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Lecture Overview
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 Overview RTS scheduling approaches 

 Cyclic Executive Approach

 Dealing with Interrupts



Recap: Quality Requirements for RTSCS

 RTSCS must be time responsive

 RTSCS must be reliable

 The ability to behave in accordance with its specification

 RTSCS must be safe

 Conditions that lead to hazards do not occur

 RTSCS must be secure

 Protect itself against intentional or accidental access, use, modification or 
destruction

 RTSCS must be usable

 Easy to learn, understand, and use 

 RTSCS must be maintainable

 Return swiftly to an operational state after receiving repairs or 
modification (e.g. plug in-and-forget)



Which Programming Languages are 

(not) suitable to implement hard RTS?
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 Unsuitable programming languages include:

 Java, Python, Ruby, JS

◼ Their garbage collection can introduce non-deterministic behavior, 

as it can pause the execution of the program at unpredictable 

times, causing delays

◼ Dynamic typing can lead to unpredictable performance

 Suitable programming languages include:

 C, C++, Ada, Real-Time Java 

 Using C as an implementation language we now look into 

implementing synchronous tasks, starting with the cyclic 

executive approach



Cyclic Executive Approach

 Single Process
while(1){

 Task 1;

 Task 2;

 ..

 ..

 Task n;

}

 No Operating System ➔ No scheduler
 Manually construct cycle schedule

 Encapsulate all tasks within single infinite loop
 Tasks in this context are simply functions with or without function 

arguments



Trivial Arduino Example: Blinking LED
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Example for poorly programmed 

Scheduler
7

1 ms →
1000 ms →

1 ms →
1000 ms →

• Total execution time per loop: 2002 ms 

• Also, the execution time of digitalWrite() could vary, resulting in variable loop

execution times

• Therefore, we need to consider a better approach to program such schedulers   



Cyclic Executive

 Used for very well defined / periodic tasks with bounded 
execution times

 Need to ensure that tasks cannot block and halt all others

 Tasks may run at different frequencies

 E.g. they control different parameters with different 
physical characteristics (like temperature, pressure, 

voltage in power station)

 Overall cycle either

 will run as fast as processor can handle tasks 

 is slowed down by delay() function, i.e. may need to slow tasks down to 
meet particular RTS requirements (e.g. measure steam pressure 
every 50 ms)



Cyclic Executive

 Used for very well defined / periodic tasks with 
bounded execution times

 Need to ensure that tasks cannot block others
 Tasks may run at different frequencies

 Possible Strategies
◼ Run as fast as required by highest frequency task
◼ Use lower harmonics for remaining tasks

◼ Possible use of counters to control sequence

 Use of major and minor cycles
◼ E.g. Highest frequency task is 100 Hz 

◼ Other tasks at 50Hz, 25 Hz, etc.

◼ Use of timers/interval timers (rather than delay() function) to correctly 
‘schedule’ tasks → different to Arduino example



Cyclic Executive

 Task Set
 Major Cycle = 40 Hz

 Minor Cycle = 10 Hz

 Use interval timer 
interrupts to enable 
scheduler to loop through 
minor cycles

 Manually construct 
schedule to meet criteria

 Note: For now we just 
assume that task exec 
times are bounded! 

Task Period p 

[ms]

Exec Time 

[ms]

A 25 10

B 25 8

C 50 5

D 50 4

E 100 2
Execution

time

Deadlines Software

size

Software

complexity

Hard - Fast ⚫⚫⚫⚫ ⚫⚫⚫⚫ ⚫ ⚫

Hard - Slow ⚫ ⚫⚫⚫⚫ ⚫ → ⚫⚫⚫ ⚫ → ⚫⚫⚫⚫

Soft - Fast ⚫⚫⚫⚫ ⚫⚫
⚫ → ⚫⚫⚫

⚫ → ⚫⚫⚫

Soft - Slow ⚫⚫ ⚫⚫ ⚫ → ⚫⚫⚫⚫ ⚫ → ⚫⚫⚫⚫

Attribute rating

⚫ Low    ⚫⚫⚫⚫  high



CE Time Line

Interrupts generated every 25 ms via an interval timer

→ Tasks are launched every 25 ms (different to Arduino example)

INT INTINTINT

A

B

C

D

E



CE Pseudocode

loop

wait_for_INT

task_A

task_B

task_C

wait_for_INT

task_A

task_B

task_D

task_E

wait_for_INT

task_A

task_B

task_C

wait_for_INT

task_A

task_B

task_D

end loop

volatile int timerFlag = 0;

…

void wait_for_INT() {

   while timerFlag == 0) {}

   timerFlag = 0;

}

void interrupt timer_ISR() {

   timerFlag = 1; 

} 



Case Study NAS-Box

 Enclosure that provides space, power and control options for 

many (12- 60) hard disks (Network Attached Storage)

 Enclosure controller must handle a few crucial management 

tasks, including optimised temperature control (overheating 

of disks) while minimising cooling fan noise emissions 



Example NAS Box Controller CE 

# Task Period p [ms] Exec Time [ms]

1 X = ReadTempSensorA() 70 10

2 Y = ReadTempSensorB() 70 10

3 Z = Voter(X, Y) 70 5

4 SetFan(Z) 70 15

5 CheckDrives() 140 20

6 SetDriveLeds() 140 5

7 SelfTest() 140 15

Task Dependencies (i.e. tasks are simply ordered): 

- #1 + #2 → #3 → #4

- #5 → #6 



In-Class Activity

loop

wait_for_INT

A…

wait_for_INT

B…

end loop

Tasks:

1. Construct a suitable CE for the SAN example, i.e. 

Determine the sequence of tasks for A and B

(e.g. “A125B213”)

1. Determine timer settings, i.e. how often is 

the timer ISR invoked?



CE Example – My Solution

loop

wait_for_INT (70 ms) 

#1 (10 ms)

#2 (10 ms)

#3 (05 ms)

#4 (15 ms)

#5 (20 ms)

#6 (05 ms)

wait_for_INT (70ms)

#1 (10 ms)

#2 (10 ms)

#3 (05 ms)

#4 (15 ms)

#7 (15 ms)

end loop

Tasks:

1. Construct a suitable CE for the SAN example

2. Determine timer settings, i.e. how often is 

the timer ISR invoked?



Example Code

volatile int timerFlag;

main() {

 int X, Y, Z, state = 0;

 StartTimer(); 

 while (1) {
  timerFlag = 0;
 X = ReadTempSensorA();

  Y = ReadTempSensorB();

  Z = Voter(X, Y);

  SetFan(Z);

  switch(state) {

  case 0:

   SelfTest(); 

   break;

  case 1:

   CheckDrives();

   SetDriveLeds();

   break;

   

 default:

   break;

  }

  if (timerFlag ==1) {

   TimeoutError(state);

  }

  else {

   while (timerFlag == 0) ;

  }

 state ^= 1;

 }

}

void interrupt TimerISR() {

 timerFlag = 1;

}

void StartTimer(void) {

 /* Set hardware timer to 70 ms interval. */

 /* ... */

} 



Keyword volatile

 volatile is a qualifier that is applied to a variable 

when it is declared 

 It tells the compiler that the value of the variable 

may change at any time-without any action being 

taken by the code the compiler finds nearby

 Why is timerFlag in the previous example a volatile 

variable?

18



Cyclic Executive

 Major cycle must be multiple of minor cycle

 All tasks share common address space

 Can pass data easily

 Little/no need for data protection (e.g. via semaphores / 
mutex) 

◼ Only one task operates at any time 

◼ ➔No concurrent access possible

 Large tasks may need to be subdivided to 
facilitate/meet overall schedule ➔ adds to complexity

 Inflexible 
 Adding a new task may involve a lot of work

 Hardware specific ➔ very limited portability 



Cyclic Executive and ISRs

 Management of 

asynchronous events 

(interrupts) tricky

 Only workable, if:

 ISR is decoupled from 

other tasks (no 

dependencies like 

blocking)

 Maximum number of 

ISR executions does 

not cause task overrun

Task Period p 

[ms]

Exec Time 

[ms]

A 25 10

B 25 8

C 50 5

D 50 4

E 100 2



CE Time Line: Slack for asynchronous 

Interrupts

Synchronous interrupts generated every 25 ms, e.g. via interval timer

INT INTINTINT

A

B

C

D

E



Example Code with Overrun Check

volatile int timerFlag;

main() {

 int X, Y, Z, state = 0;

 StartTimer(); 

 while (1) {
  timerflag = 0;
 X = ReadTempSensorA();

  Y = ReadTempSensorB();

  Z = Voter(X, Y);

  SetFan(Z);

  switch(state) {

  case 0:

   SelfTest(); 

   break;

  case 1:

   CheckDrives();

   SetDriveLeds();

   break;

   

 default:

   break;

  }

  if (Timerflag ==1) {

   TimeoutError(state);

  }

  else {

   while (TimerFlag == 0) ;

  }

 state ^= 1;

 }

}

void interrupt TimerISR() {

 timerFlag = 1;

}

void StartTimer(void) {

 /* Set hardware timer to 70 ms interval. */

 /* ... */

} 



Example Code with Overrun Check 

and ISR Limitation
24

 The previous example allows detecting task overruns, using the 
TimerFlag variable

 However, it does not prevent it from happening, i.e. the scheduler 
gives ISR execution priority over timeliness of tasks

 Alternatively, one can give timeliness of task execution over ISR 
execution, assuming that limiting the number of ISR calls doesn’t 
break the system

 I.e. it’s a bad idea if all events/ISRs have an impact on system safety 
(→ airbag deployment)

 In the next example, intCounter represents the CPU time used for 
ISR execution, while ISR_LONG and ISR_SHORT are an upper 
boundary for the ISR execution times; the total sum of these over 
a single cycle must not exceed MAX_INTCOUNT



Example Code with Overrun Check 

and ISR Limitation

#define MAX_INTCOUNT    4 // Max value for ISR execution times

#define ISR_LONG             4 // Relative execution time of ISR

#define ISR_SHORT            2 // Relative execution time of ISR

volatile int timerFlag, intCounter;

main() {

 int X, Y, Z, state = 0;

 StartTimer(); 

 while (1) {
  timerflag = 0;

   intCounter = 0;
 X = ReadTempSensorA();

  Y = ReadTempSensorB();

  Z = Voter(X, Y);

  SetFan(Z);

  switch(state) {

  case 0:

   SelfTest(); 

   break;

  case 1:

   CheckDrives();

   SetDriveLeds();

   break;

 default:

   break;

  }

  if (Timerflag ==1) {

   TimeoutError(state);

  }

  else {

   while (TimerFlag == 0) ;

  }

 state ^= 1;

 }

}

/* void interrupt TimerISR() and void StartTimer(void) as seen before */

void interrupt OtherISRLong(void){

 if (intCounter + ISR_LONG > MAX_INTCOUNT) {

  /* Do nothing and exit */ } else {

   intCounter += ISR_LONG;

  /* Execute ISR code and exit */

 …                                            }

} 

void interrupt OtherISRShort(void){

 if (intCounter + ISR_SHORT <= MAX_INTCOUNT) {

   intCounter += ISR_SHORT;

  // Execute ISR code and exit

  …              }

 }



Next Topic: Benchmarking and WCET

 Principal question: 

How do we 

determine (worst 

case) execution times 

of tasks? 

27

Task Period p 

[ms]

Exec Time 

[ms]

A 25 10

B 25 8

C 50 5

D 50 4

E 100 2
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