (i.e. T4 and T1 are merged

into one task in the example), when

is a schedule actually feasible?

Blocked

T1 T2 T3T3

T3 pre-empted

T4

T4

0 25 50 75 …

T4

Feasibility Analysis of Task / Process

Schedule
4

 Cyclic executive

1. Determine minor /major cycle

2. Determine WCET of all tasks

3. Align tasks in CE schedule

◼ Leave some slack time for ISR handling if needed

4. Done

 RTOS

1. Determine execution frequency for each process

2. Determine WCET of each process

3. Factor in additional RTOS (i.e. kernel/scheduler) and signal overheads

4. Assign each process a different priority and link each process to its timer as
seen before

5. Validate that process schedule works, i.e. that all processes can be executed
according to their schedule and deadlines?

◼ The problem is that in contrast to a cyclic executive process-pre-emption needs to be
factored in and a low priority task can be pre-empted by a higher priority task

Overview
5

 We are looking at analytical methods to determine if a
schedule managed by an RTOS is feasible

 Firstly, we’ll consider rate-monotonic scheduling (RMS)

 a mathematical model for an optimal static priority scheduling
algorithm

 closely linked to priority-driven pre-emptive scheduling (see
pathfinder case study)

 However, RMS is not that straight forward when it comes to
guarantee the feasibility of a task schedule

 Therefore, we also consider a second scheduling algorithm which is
much more straight forward when it comes to guarantee / prove a
schedule’s feasibility

 Here we consider earliest deadline first (EDF), which is an optimal
dynamic priority scheduling algorithm

Scheduling for RTS

 A schedule is feasible if

 all the tasks/processes start after their release time and

 complete before their deadlines

 Scheduling Policy may be determined

 Pre-run-time

◼ Schedule created offline

◼ See cyclic executive approach

 Run-time

◼ Schedule determined online as tasks arrive

◼ Process scheduler determines what process get CPU time

Scheduling for RTS

 Run-time Static versus Run-time Dynamic Priority
 Static Priority Scheduling Algorithm

◼ Task priority does not change
◼ Rate Monotonic Algorithm (RM)

 Dynamic Priority Scheduling Algorithm
◼ Process priorities can change over time

◼ Earliest Deadline First (EDF)

 Pre-emptive versus non-pre-emptive scheduling
 Pre-emptive Schedule

◼ Task can be pre-empted by other tasks

◼ Penalty of context switches

 Non pre-emptive
◼ Task runs to completion unless blocked over resource

Simplifications for our Considerations

 All tasks are periodic

 Fair enough, but we also have to deal with asynchronous tasks (e.g., ISR)

 Just one task per priority level

 No big deal either

 No precedence constraints

 Here, tasks may be merged to implicitly solve precedence constraints

 No task has any non-preemptible sections

 A good RTOS kernel should accommodate this (e.g. all kernel calls are pre-
emptible)

 Task synchronisation (i.e. semaphores) should be avoided

 Cost of pre-emption is zero

 Instead, add task pre-emption time overheads (typically known) to task WCET

 Non-CPU resources, e.g. Memory or I/O, are infinite

 Consider memory locking or better no page swapping at all

Rate Monotonic Scheduling

 Run time, static priority and pre-emptive

 Priority inversely related to period (can be considered as a
restriction)
 Eg. given task Ti and Tj where pi < pj

◼ Priority of task Ti greater than Tj

 In real world, the more critical RTS parameters tend to require faster
sample rate/response times of processes controlling those
parameters
 RM is a good match in this regard

 Scheduling decision is to be made when
 The current task execution is complete

 A new task is released

 Task Ti utilisation ui = ei / pi

 Overall CPU utilisation U =
=

n

i

iu
1

RM Example

Task e p u

T1 1 4 0.25

T2 2 5 0.4

T3 5 20 0.25

All Tasks released at time 0; Priority T1 < T2 < T3 ; Overall U = 0.9

Sequence

1st instance Task 1 runs to completion

1st instance Task 2 runs to completion

1st instance Task 3 runs for 1 unit

 ..at EU=4, Task 1 released ➔ pre-empts Task 3

2nd instance Task 1 runs to completion

 ..at EU =5, Task 2 released

2nd instance Task 2 runs to completion

1st instance Task 3 runs for 1 unit

 .. At EU = 8, Task 1 released ➔ pre-empts Task3

3rd instance Task 1 runs to completion

1st instance Task 3 runs for 1 unit

 .. At EU = 10, 3rd instance of Task 2 released ➔ pre-empts 3

 ..

At EU = 15, 1st instance Task 3 completes.. CPU idle EU 18-20

At EU = 20, all 3 tasks released .. Cycle repeats

1 2 2 3 1 2 2 3 1 3 2 2 1 3 3 2 1 2 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

 Execution Units EU

RM Example

X X X X X

1 1 1 1 1
Task e p u

T1 1 4 0.25

T2 2 5 0.4

T3 5 20 0.25

T1:

X X X X

1 2 2 1 2 2 1 2 2 1 2 1 2
T1+T2:

X

1 2 2 3 1 2 2 3 1 3 2 2 1 3 3 2 1 2
T1+T2 + T3:

U = 0.9

RM Schedulability?

 Consider Task set

 U = 1/5 + 1/6 + 1/3+ 1/4 =

57/60

 Does this schedule work too?

i ei pi

1 20 100

2 30 180

3 80 240

4 100 400

RM Schedulability?

1 2 3

4 5 6 7

i ei pi

1 20 100

2 30 180

3 80 240

4 100 400

Please use the worksheet on

Blackboard to complete this exercise

RM Schedulability?

X X X X

1 1 1 1 1 1 1 1

X X X X

1 1 1 1 1 1 1 1

i ei pi

1 20 100

2 30 180

3 80 240

4 100 400

RM Schedulability?

X X X

1 1 2 2 2 1 1 2 2 1 1 2 1 1 2 2 2

i ei pi

1 20 100

2 30 180

3 80 240

4 100 400

X X

1 1 1 1 2 2 2 1 1 1 1 2 2 2

RM Schedulability?

X X

1 1 2 2 2 3 3 3 3 3 1 1 3 3 3 2 2 1 1 2 3 3 3 3 3 3 1 1 3 3 2 2 2

X X

1 1 3 3 1 1 3 3 2 2 2 3 3 3 1 1 3 1 1 2 2 2 3 3 3 3 3

i ei pi

1 20 100

2 30 180

3 80 240

4 100 400

RM Schedulability?

X

1 1 2 2 2 3 3 3 3 3 1 1 3 3 3 4 4 4 2 2 1 1 2 4 3 3 3 3 3 3 1 1 3 3 4 4 2 2 2 4

1 1 3 3 1 1 3 3 2 2 2 3 3 3 1 1 3 1 1 2 2 2 3 3 3 3 3

i ei pi

1 20 100

2 30 180

3 80 240

4 100 400

RM Schedulability?

X

1 1 2 2 2 3 3 3 3 3 1 1 3 3 3 4 4 4 2 2 1 1 2 4 3 3 3 3 3 3 1 1 3 3 4 4 2 2 2 4

X

1 1 4 4 4 4 4 4 3 3 1 1 3 3 2 2 2 3 3 3 1 1 3 4 4 4 4 4 4 4 1 1 2 2 2 3 3 3 3 3

i ei pi

1 20 100

2 30 180

3 80 240

4 100 400

RM Scheduling

 General schedulability test
 If U <= n(21/n -1)

◼ where n = number of tasks

◼ RM will definitely produce feasible schedule

◼ No need for further analysis

 However
◼ RM may produce feasible schedule when

◼ U > n(21/n - 1)

◼ i.e. Sufficient but not necessary condition

◼ Recall Example: CPU U = 0.9 but still schedulable
◼ Depends on particular task characteristics

◼ If U > n(21/n - 1)
◼ need to perform further schedulability analysis

 As n increases, bound ➔ 69%

RM Schedulability Analysis

 Consider taskset T1 T2 T3 T4 with

 p1 < p2 < p3 < p4

 Task 1

 Highest priority.. never pre-empted

 Will run immediately once released

 For Task 1 to be feasibly scheduled

◼ Only condition is that e1 <= p1

 Include Task 2 in task set

 Can only be pre-empted by Task 1

 Will be executed iff one can find sufficient time e2 over period [0, p2[

 Say Task 2 completes at time t within [0, p2[

 How many times did Task 1 run over [0,t] ?

RM Schedulability Analysis

 Over interval [0,t], Task 1 is released

 Time t to complete task 2 must satisfy condition

 t = e2 + e1

 Need to find t over interval [0, p2[

 Find integer k such that:

 k p1 >= k e1 + e2

 k p1 <= p2

p
t

1

p
t

1

Rounded up, e.g.

[10 / 3] = 4

RM Schedulability Analysis

 Include Task 3

 Can be pre-empted by Task 1 and 2

 Need to find t over [0, p3[such that

 Need to check only at multiples of p1 and / or p2

 Similar analysis for Task 4

 Can be pre-empted by Task 1,2,3

eepep
ttt

32

2

1

1

+

+

=

RM Schedulability Analysis

 General Rule

 Wi(t) =

= total work carried out by tasks T1T2T3... Ti initiated in

interval [0,t]

 If Wi(t) <= t , then schedule is feasible

 ➔(Wi(t) / t) <= 1

 Wi(t) only changes at finite number of points when tasks are

released

 Check points defined by

= j

i

j

j p
te

1

===

j

i
ji p

p
lijlp ,..,1;,..,1

RM Schedulability Analysis

 Consider Task set

 General schedulability test:

 n = 4 ➔ n(21/n -1) = 0.76

 Note U = 0.95 (0.2+0.166+0.33+0.25)

 ➔ further analysis required

i ei pi

1 20 100

2 30 180

3 80 240

4 100 400

Example: RM Schedulability Analysis

 Check points

 t1: {100}

 t2: {100,180}

 t3: {100,180,200,240}

 t4: {100,180,200,240,300,360,400}

i ei pi

1 20 100

2 30 180

3 80 240

4 100 400

Example: RM Schedulability Analysis

 Wi(t) =

 W1:

 Interval [0,100[

◼ W1(t) = e1= 20

 W2 : checkpoints {100,180}

 Interval [0,100[; W2(t) =

=20(1) +30(1) = 50

 Interval [0,180[; W2(t)=

20(2) +30(1) = 70

= j

i

j

j p
te

1

+

2
2

1
1

100100
p

e
p

e

+

2
2

1
1

180180
p

e
p

e

Example: RM Schedulability Analysis

 W3 : checkpoints {100,180,200,240}

 W3(t)=

 Interval [0,100[

◼ W3(t) = 20(1) +30(1) +80(1) = 130

 Interval [0,180[

◼ W3(t) = 20(2) + 30(1)+ 80(1) = 150

 Interval [0,200[

◼ W3(t) = 20(2) + 30(2) + 80(1) = 180

 Interval [0,240[

◼ W3(t) = 20(3) + 30(2) + 80(1) = 200

+

+

3
3

2
2

1
1 p

te
p

te
p

te

Example: RM Schedulability Analysis

 Task 1 is RM Schedulable iff

 e1<=100 (True)

 Task 1/2 is RM Schedulable iff

 e1 + e2 <= 100 or ….(True: 50)

 2 e1 + e2 <= 180 …. (True: 70)

 Task 1/2/3 is RM Schedulable iff

 e1 + e2 + e3 <= 100 or …. (False: 130)

 2 e1 + e2 + e3 <= 180 or ….. (True: 150)

 2 e1 + 2e2 + e3 <= 200 or …(True: 180)

 3 e1 + 2e2 + e3 <= 240 …. (True: 200)

Example: RM Schedulability Analysis

 Task 1/2/3/4 is RM Schedulable iff
 e1 + e2 + e3 + e4 <= 100 or …. (False: 230)

 2e1 + e2 + e3 + e4 <= 180 or ….. (False: 250)

 2e1 + 2e2 + e3 + e4 <= 200 or …(False: 280)

 3e1 + 2e2 + e3 + e4 <= 240 or …. (False: 300)

 3e1 + 2e2 + 2e3 + e4 <=300 or …. (False: 380)

 4e1 + 2e2 + 2e3 + e4 <=360 or …. (False: 400)

 4e1 + 3e2 + 2e3 + e4 <=400 …. (False: 430)

 By including Task 4, not RM schedulable

 Can also plot results
 Check whether Wi(t) falls on or below Wi(t) =t line

RM Schedulability?

4 5 6 7

1 1 3 3 1 1 3 3 2 2 2 3 3 3 1 1 3 1 1 2 2 2 3 3 3 3 3

i ei pi

1 20 100

2 30 180

3 80 240

4 100 400

X

1 1 2 2 2 3 3 3 3 3 1 1 3 3 3 4 4 4 2 2 1 1 2 4 3 3 3 3 3 3 1 1 3 3 4 4 2 2 2 4

RM Schedulability Analysis

 Sporadic Tasks

 So far have only considered periodic tasks

◼➔ unrealistic

 Can view sporadic task as infrequent periodic task if can

specify

◼ Minimum interarrival time between release of successive

sporadic tasks

◼ Maximum execution time

◼➔ Simply treated as additional task in RM analysis

Earliest Deadline First (EDF)

 Run-time, dynamic and preemptable

 Ready task whose absolute deadline is the earliest is

given highest priority

 Task priorities are re-evaluated when tasks released /

completed

 EDF is an optimal single-processor scheduling algorithm

 If all tasks are periodic

◼ Task 1…n ; CPU U =

◼ If U <=1, then task set is EDF schedulable!

=

n

i

iu
1

EDF Example

Task e p u

T1 1 4 0.25

T2 2 5 0.4

T3 5 20 0.25

All Tasks released at time 0; Overall U = 0.9

Sequence

1st instance Task 1 runs 1st as earliest deadline of 4

1st instance Task 2 runs to completion

1st instance Task 3 runs for 1 unit ..note: Deadline is 20

 ..at EU=4, Task 1 rel. ➔ pre-empt Task 3 as deadline is 8

2nd instance Task 1 runs to completion

 ..at EU =5, Task 2 released

2nd instance Task 2 runs to completion as deadline is 10

1st instance Task 3 runs for 1 unit

 .. At EU = 8, Task 1 released ➔ pre-empts Task3

3rd instance Task 1 runs to completion

1st instance Task 3 runs for 1 unit

.. At EU =10, Task 2 released.. pre-empts task 3 as deadline is 15

At EU =12, Task 1 runs as deadline 16 < 20

At EU =15 Task 2 released and runs with deadline 20

At EU =16 Task 1 released with deadline 20 ➔ no pre-emption

1 2 2 3 1 2 2 3 1 3 2 2 1 3 3 2 2 1 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

 Execution Units EU

EDF Example

Task e p u

T1 1 3 0.33

T2 2 5 0.4

T3 2 10 0.2

0 1 2

Please use the worksheet on

Blackboard to complete this exercise

EDF Example

Task e p u

T1 1 3 0.33

T2 2 5 0.4

T3 2 10 0.2

0 1 2

1 2 2

Deadlines

EDF Example

Task e p u

T1 1 3 0.33

T2 2 5 0.4

T3 2 10 0.2

0 1 2

1 2 2 1 3

EDF Example

Task e p u

T1 1 3 0.33

T2 2 5 0.4

T3 2 10 0.2

0 1 2

1 2 2 1 3 2

EDF Example

Task e p u

T1 1 3 0.33

T2 2 5 0.4

T3 2 10 0.2

0 1 2

1 2 2 1 3 2 1 2 3

EDF Example

Task e p u

T1 1 3 0.33

T2 2 5 0.4

T3 2 10 0.2

0 1 2

1 2 2 1 3 2 1 2 3 1

EDF Example

Task e p u

T1 1 3 0.33

T2 2 5 0.4

T3 2 10 0.2

0 1 2

1 2 2 1 3 2 1 2 3 1

EDF Example

Task e p u

T1 1 3 0.33

T2 2 5 0.4

T3 2 10 0.2

0 1 2

1 2 2 1 3 2 1 2 3 1 2 2

EDF Example

Task e p u

T1 1 3 0.33

T2 2 5 0.4

T3 2 10 0.2

0 1 2

1 2 2 1 3 2 1 2 3 1 2 2 1 3 3

EDF Example

Task e p u

T1 1 3 0.33

T2 2 5 0.4

T3 2 10 0.2

0 1 2

1 2 2 1 3 2 1 2 3 1 2 2 1 3 3 1 2 2

EDF Example

Task e p u

T1 1 3 0.33

T2 2 5 0.4

T3 2 10 0.2

0 1 2

1 2 2 1 3 2 1 2 3 1 2 2 1 3 3 1 2 2 1 X 2
...

EDF vs RM

 With RM, priorities fixed

 High priority tasks guaranteed CPU time

◼ Good mapping to priority-driven pre-emptive scheduling

 In overload conditions, lower priority tasks lose out

 Bound on CPU utilisation must be considered

◼ Necessary but not sufficient

 EDF, dynamic priority

 More flexible, but less predictable

 In overload conditions, all tasks may miss deadlines

 Schedulable if CPU U <=1

	Slide 1: CT420 Real-Time Systems Scheduling Algorithms for RTS
	Slide 2: Motivation
	Slide 3: Recap POSIX FIFO Process Scheduling
	Slide 4: Feasibility Analysis of Task / Process Schedule
	Slide 5: Overview
	Slide 6: Scheduling for RTS
	Slide 7: Scheduling for RTS
	Slide 9: Simplifications for our Considerations
	Slide 10: Rate Monotonic Scheduling
	Slide 11: RM Example
	Slide 12: RM Example
	Slide 13: RM Schedulability?
	Slide 14: RM Schedulability?
	Slide 15: RM Schedulability?
	Slide 16: RM Schedulability?
	Slide 17: RM Schedulability?
	Slide 18: RM Schedulability?
	Slide 19: RM Schedulability?
	Slide 20: RM Scheduling
	Slide 21: RM Schedulability Analysis
	Slide 22: RM Schedulability Analysis
	Slide 23: RM Schedulability Analysis
	Slide 24: RM Schedulability Analysis
	Slide 25: RM Schedulability Analysis
	Slide 26: Example: RM Schedulability Analysis
	Slide 27: Example: RM Schedulability Analysis
	Slide 28: Example: RM Schedulability Analysis
	Slide 29: Example: RM Schedulability Analysis
	Slide 30: Example: RM Schedulability Analysis
	Slide 31: RM Schedulability?
	Slide 34: RM Schedulability Analysis
	Slide 35: Earliest Deadline First (EDF)
	Slide 36
	Slide 38: EDF Example
	Slide 39: EDF Example
	Slide 40: EDF Example
	Slide 41: EDF Example
	Slide 42: EDF Example
	Slide 43: EDF Example
	Slide 44: EDF Example
	Slide 45: EDF Example
	Slide 46: EDF Example
	Slide 47: EDF Example
	Slide 48: EDF Example
	Slide 49: EDF vs RM

