
Dr. Finlay Smith

Room 430, IT Building

Finlay.smith@UniversityofGalway.ie



Introduction to Logic Programming

2



Logic Programming

3

 Logic programming is a programming paradigm based on 

formal logic. 

 A logic program consists of a series of assertions written in the 

language of formal logic.

 A program written in a logic programming language is a set of 

sentences in logical form, expressing facts and rules about 

some problem domain. 

 Results are derived from logic programs by symbolic reasoning.

 Logic programming systems solve goals by systematically 

searching for a way to derive the answer from the program.



Logic Programming

4

• Uses logic to express knowledge.

• Uses inference to manipulate knowledge and resolve problems.

• In general, most logic programming is usually based on:

Horn-clause logic + negation-as-failure + backward chaining

• Programmer is responsible for specifying the basic logical 
relationships and does not specify the manner in which the inference 
rules are applied.



Horn-clause Logic

5

 In logic, a clause is an expression formed from a finite 
collection of literals (variables or their negations).

 A clause is called a Horn clause if it contains at most one 
positive literal. 
 A definite clause is a Horn clause that has exactly one positive 

literal. 

 A negative clause is a Horn clause that has no positive literals

 A Horn clause without a positive literal is called a goal.

 Horn clauses express a subset of statements of first-order logic. 
Programming language Prolog is built on top of Horn clauses. 
Prolog programs are comprised of definite clauses and any 
question in Prolog is a goal.



Negation-As-Failure

6

 A feature of Prolog and other logic programming 
languages in which failure of unification is treated as 
establishing the negation of a relation. 

 For example: if Bono is not in our database and we asked if 
he is Irish, Prolog would answer "no".

 Negation as failure is based on the closed world 
assumption

 Since we assume that anything that cannot be deduced 
from the facts we already have is wrong, if we fail to 
prove something it means that the opposite of it is 
considered true.



Backward Chaining

7

 An algorithm that works backwards from the goal, chaining 

through rules to find known facts that support the proof

 Backward chaining follows the classical depth-first search 

algorithm. 

 Can have problems with repeated states and incompleteness.

Forward Chaining

• Present to future

• Data Driven

• Bottom-up reasoning

• Work forward to find solution 

follow from the facts

• Breadth First Search

Backward Chaining

• Present to past

• Goal driven

• Top-down reasoning

• Work backward to find facts that 

support the hypothesis

• Depth First Search



Logic Programming

8

 Declarative style programming paradigm.

 Computation through logical deduction.

 Uses the language of logic to express data and programs.

 Most of current logic programming languages use first 

order logic (FOL).

 Prolog – the most popular logic programming language



Syntax and Semantics

9

 Has syntax and semantics. 

 Also has inference rules.

 Syntax: the rules about how to form formulas; this is 

usually the easy part of a logic.

 Semantics: about the meaning carried by the formulas, 

mainly in terms of logical consequences. 

 Inference rules: describe correct ways to derive 

conclusions. 



Different Perspectives of Logical Programming

10

Computation as Deduction

Theorem Proving

Non-procedural Programming

Algorithms Minus Control



Computation as Deduction

11

 Logic programming offers a slightly different paradigm 

for computation: computation as logical deduction

 It uses the language of logic to express data and programs.

For all X and Y, X is the father of Y if

X is a parent of Y and the gender of X is male.



Theorem Proving

12

 Logic Programming uses the notion of an automatic 

theorem prover as an interpreter.

 The theorem prover derives a desired solution from an 

initial set of axioms.

 Axiom: a statement or proposition which is regarded as 

being established, accepted, or self-evidently true.

 Note that the proof must be a "constructive" one so that 

more than a true/false answer can be obtained.



Non-procedural Programming

13

 Logic Programming languages are non-procedural programming 
languages.

 A non-procedural language is one in which one specifies what 
needs to be computed but not how it is to be done.

 That is, one specifies:

 the set of objects involved in the computation

 the relationships which hold between them

 the constraints which must hold for the problem to be solved

 The language interpreter or compiler decides how to satisfy the 
constraints.



Algorithms = Logic + Control

14

 Nikolas Wirth (architect of Pascal) used the following slogan as 
the title of a book:

 Algorithms + Data Structures = Programs

 Robert Kowalski offers a similar one to express the central 
theme of logic programming:

 Algorithms = Logic + Control

 We can view the LOGIC component as:

 A specification of the essential logical constraints of a particular 
problem

 We can view the CONTROL component as:

 Advice to an evaluation machine (e.g. an interpreter or compiler) 
on how to go about satisfying the constraints



Applications of Logic 

Programming

15

 Relational Databases

 Natural Language Interfaces

 Expert Systems

 Symbolic Equation solving

 Planning

 Prototyping

 Simulation

 Programming Language Implementation



Prolog: Programmation en

logique

16

 The first and most popular logic programming 

language

 Invented by Alain Colmerauer and Phillipe Roussel at the 

University of Aix-Marseille, France in the early 70s.

 Prolog has its roots in first-order logic and is a declarative 

programming language

 The program logic is expressed in terms of relations, 

represented as facts and rules. A computation is initiated 

by running a query over these relations



Characteristics of Prolog

17

Weakly typed

No data abstraction

No functional abstraction

Has no mutable state

Has no explicit control flow



How do you program in Prolog?

18

 Load facts/rules into interpreter

 Make queries to see if a fact is:

 In the knowledge-base

 Can be implied from existing facts or rules

Prolog is really an engine to prove theorems 


