
CT420 REAL-TIME SYSTEMS

CYCLIC EXECUTIVE SCHEDULING

Dr. Michael Schukat

Lecture Overview
2

 Overview RTS scheduling approaches

 Cyclic Executive Approach

 Dealing with Interrupts

Recap: Quality Requirements for RTSCS

 RTSCS must be time responsive

 RTSCS must be reliable

 The ability to behave in accordance with its specification

 RTSCS must be safe

 Conditions that lead to hazards do not occur

 RTSCS must be secure

 Protect itself against intentional or accidental access, use, modification or
destruction

 RTSCS must be usable

 Easy to learn, understand, and use

 RTSCS must be maintainable

 Return swiftly to an operational state after receiving repairs or
modification (e.g. plug in-and-forget)

Which Programming Languages are

(not) suitable to implement hard RTS?
4

 Unsuitable programming languages include:

 Java, Python, Ruby, JS

◼ Their garbage collection can introduce non-deterministic behavior,

as it can pause the execution of the program at unpredictable

times, causing delays

◼ Dynamic typing can lead to unpredictable performance

 Suitable programming languages include:

 C, C++, Ada, Real-Time Java

 Using C as an implementation language we now look into

implementing synchronous tasks, starting with the cyclic

executive approach

Cyclic Executive Approach

 Single Process
while(1){

 Task 1;

 Task 2;

 ..

 ..

 Task n;

}

 No Operating System ➔ No scheduler
 Manually construct cycle schedule

 Encapsulate all tasks within single infinite loop
 Tasks in this context are simply functions with or without function

arguments

Trivial Arduino Example: Blinking LED
6

Example for poorly programmed

Scheduler
7

1 ms →
1000 ms →

1 ms →
1000 ms →

• Total execution time per loop: 2002 ms

• Also, the execution time of digitalWrite() could vary, resulting in variable loop

execution times

• Therefore, we need to consider a better approach to program such schedulers

Cyclic Executive

 Used for very well defined / periodic tasks with bounded
execution times

 Need to ensure that tasks cannot block and halt all others

 Tasks may run at different frequencies

 E.g. they control different parameters with different
physical characteristics (like temperature, pressure,

voltage in power station)

 Overall cycle either

 will run as fast as processor can handle tasks

 is slowed down by delay() function, i.e. may need to slow tasks down to
meet particular RTS requirements (e.g. measure steam pressure
every 50 ms)

Cyclic Executive

 Used for very well defined / periodic tasks with
bounded execution times

 Need to ensure that tasks cannot block others
 Tasks may run at different frequencies

 Possible Strategies
◼ Run as fast as required by highest frequency task
◼ Use lower harmonics for remaining tasks

◼ Possible use of counters to control sequence

 Use of major and minor cycles
◼ E.g. Highest frequency task is 100 Hz

◼ Other tasks at 50Hz, 25 Hz, etc.

◼ Use of timers/interval timers (rather than delay() function) to correctly
‘schedule’ tasks → different to Arduino example

Cyclic Executive

 Task Set
 Major Cycle = 40 Hz

 Minor Cycle = 10 Hz

 Use interval timer
interrupts to enable
scheduler to loop through
minor cycles

 Manually construct
schedule to meet criteria

 Note: For now we just
assume that task exec
times are bounded!

Task Period p

[ms]

Exec Time

[ms]

A 25 10

B 25 8

C 50 5

D 50 4

E 100 2
Execution

time

Deadlines Software

size

Software

complexity

Hard - Fast ⚫⚫⚫⚫ ⚫⚫⚫⚫ ⚫ ⚫

Hard - Slow ⚫ ⚫⚫⚫⚫ ⚫ → ⚫⚫⚫ ⚫ → ⚫⚫⚫⚫

Soft - Fast ⚫⚫⚫⚫ ⚫⚫
⚫ → ⚫⚫⚫

⚫ → ⚫⚫⚫

Soft - Slow ⚫⚫ ⚫⚫ ⚫ → ⚫⚫⚫⚫ ⚫ → ⚫⚫⚫⚫

Attribute rating

⚫ Low ⚫⚫⚫⚫ high

CE Time Line

Interrupts generated every 25 ms via an interval timer

→ Tasks are launched every 25 ms (different to Arduino example)

INT INTINTINT

A

B

C

D

E

CE Pseudocode

loop

wait_for_INT

task_A

task_B

task_C

wait_for_INT

task_A

task_B

task_D

task_E

wait_for_INT

task_A

task_B

task_C

wait_for_INT

task_A

task_B

task_D

end loop

volatile int timerFlag = 0;

…

void wait_for_INT() {

 while timerFlag == 0) {}

 timerFlag = 0;

}

void interrupt timer_ISR() {

 timerFlag = 1;

}

Case Study NAS-Box

 Enclosure that provides space, power and control options for

many (12- 60) hard disks (Network Attached Storage)

 Enclosure controller must handle a few crucial management

tasks, including optimised temperature control (overheating

of disks) while minimising cooling fan noise emissions

Example NAS Box Controller CE

Task Period p [ms] Exec Time [ms]

1 X = ReadTempSensorA() 70 10

2 Y = ReadTempSensorB() 70 10

3 Z = Voter(X, Y) 70 5

4 SetFan(Z) 70 15

5 CheckDrives() 140 20

6 SetDriveLeds() 140 5

7 SelfTest() 140 15

Task Dependencies (i.e. tasks are simply ordered):

- #1 + #2 → #3 → #4

- #5 → #6

In-Class Activity

loop

wait_for_INT

A…

wait_for_INT

B…

end loop

Tasks:

1. Construct a suitable CE for the SAN example, i.e.

Determine the sequence of tasks for A and B

(e.g. “A125B213”)

1. Determine timer settings, i.e. how often is

the timer ISR invoked?

CE Example – My Solution

loop

wait_for_INT (70 ms)

#1 (10 ms)

#2 (10 ms)

#3 (05 ms)

#4 (15 ms)

#5 (20 ms)

#6 (05 ms)

wait_for_INT (70ms)

#1 (10 ms)

#2 (10 ms)

#3 (05 ms)

#4 (15 ms)

#7 (15 ms)

end loop

Tasks:

1. Construct a suitable CE for the SAN example

2. Determine timer settings, i.e. how often is

the timer ISR invoked?

Example Code

volatile int timerFlag;

main() {

 int X, Y, Z, state = 0;

 StartTimer();

 while (1) {
 timerFlag = 0;
 X = ReadTempSensorA();

 Y = ReadTempSensorB();

 Z = Voter(X, Y);

 SetFan(Z);

 switch(state) {

 case 0:

 SelfTest();

 break;

 case 1:

 CheckDrives();

 SetDriveLeds();

 break;

 default:

 break;

 }

 if (timerFlag ==1) {

 TimeoutError(state);

 }

 else {

 while (timerFlag == 0) ;

 }

 state ^= 1;

 }

}

void interrupt TimerISR() {

 timerFlag = 1;

}

void StartTimer(void) {

 /* Set hardware timer to 70 ms interval. */

 /* ... */

}

Keyword volatile

 volatile is a qualifier that is applied to a variable

when it is declared

 It tells the compiler that the value of the variable

may change at any time-without any action being

taken by the code the compiler finds nearby

 Why is timerFlag in the previous example a volatile

variable?

18

Cyclic Executive

 Major cycle must be multiple of minor cycle

 All tasks share common address space

 Can pass data easily

 Little/no need for data protection (e.g. via semaphores /
mutex)

◼ Only one task operates at any time

◼ ➔No concurrent access possible

 Large tasks may need to be subdivided to
facilitate/meet overall schedule ➔ adds to complexity

 Inflexible
 Adding a new task may involve a lot of work

 Hardware specific ➔ very limited portability

Cyclic Executive and ISRs

 Management of

asynchronous events

(interrupts) tricky

 Only workable, if:

 ISR is decoupled from

other tasks (no

dependencies like

blocking)

 Maximum number of

ISR executions does

not cause task overrun

Task Period p

[ms]

Exec Time

[ms]

A 25 10

B 25 8

C 50 5

D 50 4

E 100 2

CE Time Line: Slack for asynchronous

Interrupts

Synchronous interrupts generated every 25 ms, e.g. via interval timer

INT INTINTINT

A

B

C

D

E

Example Code with Overrun Check

volatile int timerFlag;

main() {

 int X, Y, Z, state = 0;

 StartTimer();

 while (1) {
 timerflag = 0;
 X = ReadTempSensorA();

 Y = ReadTempSensorB();

 Z = Voter(X, Y);

 SetFan(Z);

 switch(state) {

 case 0:

 SelfTest();

 break;

 case 1:

 CheckDrives();

 SetDriveLeds();

 break;

 default:

 break;

 }

 if (Timerflag ==1) {

 TimeoutError(state);

 }

 else {

 while (TimerFlag == 0) ;

 }

 state ^= 1;

 }

}

void interrupt TimerISR() {

 timerFlag = 1;

}

void StartTimer(void) {

 /* Set hardware timer to 70 ms interval. */

 /* ... */

}

Example Code with Overrun Check

and ISR Limitation
24

 The previous example allows detecting task overruns, using the
TimerFlag variable

 However, it does not prevent it from happening, i.e. the scheduler
gives ISR execution priority over timeliness of tasks

 Alternatively, one can give timeliness of task execution over ISR
execution, assuming that limiting the number of ISR calls doesn’t
break the system

 I.e. it’s a bad idea if all events/ISRs have an impact on system safety
(→ airbag deployment)

 In the next example, intCounter represents the CPU time used for
ISR execution, while ISR_LONG and ISR_SHORT are an upper
boundary for the ISR execution times; the total sum of these over
a single cycle must not exceed MAX_INTCOUNT

Example Code with Overrun Check

and ISR Limitation

#define MAX_INTCOUNT 4 // Max value for ISR execution times

#define ISR_LONG 4 // Relative execution time of ISR

#define ISR_SHORT 2 // Relative execution time of ISR

volatile int timerFlag, intCounter;

main() {

 int X, Y, Z, state = 0;

 StartTimer();

 while (1) {
 timerflag = 0;

 intCounter = 0;
 X = ReadTempSensorA();

 Y = ReadTempSensorB();

 Z = Voter(X, Y);

 SetFan(Z);

 switch(state) {

 case 0:

 SelfTest();

 break;

 case 1:

 CheckDrives();

 SetDriveLeds();

 break;

 default:

 break;

 }

 if (Timerflag ==1) {

 TimeoutError(state);

 }

 else {

 while (TimerFlag == 0) ;

 }

 state ^= 1;

 }

}

/* void interrupt TimerISR() and void StartTimer(void) as seen before */

void interrupt OtherISRLong(void){

 if (intCounter + ISR_LONG > MAX_INTCOUNT) {

 /* Do nothing and exit */ } else {

 intCounter += ISR_LONG;

 /* Execute ISR code and exit */

 … }

}

void interrupt OtherISRShort(void){

 if (intCounter + ISR_SHORT <= MAX_INTCOUNT) {

 intCounter += ISR_SHORT;

 // Execute ISR code and exit

 … }

 }

Next Topic: Benchmarking and WCET

 Principal question:

How do we

determine (worst

case) execution times

of tasks?

27

Task Period p

[ms]

Exec Time

[ms]

A 25 10

B 25 8

C 50 5

D 50 4

E 100 2

	Slide 1: CT420 Real-Time Systems Cyclic Executive scheduling
	Slide 2: Lecture Overview
	Slide 3: Recap: Quality Requirements for RTSCS
	Slide 4: Which Programming Languages are (not) suitable to implement hard RTS?
	Slide 5: Cyclic Executive Approach
	Slide 6: Trivial Arduino Example: Blinking LED
	Slide 7: Example for poorly programmed Scheduler
	Slide 8: Cyclic Executive
	Slide 9: Cyclic Executive
	Slide 10: Cyclic Executive
	Slide 11: CE Time Line
	Slide 12: CE Pseudocode
	Slide 13: Case Study NAS-Box
	Slide 14: Example NAS Box Controller CE
	Slide 15: In-Class Activity
	Slide 16: CE Example – My Solution
	Slide 17: Example Code
	Slide 18: Keyword volatile
	Slide 19: Cyclic Executive
	Slide 21: Cyclic Executive and ISRs
	Slide 22: CE Time Line: Slack for asynchronous Interrupts
	Slide 23: Example Code with Overrun Check
	Slide 24: Example Code with Overrun Check and ISR Limitation
	Slide 25: Example Code with Overrun Check and ISR Limitation
	Slide 27: Next Topic: Benchmarking and WCET

