
CT102: 
ALGORITHMS

Searching 
Linear Lists



SEARCHING

oSearching is a 
fundamental operation in 
computing – seen in many 
different areas and across 
many problems
oMost programming 
languages have built in 
searching functions that can 
be used at a later stage 
(but not in Algorithms!).



LINEAR SEARCH: OUTLINE

Problem: In a linear data structure, find the position of a given 
item, returning the position the item is found or else value -1 if 
item is not found.

Input: Array arrA with (distinct) values; Size of array (size); item 
to find (item)

Output: one integer value indicating not found (-1) or the 
position item was found at.

Algorithm idea: Start at index position 0, for each position until 
the end of array, keep checking if value at current position is 
the item required; once finished searching, output result



LINEAR SEARCH: EXAMPLES

Searching for “Enya” in array names[]

Searching for 100 in array costs[]:

names[5] Louis Ben Enya Don Ali

costs[5] 1007 2002 2007 1000 2003



LINEAR SEARCH ALGORITHM (FRAGMENT OF C)

int i;

int position = -1;

for (i = 0; i < size; i++){

if (arrA[i] == item) {

position = i; //found

}

}



WHAT DO WE NEED TO ADD TO 
THIS TO ACTUALLY RUN IT?

• Need #include <stdio.h> and main(){ … } 

• Need data! An array of integers, its size and an item to find

• … for now, we will hard code the array data but we should 
enter search item (using scanf)

• Need to output answer … use printf() statement(s)



FULL CODE WHEN WORKING WITH 
INTEGERS:



QUESTIONS

Consider this code with a sample array (as given):

int arrA[6] = {12, 6, 4, 2, 13, 19};

And searching for item = 6

How does the algorithm progress?



QUESTIONS:
How fast/slow is it?



WORKSHEET 2 QUESTION 1:

What inefficiencies can you see in this version of a linear 
search assuming integer array arrA[] of size sizeand 
searching for item? (i.e. assume you are given an array 
and the item)



WRITING A BETTER VERSION?



ORDERED (SORTED) ARRAYS

An array is ordered if its values are in either ascending or 
descending order

In an ascending array, the value of each element is less than 
(or equal to if duplicates allowed) the value of the next 
element.

In a descending array, the value of each element is greater 
than (or equal to if repeats allowed) to the value of the next 
element.

names[] Aaron Ali Cait Dara Eli

years[] 2022 2020 2017 2015 2012



WORKING WITH SORTED DATA … 

Question was … Any efficiencies that can be made to the 
linear search if we can assume that the data is in sorted 
order with distinct (no repeating) values?

For example, array:

int arrA[6] = {2, 6, 14, 29, 32, 49};

and searching for item = 9



WORKSHEET 2 QUESTION 2 CODE:



But, if  data in array is sorted, can 
have an even better approach, 
using a BINARY SEARCH …



BINARY SEARCH: OUTLINE

Problem: In a linear data structure with data in sorted 
order, with no duplicates, find the position of a given item, 
returning the position found or else value -1 if not found.

Input: Array arrA[] with data values is sorted order; Size 
of array (size); item to find (item)

Output: one integer value indicating not found (-1) or the 
position item was found at.

Assumptions: Without loss of generality, we will assume the 
input array contains integer values and that the values are 
sorted in ascending order.



BINARY SEARCH: IDEA

Until there is nothing left to search:
Start, as close as possible to the middle of the array
Check if value at middle position is the item required
 If yes, stop and return position
 If no, check whether the value required is less than or 
greater than the value at the middle position. As a result of 
this check, repeat the search with the lower (left) or upper 
(right) portion of the array.



EXAMPLE: 
Search for item = 60 in array A of  size 11

6 12 17 21 33 34A 42 59 60 93 97

0 10
mid

54 6

6 12 17 21 33 34 42 59 60 93 97

0 108
mid

54 6

Note: This has taken two checks to find item in comparison to ??? if using the linear search code?



FINDING MIDDLE POSITION OF ARRAY:

Somewhere “near” the middle

Depending on size of array or sub-arrays may not always 
be “exact” middle

First mid in array of size size

int begSec, endSec, mid;

begSec = 0;

endSec = size - 1;

mid = int((begSec + endSec)/ 2);



RECALL: int()

int(n) returns the truncation of n

That is, the integer whose absolute value is no greater than 
that of n



WORKING WITH mid … 

Compare item with arrA[mid] … middle value in 
array

Three possible situations:
item == A[mid] so can stop
item > A[mid] so continue searching upper half of
array (from mid + 1 to size -1)
item < A[mid] so continue searching lower half of 
array (from 0 to mid - 1)



EXAMPLE: SEARCH FOR ITEM = 60 IN ARRAY A OF SIZE 11

6 12 17 21 33 34A 42 59 60 93 97

0 10
mid

54 6



UPDATING mid … 

if (item > arrA[mid]) {

begSec = mid + 1;

}

else if (item < arrA[mid]) {

endSec = mid - 1;

}

mid = int( (begSec + endSec) / 2);



STOPPING CONDITION

while (

begSec <= endSec && 

arrA[mid] != item)

{

That is, will stop when have checked all  possible locations 
in the [begSec, endSec] range or have found item



LOOKING AT CODE AND SHARING CODE .. 



WORKING WITH THE CODE

> What function declaration do we need for this?

> What data needs to be passed to the function?

> How do we “call” function?

> And why did we write this as a function anyway?



HOW “LONG” DOES IT TAKE? 
(HOW FAST/SLOW?)

• How does it compare to linear search? [Will return to this]

• Can you write the linear search code as a function?



HOW TO CHECK ARRAY IS SORTED?

Binary Search assumes that the data in the array is in 
sorted order - algorithm will not work correctly unless this 
assumption holds

? How to check if an array of integers is in sorted 
ascending order (no duplicates)? See worksheet 2, 
question 4.

? If not sorted, how to sort [Later topic]



ADVANCED SEARCHING:
PATHFINDING ALGORITHMS

oA particularly important type of (non-linear) searching is called 
pathfinding which involves finding the shortest route  between 
two paths.

oThis relates to a topics already seen in Social Network Analysis 
– the finding the shortest path between two points in a large 
network. 



EXAMPLES



GENERAL 
APPROACH

Need to keep track of:

• Nodes/Points/Spaces already visited 

• Nodes (Neighbours) of current node where you can move to 
…. If there are a number of options here, must pick one point 
to move to, but potentially “explore” other points later on if the 
current choice does not result in success and delete nodes on the 
path that did not lead to success.



SUMMARY

Searching is a fundamental operation in computing

Very few applications are built that don’t involve a search feature 
(think about this!)

The most general search that works on any type of data is a linear 
search – for an array of size N, at most N items will have to be 
checked

If data is in a sorted order then a much more efficient search can be 
used – binary search - for an array of size N, at most log2(N) items 
will have to be checked.



TUTORIAL THURSDAY …. 

If you are confused about any of this material or with any of the C 
code used please come to the tutorial on Thursday where we can go 
through the code in more detail



CT102: 
ALGORITHMS AND INFORMATION
SYSTEMS

Topic:
Algorithms 
and Algorithm 
Analysis



FOCUS OF ALGORITHM ANALYSIS …

The analysis and comparison of algorithms with 
respect to resources used, that is:

• Space (memory)

• Time (to run)

Important Question for us: When two programs 
solve the same problem differently why is one 
better than the other?



FOR MEANINGFUL COMPARISON, MUST 
HAVE SOME STANDARDISATION

•both programs in the same language

•executable code produced by the same compiler

•the same hardware platform for each test

•identical data sets to test both programs

•data sets that test many cases (expected, 
unexpected, edge/corner cases)



3 APPROACHES USED FOR COMPARISON

1. Actual Time: Code and Run and track time
2. Estimate time: Count time “steps” in code 

(without running)
3. Estimate rate of growth of time used: Use Big-

O notation (and others) for large input sizes



APPROACH 1 ... CODE AND RUN

Get actual values for time and space
Often focus on key operations as well as overall 
time to run (i.e. focus on time functions that do 
the main work take, not Input/output work)

Generally in practice, … want a (good) idea of 
the time and space efficiency of an algorithm 
before we fully code a solution



APPROACH 1 IN C .. using time.h

clock_t time = clock();

double timeTaken;

//do the work

// check time elapsed

timeTaken = clock() - time; 

// convert to seconds

printf("\n time taken is %lf

seconds", timeTaken/CLOCKS_PER_SEC);

The C library function

clock_t clock(void)

returns the number of clock 
ticks elapsed since the 
program was launched. 

To get the number of seconds 
used by the CPU, you will 
need to divide by 
CLOCKS_PER_SEC



ADDING THIS TO linearSearch



APPROACH 2 ... COUNT “TIME STEPS”

The idea is to estimate the amount of work there is 
to do by summing up “time steps” in each statement.

The result is a function, f, which represents these time 
steps and is (usually) dependent on the data size 
input which is represented as some constant (e.g,. N) 
and then function is represented as f(N)



APPROACH 2 ... COUNT “TIME STEPS” ctd.

Each simple statement = 1 time step

Examples: declarations, initialisations, calculations, if  
conditions, function call, etc.
 int i = 0;
 if (position == -1) {
 while (begSec <= endSec) {

Each memory access = 1 time step



Approach 2 ctd., ... Count “time steps”

 Loops, function execution, use of built in libraries are 
not simple statements and are usually dependent on 
the input size 
 Loops:
 In a simple case, any statement in a loop is “multiplied” by 
the number of iterations of a loop
 The condition can be taken as 1 timestep (checked multiple 
times)
 In for loops, where there are 2 actions per iteration 
(minimum) – can choose to count each action OR count 
everything in loop guard as 1 timestep (usual approach).

Do we always know when the loop will stop? 



TYPES OF ANALYSIS

For approach 2 and 3 there are 3 types of analysis that can 
be performed and that we are interested in:

Worst case: The function defined by the maximum number of 
steps taken in any instance of size n. 

Best case: The function defined by the minimum number of 
steps taken in any instance of size n. 

Average case: The function defined by the average number of 
steps over all instances of size n. (Assumes that the input is 
random)



WHICH TO USE?

• Mostly interested in average and worst case situations –
best case situation is often not useful for analysis

• For time step analysis often focus on worst case analysis 
as it is important to know the upper limit on how poorly an 
algorithm can perform

• Our average case may be better than this in many 
situations or at least, can be no worse than this



Using Worst Case Analysis, how to Calculate the Time Steps 
and the Function which Represents the Worst Case 
Situation?

Generally ignore Input/Output statements (should be 
standard across solutions)

For each line of code/statement:

o List the time step count (cost)

o List the maximum number of times it is done (numTimes)

o Multiply cost by numTimes for each step

o Add up all the steps to get the function – most likely 
dependent on N the input size



WHAT IS N?

N is the number of elements in the input
Can be:
Size of an array (or list or tree or graph)
Number of words in a file
Number of elements to sort
Number of transactions to check for fraud patterns
Number of movies to display or recommend
Number of tweets to analyse to check if they are 
political ads.
etc.



COUNTING TIME STEPS
Can annotate code or create a table like the 
following:

Line Cost numTimes cost*numTimes Total



COUNTING TIME STEPS 
FOR LINEAR SEARCH



TIME STEP ANALYSIS:
Linear Search

Let N = array size (number of 
items to search)

Line Cost (max) 
numTimes

cost*numTimes Total

60 1 1 1

61 1 1 1

63 1 N+1 N+1

64 1 N N

65 1 1 1

68 1 1 1

2N + 5



Alternative: counting 
individual statements 
in for loop guard as 3 

Let N = array size (number of 
items to search)

Line Cost (max) 
numTimes

cost*numTimes Total

60 1 1 1

61 1 1 1

63 (i = 0) 1 1 1

63 3 N+1 3N+3

65 1 N N

68 1 1 1

60 1 1 1

4N + 8



COMPARING:
2N + 5
4N + 8

Note that although 4N + 8 timesteps will always take more time than 
2N + 5, they are both “linear” or “grow in the same way”.

Generally some simplifications must be made when counting lines of 
code even if in reality we know that the following two lines of code will 
take different amounts of time:

int i;

for(i = 0; i < size && position == -1; ++i) 

As many lines of code will not be equivalent it is usual to use a cost of 1, 
both for lines that might seem more simple, or more complex, than 
“normal”.
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2N + 5 4N + 8



You Try … TIME STEP ANALYSIS:
Checking if  an array is sorted
Given an integer array, arrA[], and its size (size) write an algorithm 
(code) in C to check if the array is sorted, returning 1 (or Boolean True) if the 
array is sorted and 0 (or Boolean False) if the array is not sorted. You may 
assume that we wish to search for sorted ascending order.

 Using the function written, perform a time step analysis to get a function 
representing the number of time steps needed (as a function of the size of 
the array):



Which fragment of  code correctly identifies if  an 
array has values in ascending sorted order?
A, B, C or D



COMPLETE THE
TIME STEP ANALYSIS:
Let N = size



TIME STEP ANALYSIS
BINARY SEARCH



TIME STEP ANALYSIS:
Binary Search

Line Cost numTimes Cost*Num Times Total

56-59 & 61 1 for each 
(5 in total)

1 for each 5

63 1 ?

64&65 or
64, 67&68

(pick larger)
3 

?

71 1 ?

74, 75, 77 
or
74 and 77

(pick larger)
3 

1 3

How many times?

Let N = size of array
Ignore printf at line 54 
as it is not part of solution



LOOKING AT LOOP GUARD:
while (begSec <= endSec && arrA[mid] != item)

Worst case analysis when item is not in array means arrA[mid] is never 
equal to item or item is found at the very last check

Assume N items in the array:

1st check:  check for item and approx. ½ of items left to check (𝑁𝑁
2

items)

2nd check:  check for item and approx. ½ of items left to check (½ of 𝑁𝑁
2

= 𝑁𝑁
4

= 𝑁𝑁
22

)

3nd check:  check for item and approx. ½ of items left to check (½ of 𝑁𝑁
4

= 𝑁𝑁
8

= 𝑁𝑁
23

)

4th check:  check for item and approx. ½ of items left to check (½ of 𝑁𝑁
8

= 𝑁𝑁
16

= 𝑁𝑁
24

)

etc.

kth check:  check for item and approx. 𝑁𝑁
2𝑘𝑘

items left to check

Note: At each stage reducing by a power of 2 (not linear)



SOLVING …. 
𝑁𝑁
2𝑘𝑘

= 1

How many checks will be needed to have one value left to check?
𝑁𝑁
2𝑘𝑘

= 1

N = 2k

•Multiplying both sides by log2 to get: 

log2 N = log2 2k

log2 N = k

Therefore, in the worst case, need log2 N checks to find item or to 
know that it isn’t there



WILL “STEPS OF POWER OF 2” ALWAYS 
GIVE US LOG2 BEHAVIOUR?



Consider this loop guard:
for (i = 1; i < n; i = i * 2) {

for (i = 1; i < n; i = i * 2 ) {

n Values of i: Number of iterations

10 1, 2, 4, 8, 4

20 1, 2, 4, 8, 16 5

30 1, 2, 4, 8, 16 5

40 1, 2, 4, 8, 16, 32 6

50 1, 2, 4, 8, 16, 32 6

60 1, 2, 4, 8, 16, 32 6

70 1, 2, 4, 8, 16, 32, 64 7

etc.



Consider this loop guard:

for (i = n; i > 0; i = int (i / 2) ) {

for (i = n; i > 0; i = int (i / 2) ) {

n Values of i:
Number of 
iterations log2(n)

10 10, 5, 2, 1 4 3.32
20 20, 10, 5, 2, 1 5 4.32
30 30, 15, 7, 3, 1 5 4.91
40 40, 20, 10, 5, 2, 1 6 5.32
50 50, 25, 14, 7, 3, 1 6 5.64
60 60, 30, 15, 7, 3, 1 6 5.91
70 70, 35, 17, 8, 4, 2, 1 7 6.13
80
…. 

10000 approx log2 (n) 13.28



BACK TO:
Binary Search
time step analysis:

Line Cost numTimes Cost*Num Times Total

56-59 & 61 5 1 5

63 1 𝑙𝑙𝑙𝑙𝑙𝑙2(N) 𝑙𝑙𝑙𝑙𝑙𝑙2(N)

64&65 or
64, 67&68

(pick larger)
3 

𝑙𝑙𝑙𝑙𝑙𝑙2(N) 3𝑙𝑙𝑙𝑙𝑙𝑙2(N)

71 1 𝑙𝑙𝑙𝑙𝑙𝑙2(N) 𝑙𝑙𝑙𝑙𝑙𝑙2(N)

74, 75, 77 or
74 and 77

(pick larger)
3 

1 3

5𝑙𝑙𝑙𝑙𝑙𝑙2(N) + 8

Let N = size of array
Ignore printf at line 54
Ignore ±1 iterations in 
loop



HOW DOES THIS COMPARE TO LINEAR 
SEARCH?

Linear Search: f(N) = 2N + 5

Binary Search: f(N) = 5𝑙𝑙𝑙𝑙𝑙𝑙2(N) + 8
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f1(n) = 2n+5; f2(n) = 5log2(n)+8
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APPROACH 2 ... COUNT “TIME STEPS”
SUMMARY
Generally, 
Do not count I/O steps
Gives a good approximation of the actual run 
time 
But, requires effort in counting
Often we want a more generic way to compare 
algorithms … especially across different 
programming languages … without getting 
distracted with coefficients, additive and 
multiplicative constants of n (the input size)



APPROACH 3: RATE OF GROWTH

n n3 2n 1234 fn = n3+2n+1234

10 1000 20 1234 2254

100 1000000 200 1234 1001434

1000 1E+09 2000 1234 1000003234

10000 1E+12 20000 1234 1E+12

1000000 1E+18 2000000 1234 1E+18

Given that n will have different values for each 
run it is usually the rate of growth or increase of 
f(n) that we want to analyse
For example, if timestep analysis gives us: n3 + 
2n + 1234 it is only as n gets larger that f(n) 
starts to get very large



SUMMARY

Algorithm analysis is a fundamental aspect of 
Algorithms

Important to know and understand the different 
approaches for Algorithm Analysis and how to 
analyse algorithms using a number of approaches
We will consider 3 approaches:

Actual run time

Time step analysis (generally worst case)
Big O Analysis (rate of growth) – next lecture



CT102: 
ALGORITHMS AND INFORMATION
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Analysis



RECALL: 
FOCUS OF ALGORITHM ANALYSIS …

The analysis and comparison of algorithms with 
respect to resources used, that is:

• Space (memory)

• Time (to run)

Important Question for us: When two programs 
solve the same problem differently why is one 
better than the other?



RECALL: 
3 APPROACHES USED FOR COMPARISON

1. Actual Time: Code and Run and track time
2. Estimate time: Count time “steps” in code 

(without running)
3. Estimate rate of growth of time used: Use Big-

O notation (and others) for large input sizes



COMPLETE THE
TIME STEP ANALYSIS:
Let N = size

Line Cost (max) 
numTimes

cost*numTimes Total

13 1 1 1

14 1 1 1

16 1 N N

17 1 N-1 N-1

18 1 1 1

21 1 1 1

2N+3



TIME STEP ANALYSIS
BINARY SEARCH



TIME STEP ANALYSIS:
Binary Search

Line Cost numTimes Cost*Num Times Total

56-59 & 61 1 for each 
(5 in total)

1 for each 5

63 1 ?

64&65 or
64, 67&68

(pick larger)
3 

?

71 1 ?

74, 75, 77 
or
74 and 77

(pick larger)
3 

1 3

How many times?

Let N = size of array
Ignore printf at line 54 
as it is not part of solution



LOOKING AT LOOP GUARD:
while (begSec <= endSec && arrA[mid] != item)

Worst case analysis when item is not in array means arrA[mid] is never 
equal to item or item is found at the very last check

Assume N items in the array:

1st check:  check for item and approx. ½ of items left to check (𝑁𝑁
2

items)

2nd check:  check for item and approx. ½ of items left to check (½ of 𝑁𝑁
2

= 𝑁𝑁
4

= 𝑁𝑁
22

)

3nd check:  check for item and approx. ½ of items left to check (½ of 𝑁𝑁
4

= 𝑁𝑁
8

= 𝑁𝑁
23

)

4th check:  check for item and approx. ½ of items left to check (½ of 𝑁𝑁
8

= 𝑁𝑁
16

= 𝑁𝑁
24

)

etc.

kth check:  check for item and approx. 𝑁𝑁
2𝑘𝑘

items left to check

Note: At each stage reducing by a power of 2 (not linear)



SOLVING …. 
𝑁𝑁
2𝑘𝑘

= 1

How many checks will be needed to have one value left to check?
𝑁𝑁
2𝑘𝑘

= 1

N = 2k

•Multiplying both sides by log2 to get: 

log2 N = log2 2k

log2 N = k

Therefore, in the worst case, need log2 N checks to find item or to 
know that it isn’t there



WILL “STEPS OF POWER OF 2” ALWAYS 
GIVE US LOG2 BEHAVIOUR?



Consider this loop guard:
for (i = 1; i < n; i = i * 2) {

for (i = 1; i < n; i = i * 2 ) {

n Values of i: Number of iterations

10 1, 2, 4, 8, 4

20 1, 2, 4, 8, 16 5

30 1, 2, 4, 8, 16 5

40 1, 2, 4, 8, 16, 32 6

50 1, 2, 4, 8, 16, 32 6

60 1, 2, 4, 8, 16, 32 6

70 1, 2, 4, 8, 16, 32, 64 7

etc.



Consider this loop guard:

for (i = n; i > 0; i = int (i / 2) ) {

for (i = n; i > 0; i = int (i / 2) ) {

n Values of i:
Number of 
iterations log2(n)

10 10, 5, 2, 1 4 3.32
20 20, 10, 5, 2, 1 5 4.32
30 30, 15, 7, 3, 1 5 4.91
40 40, 20, 10, 5, 2, 1 6 5.32
50 50, 25, 14, 7, 3, 1 6 5.64
60 60, 30, 15, 7, 3, 1 6 5.91
70 70, 35, 17, 8, 4, 2, 1 7 6.13
80
…. 

10000 approx log2 (n) 13.28



BACK TO:
Binary Search
time step analysis:

Line Cost numTimes Cost*Num Times Total

56-59 & 61 5 1 5

63 1 𝑙𝑙𝑙𝑙𝑙𝑙2(N) 𝑙𝑙𝑙𝑙𝑙𝑙2(N)

64&65 or
64, 67&68

(pick larger)
3 

𝑙𝑙𝑙𝑙𝑙𝑙2(N) 3𝑙𝑙𝑙𝑙𝑙𝑙2(N)

71 1 𝑙𝑙𝑙𝑙𝑙𝑙2(N) 𝑙𝑙𝑙𝑙𝑙𝑙2(N)

74, 75, 77 or
74 and 77

(pick larger)
3 

1 3

5𝑙𝑙𝑙𝑙𝑙𝑙2(N) + 8

Let N = size of array
Ignore printf at line 54
Ignore ±1 iterations in 
loop



HOW DOES THIS COMPARE TO LINEAR 
SEARCH?

Linear Search: f(N) = 2N + 5

Binary Search: f(N) = 5𝑙𝑙𝑙𝑙𝑙𝑙2(N) + 8
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APPROACH 2 ... COUNT “TIME STEPS”
SUMMARY
Generally, 
Do not count I/O steps
Gives a good approximation of the actual run 
time 
But, requires effort in counting
Often we want a more generic way to compare 
algorithms … especially across different 
programming languages … without getting 
distracted with coefficients, additive and 
multiplicative constants of n (the input size)



APPROACH 3: RATE OF GROWTH

n n3 2n 1234 f(n) = n3+2n+1234

10 1000 20 1234 2254

100 1000000 200 1234 1001434

1000 1E+09 2000 1234 1000003234

10000 1E+12 20000 1234 1E+12

1000000 1E+18 2000000 1234 1E+18

Given that n will have different values for each run it is 
usually the rate of growth or increase of f(n) that we want 
to analyse

For example, if timestep analysis gives us: 

F(n) = n3 + 2n + 1234 

it is only as n gets larger that f(n) starts to get very large



COMMONLY USED RATE OF GROWTH 
FUNCTIONS

f(n)  is usually compared with some standard 
mathematical functions, such as:
•log2 n
•n
•n log2n
•n2

•n3

•2n



WHAT IS THE RATE OF GROWTH OF THESE 
STANDARD FUNCTIONS?
Look at different values of  n to see difference 
…. 

n log2 n n log2 n n2 n3 2n

5 2.32 11.60 25 125 32

10 3.32 33.22 100 1000 1024

100 6.64 664.39 10000 1000000 1.27E+30

1000 9.97 9965.78 1000000 1E+09 1.1E+301

10000 13.29 132877.1 1E+08 1E+12 #NUM!



STANDARD FUNCTIONS AND ALGORITHM 
EXAMPLES 

Class Name Algorithm Example & Notes
1 Constant No dependence on n

log n Logarithmic Binary search

n Linear Linear search

n log n Super linear Mergesort, Quicksort

n2 Quadratic Typically an algorithm with a nested loop – with both 
loops iterating over n items. Selection, Insertion and Bubble 
Sort

n3 Cubic Typically an algorithm with 3 nested loops – with all loops 
iterating over n items

2n Exponential Some recursive solutions and pathfinding algorithms

n! Factorial Unusable except for very small n



BIG-O NOTATION

Big-O notation gives a measure of rate of growth in terms 
of upper and lower bounds in comparison to some 
standard functions.

N.B. Ignores coefficients and additive and multiplicative 
constants.
For example: 

n and 2n are considered the same.

n and n + 500 are considered the same.

n2 and 5n2 are considered the same.



MORE FORMALLY:

Given f(n) for some algorithm:

f(n) is O(g(n)) means that it is always possible to find some k such 
that:

f(n) <= k g(n) for n >= 𝑛𝑛0 (large enough n)

k g(n) is an upper bound on f(n)



EXAMPLES:
What is big O (upper bound) for the following 
functions

f(n) = 3n + 8

O(f(n)) is n: O(n)

f(n) = 𝑛𝑛
2

2
+ 10n + 5

O(f(n)) is n2    O(n2) 

f(n) = 2103

O(f(n)) is 1: O(1)



O, Ω, Θ

We can also define similar functions for the lower bound 
(omega Ω) and lower and upper bounds (theta Θ).

Generally concentrate on the upper bound O as:

•knowing the lower bound (Ω) is of no practical importance 
(best case).

•although knowing Θ gives a more exact definition of the 
behaviour (on average) it can be more difficult to 
calculate.



DOMINANCE RELATIONS

Therefore, Big O notation can be used to describe 
the growth rate for any particular algorithm
where the coefficients, additive and multiplicative 
constants of the actual f(n) are of very little 
consequence - what is important is to understand 
the ordering:

n!  >> 2n >> n3 >> n2 >> n log n >> n >> log n >> 1 



Note on POLYNOMIALS: 

Any algorithm whose time complexity is O(nx) when x 
> 1 is said to be of polynomial time order.

Two points on polynomials:

• Grow rapidly - for all practical problems: O(n3) 
algorithm is going to be much worse than an O(n) 
algorithm so in general a linear algorithm (O(n)) is 
better

•However, for small n, polynomial can be better.



FOR EXAMPLE:
f1(n) = 17n + 1250 => f(n) is O(n)

f2(n) = n2 + 1 => f(n) is O(n2)

0
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12000

0 20 40 60 80 100 120

f1(n): O(n) f2(n):O(n2)

f1(n) f2(n)



But what about the constants?
i.e., For Big O, what is k and 𝑛𝑛0 ?

k*g(n)

f(n)



Time

Aside: can also define similar constants 
for lower bound (Ω), and average (Θ)

c*g(n)

f(n)

c1*g(n)

f(n)

c2*g(n)

Ω Θ



EXAMPLES

What is Big O (upper bound) for the 
following functions 

(listing a value for k and 𝑛𝑛0)

1. f(n) = 3n + 8: 

f(n) <= 4n  for n >= 8. 

O(f(n)) is O(n)   k = 4  n0 = 8

2.  f(n) = n4 + 100n2 + 50  

f(n) <= ?

O(f(n)) is ?   k is?  n0 is ?

n f(n)=3n+8 4n

1 11 4

2 14 8

3 17 12

4 20 16

5 23 20

6 26 24

7 29 28

8 32 32

9 35 36

10 38 40

11 41 44

12 44 48

13 47 52



List appropriate values for k and 𝑛𝑛0 for 
the function f(n) = n4 + 100n2 + 50

n f(n)= n4 + 100n2 + 50 2n4

1 151 2
2 466 32
3 1031 162
4 1906 512
5 3175 1250
6 4946 2592
7 7351 4802
8 10546 8192
9 14711 13122
10 20050 20000
11 26791 29282
12 35186 41472

O(f(n)) is O(n4)
k is 2
n0 is 11



NOTE:

For any f(n) we can, picking some g(n) from f(n), 
always find some value for k and 𝑛𝑛0

Therefore, unless we need it for other analysis, we 
do not need to worry about finding the values for 
k and 𝑛𝑛0 (i.e., we know that it exists but we don’t 
need to find it)



GENERAL STEPS TO FIND BIG-O RUNTIME

•Understand what the input is and represent it as 
n

•Find the maximum (worst case) number of time 
steps in the algorithm in terms of n (can ignore 
statements not dependent on n) representing as 
function f(n).
•Eliminate all but the highest order terms in f(n).
•Remove all the constant and multiplicative factors 
in f(n).



CLASS QUESTION:

Given the following function which sums all the values in an integer array 
(arrA[]) with a given size. Perform a time step analysis of the function 
_sumArray() What is Big O (upper bound) for the function? Enter your 
answer in the menti room given.

Line Cost (max) 
numTimes

cost*
numTimes

Total

16

17

18

19

22

f(n) =



Consider another problem that you have 
already seen a solution for (in CT103) … 
Bubble Sort
Inputs: An array arrA with given size with n distinct 
integers in unsorted order

Outputs: An array arrA with n distinct integers in 
increasing sorted order
Process: 
Get one element in correct position: “Bubble” largest 
element up to correct position by traversing array and 
comparing - and moving if necessary - adjacent 
elements.
Keep doing this for all n items



APPROACH 
(“BUBBLING” LARGEST)

for(k = 0; k < size; k++){

for(i = 0; i < size - 1; i++){

if(arrA[i] > arrA[i + 1]){

//out of order so swap values

} //end if

} //end inner for (i loop)

} //end outer for (k loop)



APPROACH 
(“BUBBLING” LARGEST)

for(k = 0; k < size; k++){

for(i = 0; i < size – 1 - k; i++){

if(arrA[i] > arrA[i + 1]){

//out of order so swap values

} //end if

} //end inner for (i loop)

} //end outer for (k loop)



void bubbleSort(int[], int);
See Blackboard for function code



HOW TO CALL FUNCTION bubbleSort() 
WITH SAMPLE DATA?



ALGORITHM ANALYSIS

When should we start and end clock if counting actual 
time?

What are the key operations?

What is the worst case situation?



What is the best and worst case 
situation for bubble sort?



RUNNING CODE:

Modifying code to count: 

•How many comparisons are done

•How many swaps are done

Use two counters:

numSwaps

numCmprs



Adding in counts and clock()
Don’t forget: #include "time.h"



TIME STEP ANALYSIS
Let N = size
Assume worst case

Line Cost numTimes Cost*numTimes Total

21 1 1 1

23 1 N+1 N+1

24 1 ?

25 1 ?

27, 28, 29 
worst case

1+1+1 ?

f(N) = 



Looking more 
closely at line 24:

1st iteration of outer loop (k=0) numTimes of line 24 =  N (checking 0 to N-1-0)

2nd iteration of outer loop (k=1) numTimes of line 24 = N-1 (checking 0 to N-1-1)

3rd iteration of outer loop (k=2) numTimes of line 24 = N-2 (checking 0 to N-1-2)

…  etc.

2nd last iteration of outer loop (k=N-2) numTimes of line 24 = 2 (0 to N-1-(N-2))

Last iteration of outer loop (k=N-1) numTimes of line 24 = 1 (0 to N-1-(N-1))

So adding them all up: 

N + N-1+ N-2 + N-3 + ….+ 2 + 1  = sum of N integers from 1 to N

Formula for sum of N integers is 𝑁𝑁(𝑁𝑁+1)
2

= 𝑁𝑁
2+𝑁𝑁
2

e.g., sum of integers from 1 to 5 (1+2+3+4+5) = 5
2+5
2

= 30
2

= 15



Looking more 
closely at line 25:

Line 25 (if statement) is carried out one less than line 24 so sum is 
from 1 to N-1:

Substituting N-1 for N in 𝑁𝑁(𝑁𝑁+1)
2

gives: 𝑁𝑁−1(𝑁𝑁−1+1)
2

= 𝑁𝑁
2−𝑁𝑁
2

i.e.., if N = 5 at line 24, then line 24 is carried out 25 times (in total) 
but line 25 is carried out : 5

2−5
2

= 20
2

= 10 times in total



EQUIVALENTLY … 

We have a general formula for the sum of N consecutive 
integers, starting at any integer:

Sum = N(firstNum + lastNum)/2

e.g. sum of integers from 2 to 10 (9 integers)
9(2+10) / 2 = (9*12)/2 = 54

From previous analysis of line 25: summing from 1 to N-1 
=

N-1(1 + N-1)/2



TIME STEP ANALYSIS
Let N = size
Assume worst case

Line Cost numTimes Cost*numTimes Total
21 1 1 1

23 1 N+1 N+1

24 1 𝑁𝑁(𝑁𝑁 + 1)
2

𝑁𝑁2 + 𝑁𝑁
2

25 1 𝑁𝑁2 − 𝑁𝑁
2

𝑁𝑁2 − 𝑁𝑁
2

27, 28, 29 
worst case

1+1+1 𝑁𝑁2 − 𝑁𝑁
2 3(𝑁𝑁

2−𝑁𝑁
2

)

f(N) = 5𝑁𝑁
2 −𝑁𝑁
2

+ 2



BIG-O ANALYSIS

As f(N) = 5𝑁𝑁
2 − 𝑁𝑁
2

+ 2 then we say Bubble sort is O(𝑁𝑁2)
where N is the number of values in the array.

There are also a number of other sorting algorithms which 
have O(𝑁𝑁2) time complexity and we will consider these 
next.

However, we will see that Bubble sort is one of the worst 
sorting algorithms we can use for general data.



HOW TO TEST THIS ON LARGER DATA?

We will start working with data from files once you have it 
covered in CT103



SUMMARY
o The complexity of an algorithm M is the function f(n) which gives the 
running time and/or storage space requirement of the algorithm in terms of 
the size n of the input data
o f(n) usually refers to the running time of the algorithm – and can be found 
by time step analysis - by counting time steps in a worst case scenario
o It is the growth of f(n) as n increases that is often interest – and we often 
concentrate on Big O notation
o In all cases, we can distinguish between best, average and worst case 
analysis but we consider worst case mostly.
oAlthough Bubble Sort is never a good choice for a sorting algorithm we 
have covered some important aspects of sorting in this lecture, particularly 
with respect to the analysis of the algorithm and considering worst case 
situations.
oNext we will consider two more O(𝑁𝑁2) sorting algorithms Insertion Sort and 
Selection Sort and also start to work with larger arrays



CT102: ALGORITHMS AND
INFORMATION SYSTEMS

More O(n2) 
Sorting and

Analysis



Recall: Bubble Sort code
void bubbleSort(int[], int);



TIME STEP ANALYSIS
Let N = size
Assume worst case

Line Cost numTimes Cost*numTimes Total

21 1 1 1

23 1 N+1 N+1

24 1 ?

25 1 ?

27, 28, 29 
worst case

1+1+1 ? 3 * 

f(N) = 



Looking more 
closely at line 24:

1st iteration of outer loop (k=0) numTimes of line 24 =  N (checking 0 to N-1-0)

2nd iteration of outer loop (k=1) numTimes of line 24 = N-1 (checking 0 to N-1-1)

3rd iteration of outer loop (k=2) numTimes of line 24 = N-2 (checking 0 to N-1-2)

…  etc.

2nd last iteration of outer loop (k=N-2) numTimes of line 24 = 2 (0 to N-1-(N-2))

Last iteration of outer loop (k=N-1) numTimes of line 24 = 1 (0 to N-1-(N-1))

So adding them all up: 

N + N-1+ N-2 + N-3 + ….+ 2 + 1 = sum of N integers from 1 to N

Formula for sum of N integers from 1 to N is 𝑁𝑁(𝑁𝑁+1)
2

= 𝑁𝑁
2+𝑁𝑁
2

e.g., sum of integers from 1 to 5 (1+2+3+4+5) = 5
2+5
2

= 30
2

= 15



Looking more 
closely at line 25:

Line 25 (if statement) is carried out one less than line 24 so sum is 
from 1 to N-1:

Substituting N-1 for N in 𝑁𝑁(𝑁𝑁+1)
2

gives: 𝑁𝑁−1(𝑁𝑁−1+1)
2

= 𝑁𝑁
2−𝑁𝑁
2

i.e., if N = 5 at line 24, then line 24 is carried out 25 times (in total) 
but line 25 is carried out : 5

2−5
2

= 20
2

= 10 times in total



EQUIVALENTLY … 

We have a general formula for the sum of N consecutive 
integers, starting at any integer:

𝑁𝑁∗(𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑁𝑁𝑓𝑓𝑓𝑓+𝑙𝑙𝑙𝑙𝑓𝑓𝑓𝑓𝑁𝑁𝑓𝑓𝑓𝑓)
2

e.g. sum of integers from 2 to 10 (9 integers)


9∗(2+10)

2
= 9∗12

2
= 54

From previous analysis of line 25: summing from 1 to N-1 
= 𝑁𝑁−1(1+𝑁𝑁−1)

2
= 𝑁𝑁

2− 𝑁𝑁
2



TIME STEP ANALYSIS
Let N = size
Assume worst case

Line Cost numTimes Cost*numTimes Total
21 1 1 1

23 1 N+1 N+1

24 1 𝑁𝑁(𝑁𝑁 + 1)
2

𝑁𝑁2 + 𝑁𝑁
2

25 1 𝑁𝑁2 − 𝑁𝑁
2

𝑁𝑁2 − 𝑁𝑁
2

27, 28, 29 
worst case

1+1+1 𝑁𝑁2 − 𝑁𝑁
2 3(𝑁𝑁

2−𝑁𝑁
2

)

f(N) = 5𝑁𝑁
2 −𝑁𝑁
2

+ 2



BIG-O ANALYSIS

As f(N) = 5𝑁𝑁
2 − 𝑁𝑁
2

+ 2 then we say Bubble sort is O(𝑁𝑁2)
where N is the number of values in the array.

There are also a number of other sorting algorithms which 
have O(𝑁𝑁2) time complexity and we will consider these 
next.

However, we will see that Bubble sort is one of the worst 
sorting algorithms we can use for general data.



SELECTION SORT
Searches entire array and finds (selects) the 
largest/smallest element and puts is where it belongs 
 e.g., smallest belongs in A[0] for array A.

Searches the array looking for the second largest/smallest 
and puts it where it belongs 
 e.g., for 2nd smallest in A[1] for array A

Searches the array looking for the third largest/smallest 
and puts it where it belongs 
 e.g., for 3rd smallest in A[2] for array A

etc.



EXAMPLE: SORT THE FOLLOWING DATA USING SELECTION 
SORT

33 12 70 21 -3 34A

0 541 2 3



ALGORITHM OUTLINE

Input: Array A of integers with given size

Output: Array with data sorted in increasing order

Approach (finding smallest)

for (i = 0; i < size - 1; i++){

min = 

// find location of smallest value in range i to size-1

// swap values at A[min] and A[i]

}



HOW TO FIND MINIMUM?
Considered in Worksheet 2, Question 5:

“Given an integer array, arrA[], and its size (size) write an algorithm 
(code) in C to find the smallest integer in the array, printing out the 
integer and its position in the array. You may assume that all values in 
the array are distinct (i.e., there is only one smallest value).”

33 12 70 21 -3 34arrA

0 541 2 3



Modifying previous for Selection Sort:
We will write this as part of the Selection sort function for 
now to make the timestep analysis easier (i.e. not as its own 
function)

We want to keep finding “new” minimums until we have 
finished sorting, from i = 0 to size - 1

min = i; // for some i
//find next smallest
for (j = min + 1; j < size; j++) {

if (arrA[min] > arrA[j]) {
min = j;

}
} // end j for
return(min);
}

33 12 70 21 -3 34arrA

0 541 2 3



SELECTION SORT
void selectionSort(int[], int);

33 12 70 21 -3 34arrA

0 541 2 3



TIME STEP ANALYSIS: 
SELECTION SORT:

Let N = size of array
Assume worst case - values always out of order

Line Cost Num Times Cost*Num Times Total

33 1 1

35 1 N

36 1 N-1

38 1 ?

39 1 ?

40 1 ?

45, 46, 47, 48 4 N-1



CONSIDER LINE 38:

When i = 0 (min = 0), j = 1, the condition (j < size) is checked N times

When i = 1 (min = 1), j = 2, the condition (j < size) is checked N-1 times

When i = 2 (min = 2), j = 3, the condition (j < size) is checked N-2 times

When i = size-2, j = size-1, the condition (j < size) is checked twice

So adding all these up: 

N+N-1+N-2 + ….. + 2 = (sum of integers from 2 to N):
𝑁𝑁−1(2+𝑁𝑁)

2
= 𝑁𝑁

2+𝑁𝑁
2

- 1



CONSIDER LINE 39:
if  statement

Line 39 (if statement) iterates once less than line 38 for each time j loop 
iterates:

i = 0, j = 1, line 38 checked N times, so Line 39 checked N-1 times

i = 1, j = 2, line 38 checked N-1 times, so Line 39 checked N-2 times

i = 2, j = 3, line 38 checked N-2 times, so Line 39 checked N-3 times

….

i = size-2, j = size-1, line 38 checked twice, so Line 39 checked once

So summing up: N-1+ N-2 …. +2 + 1 =𝑁𝑁−1(1+ 𝑁𝑁 −1)
2

= 𝑁𝑁2− 𝑁𝑁
2



CONSIDER LINE 40

If we assume the condition arrA[min] > arrA[j] is always true at 
Line 39 then Line 40 will also take 𝑁𝑁

2−𝑁𝑁
2

timesteps.



Line Cost Num Times Cost*Num Times

33 1 1 1
35 1 N N
36 1 N-1 N-1
38 1 𝑁𝑁2+𝑁𝑁

2
- 1 𝑁𝑁2+𝑁𝑁

2
- 1

39 1 𝑁𝑁2−𝑁𝑁
2

𝑁𝑁2−𝑁𝑁
2

40 1 𝑁𝑁2−𝑁𝑁
2

𝑁𝑁2−𝑁𝑁
2

45, 46, 47, 48 4 N-1 4(N-1)

f(N) = ?

YOU TRY …. 
PUTTING IT ALL TOGETHER

Handy algebraic 
expression  solver:

http://www.webmath.c
om/anything.html



BIG-O ANALYSIS

Selection sort is also O(𝑁𝑁2) where N is the number of 
values in the array.



Where do we need to add code to count 
comparisons and swaps?

What line(s) are comparisons happening at? Where will we count them?

What line(s) are swaps happening at? Where will we count them?



INSERTION SORT

Scans elements in a list inserting each element into its 
proper position in the previously sorted list.

Steps (sorting items in an array):

•Consider first 2 elements in array and if out of order, sort 
those 2 (relative to each other)

•Consider 3rd element and if out of order, sort the first 
three elements relative to each other

•At each stage, consider new element and insert it in its 
correct position in the previously sorted sub-array



EXAMPLE: 
SORT THE FOLLOWING DATA USING INSERTION SORT

33 12 70 21 -3 34arrA

0 541 2 3



ALGORITHM OUTLINE

Input: Array arrA[] of integers of given size

Output: Array with data sorted in increasing order

Approach:

Start at position i=1 and let curr = arrA[i]

Compare curr with item at position i-1

If curr is out of order, find the correct position for curr in 
previously sorted sub-array

As you are finding correct position “Make room” for curr so 
that it can be inserted in the correct position (i.e. move values 
up by one)

Note: Must stop comparing when we reach position 0



ALGORITHM OUTLINE

// Given array arrA[] with size, of type integer; integer i

int i, j, curr;

for (i = 1; i < size; i++) {

curr = arrA[i];

for (j = i - 1; j >= 0 && curr < arrA[j]; j--) {  
//move ("make room")

arrA[j + 1] = arrA[j];

}

//place curr

}



ALGORITHM OUTLINE

// Given array arrA[] with size, of type integer; integer i

int i, j, curr;

for (i = 1; i < size; i++) {

curr = arrA[i];

for (j = i - 1; j >= 0 && curr < arrA[j]; j--) {  
//move ("make room")

arrA[j + 1] = arrA[j];

}

//place curr

}



Finding correct position

Two cases are checked in j loop to find correct position 
for curr:

o find some element in array at position j which is less than 
curr:

curr < arrA[j] not true

or

o have reached the start of the array (i.e. at 0) and curr
must be inserted there (at position 0), i.e., j >= 0 not true



In addition, must “make room” as we compare so that when 
we find the correct position we can add it without having to 
do extra work:

If currently comparing curr to value at arrA[j], then:
Let arrA[j + 1] = arrA[j] until correct position found for curr



INSERTION SORT
void insertionSort(int[], int);

33 12 70 21 -3 34arrA

0 541 2 3



INSERTION SORT
TIME STEP ANALYSIS: 
Let N= size of  array
Assume worst case …

Line Cost Num Times Cost*Num Times Total

32 1 1

34 1 ?

35 1 ?

37 1 ?

39 1 ?

42&43 2 ?



for loop at 
line 37:

Worst case: curr always belongs at arrA[0]:

when i = 1, j = 0, line 37 checked twice (once true, once not)

when i = 2, j = 1, line 37 checked 3 times

when i = 3, j = 2, line 37 checked 4 times

….

when i = N-1, j = N-2, line 37 checked N times

So adding all these up: N+N-1+N-2 + ….. + 2 = 𝑁𝑁−1(2+𝑁𝑁)
2

= 𝑁𝑁
2+𝑁𝑁
2

- 1



LINE 39: MOVING

Line 39 iterates 1 less for each new j value in while loop:

when i = 1, j = 0, line 37 checked twice, so Line 39 occurs once

when i = 2, j = 1, line 37 checked 3 times, so Line 39 occurs twice

when i = 3, j = 2, line 37 checked 4 times , so Line 39 occurs 3 times

….

when i = N-1, j = N-2, line 37 checked N times, so Line 39 occurs N-1 times

So adding all these up: N-1+N-2 + ….. + 1  = 𝑁𝑁−1 (1 +𝑁𝑁 −1)
2

= 𝑁𝑁2−𝑁𝑁
2



PUTTING IT ALL 
TOGETHER: 

Line Cost Num Times

32 1

34 1

35 1

37 1

39 1

42&43 2



BIG-O ANALYSIS

Insertion sort is also O(𝑁𝑁2) where N is the number of 
values in the array.

However we can see differences in terms of comparisons 
and swaps … 



Where do we need to add code to count 
comparisons and swaps?

What line(s) are comparisons happening at? Where will we count 
them?

What line(s) are swaps happening at? Where will we count them?



Sorting 1000 integers
Some results for a “typical” run (all sorting the 
same integers)



WHAT DOES THE DATA LOOK LIKE?

For a 1000 “random” integer numbers-
Good mixed distribution
Were not sorted



QUESTIONS

1. Would you expect performance to be different if:

Integers in file were already sorted

Integers in file were sorted in descending sorte d order?

2. When you add code to count steps and comparisons should the time step 
analysis be updated to include the new code?



SUMMARY

Bubble, Selection and Insertion Sort are similar 
types of sorting algorithms – they work by 
comparing and swapping/moving data - and are 
characterised by a nested loop that gives a 
quadratic function dependent on N, the number of 
values to sort.



CT102: 
ALGORITHMS

Parallel Arrays
& Merging 
Sorted Arrays



PARALLEL ARRAYS

Parallel arrays refer to multiple arrays of the same size 
used to store records.

A separate array, with data of the same type, is used for 
each field of the record. 

Each array must have the same size but may have 
different data types.

Values for a record are located at the same index value 
in each array.



MOTIVATION

Consider the case where you want to hold different types of data 
for the same occurrence:

For example:
Name and assignment marks per student in a class.
Average, minimum, maximum and stdev per exam in a year.

With parallel arrays we can imagine data relating to something 
of interest in a ‘column’ of array entries.

An index value can access the same locations in different arrays, 
e.g. location 0, 1, 2, etc.



EXAMPLE:

Data held on students is: 
name, id, examScore

with 
name a string, 
id an integer
examScore an integer

If using arrays, then can use 3 parallel arrays to hold this 
information … 



EXAMPLE: 3 Parallel arrays to hold name, id and 
exam score

For an individual student:
 name[i] gives student name
 id[i] gives the corresponding id of that student
 examScore[i] gives the corresponding exam score of that student

e.g,
 name[1] is student named Sam, his id can be found at id[1] (432) 
and his exam score can be found at examScore[1] (65)

Julie Sam Ron Ann

123      432 35 415 515id

examScore

name

686540 70 85

Sue



STEPS WHEN CREATING PARALLEL ARRAYS

Declare each array, specifying names, data types 
and size:
The size of all arrays should be the same
Data types of arrays can be different

Populate the arrays in parallel, i.e., put values into 
each array at location 0, location 1, location 2, etc. 



IN C:

int i;

int size = 5;

char *names[] = {"Julie","Sam","Ron","Ann","Sue"};

int id[] = {123, 432, 35, 415,515};

int examScore[] = {40, 65, 68, 70, 85};

for (i = 0; i < size; i++) {

printf("Name: %s, ID: %d, Exam Score: %d \n",

names[i], id[i], examScore[i]);

}



MERGING SORTED ARRAYS

Given two sorted lists of data (possibly with duplicate 
values) merging involves combining the values from both lists, 
in sorted order, into a single sorted list.



INPUTS, OUTPUTS AND ASSUMPTIONS

Inputs:

Sorted array arrA[] of size sizeA, unique values

Sorted array arrB[] of size sizeB, unique values

Outputs:

Sorted array arrC[] of size sizeC containing data from 
arrA[] and arrB[], unique values

Assumptions:

Duplicates are not included in arrC[], i.e. each value is 
only present once

Note: Can easily modify code to include duplicates later.



2 4 12 14

1 12 17 19 29

arrA

arrC

arrB

24

EXAMPLE:
What values are in arrC[]?

44 49



INDEXING 3 ARRAYS

Maintain 3 indexes - one for each array:
i is index for arrA
j is index for arrB
k is index for arrC

i and j represent the index of the next values to be 
compared in the arrays to merge.

k represents the next position to be filled in the new 
array arrC

Size of arrC?
 Can be no larger than sizeA + sizeB



STEPS:

while not at the end of arrA and ArrB compare 
arrA[i] and arrB[j] putting smallest into arrC[k]

increment i, j and k appropriately.

if at end of arrA and there are values left in arrB, put 
values from arrB into arrC (incrementing j and k)

else if at end of arrB and there are values left in 
arrA, move values from arrA into arrC (incrementing 
i and k)



GETTING STARTED…. 

void merge (int arrA[], int sizeA, int arrB[], int sizeB) {

int i, j, k;

int sizeC;

i = j = k = 0;



GETTING STARTED…. 

// Setting size of C

sizeC = sizeA + sizeB;

// declare arrC of size sizeC using malloc (memory allocation)

int *arrC;

arrC = (int*) malloc(sizeC * sizeof(int));  



COMPARING …. 



FINISHED COMPARING …. 



TIME STEP ANALYSIS
let P = sizeA and M = sizeB

Line Cost Num Times Cost*Num Times Total

10, 11, 13, 14, 
17, 18

6 1 each 6

20 1 P+1 or M+1
Assume P+1 
without loss 
of 
generality

P+1

22 or 22 & 27
or 22, 27 & 32

3 P times 3P

23, 24, 25
or 28, 29, 30
or 33, 34, 35, 
36

4 P times 4P

8P+7



TIME STEP ANALYSIS ctd.

Line Cost Num Times Cost*Num Times Total

(previous) 8P + 7

43 or 
43 and 52

2 1 2

45 or 54
(only one)

1 M-j + 1
Assume j = 0 
worst case

M+1

46, 47, 48
(or
55, 56, 57)

3 M-j
Assume j = 0 
worst case

3M

60 1 1 1 1

8P+4M+11

O(P+M)



Modifications needed if  we have non 
unique values in each array and want to 
keep all duplicates?

Delete Lines 32 to 36

Change operator to <=

Keep remaining code

Same code at start



HOW DOES TIME STEP ANALYSIS DIFFER?
Line Cost Num Times Cost*Num Times Total

10, 11, 13, 14, 
17, 18

6 1 each 6

20 1 P+1 or M+1
Assume P+1 
without loss 
of 
generality

P+1

22 or 22 & 27
or 22, 27 & 32

2 P times 2P

23, 24, 25
or 28, 29, 30
or 33, 34, 35, 
36

3 P times 3P

6P+7



TIME STEP ANALYSIS ctd.

Line Cost Num Times Cost*Num Times Total

(previous) 6P + 7

43 or 
43 and 52

2 1 2

45 or 54
(only one)

1 M-j + 1
Assume j = 0 
worst case

M+1

46, 47, 48
(or
55, 56, 57)

3 M-j
Assume j = 0 
worst case

3M

60 1 1 1 1

6P+4M+11

O(P+M)



SUMMARY

We often want to keep data in sorted order (so that a binary search 
can be performed more efficiently than a linear search)

However we must also be able to easily add data to our sorted data 
(i.e., maintaining the sorted order).

One way to do this is to add new data to a temporary file (adding it 
in sorted order, or sorting after it has been added), and then merge 
this sorted data with the existing sorted data … for this we need a 
merge algorithm.

Because Big-O is linear (O(P+M)) this is always better than merging 
the data in unsorted order and re-sorting it.



CT102: ALGORITHMS
Topic:
Counting 
Positive 
Integers



COUNTING

Many complex systems are built on components that involve 
counting

For example, some data mining approaches, search engines (as 
seen with tf*idf), information entropy and information gain, 
compression techniques (as seen with frequencies), etc.

In general, counting involves finding the number of occurrences, 
or frequency, of one or more items, or groups of items, in a 
collection.



YOU TRY … 
Counting integers in arrays

Given an array arrA[] of size N, containing (unsorted) 
positive integer values in the range [0-6] write a function 
to count the frequency of each integer in the array:

For example,
arrA[15] = {1, 1, 1, 2, 2, 4, 3, 1, 1, 6, 5, 4, 1, 1, 6};



APPROACH 1 
Check each value and update appropriate count 



Approach 1 is not very efficient!
Alternatives?
Approach 2: Don’t loop for each value – can check for 
each value within one loop and update appropriate 
count, e.g. count0, count1, count2, etc.



Approach 2 is not very efficient! Especially 
if  we are counting many different values
Alternatives?

Approach 3 We can use an integer array (count[]) to keep 
track of the counts for us as we loop through array (or file). In 
the case of counting positive integers:
 Index position 0 holds count of 0s
 Index position 1 holds count of 1s
 Index position 2 holds count of 2s

 etc.

The size of this array will be dictated by how many distinct 
values nee to be counted.

All locations in the array must be initialised to 0 at start



EXAMPLE: using array count[] to hold 
counts

arrA[15] = {1, 1, 1, 2, 2, 4, 3, 1, 1, 6, 5, 4, 1, 1, 6};

0 0 0 0 0 0 0
0 1 2 3 4 5 6

count[]

Initially: 

After counting: 

0 7 2 1 2 1 2
0 1 2 3 4 5 6

count[]

i.e., 
count[0] will contain the number of times 0 occurs in arrA[] (0)

count[1] will contain the number of times 1 occurs in arrA[] (7)

count[2] will contain the number of times 1 occurs in arrA[] (2) etc.



APPROACH 3 ADVANTAGES

A more important advantage of approach 3 is that we do not need an if 
statement to explicitly check if we have a 0 or a 1 or a 2 etc.

How to count then?

The value in the original array (arrA[]) becomes the index value of the 
counting array (count[]):

•When value is 0 in arrA[], go to index position 0 in count[], update: 
++count[0]

•When value is 1 in arrA[], go to index position 1 in count[], update count
++count[1]

•When value is 2 in arrA[], go to index position 2 in count[], update count
++count[2]

• At each stage: ++count[arrA[i]]



ARRAY count[]

Consider example again …
arrA[15] = {1, 1, 1, 2, 2, 4, 3, 1, 1, 6, 5, 4, 1, 1, 6};



EXAMPLE:
arrA[15] = {1, 1, 1, 2, 2, 4, 3, 1, 1, 6, 5, 4, 1, 1, 6};

0 0 0 0 0 0 0
0 1 2 3 4 5 6

count[]

Initially:

i arrA[i] ++count[ arrA[i] ] Value at count[ arrA[i] ]

0 arrA[0] is 1 ++count[ arrA[0] ]
++count[1]

1

1 arrA[1] is 1 ++count[ arrA[1] ]
++count[1]

2

2 arrA[2] is 1 ++count[ arrA[2] ]
++count[2]

3

3 arrA[3] is 2 ++count[ arrA[3] ]
++count[2]

1

4 arrA[4] is 2 ++count[ arrA[4] ]
++count[2]

2

etc



WORKSHEET QUESTIONS

Array indexes:

Given the following arrays: arrA[] and freq[]:

arrA[10] = {4, 5, 4, 3, 0, 1, 4, 5, 5, 4};

freq[6] = {0, 0, 0, 0, 0, 0};

What value do each of the following have?

arrA[2]

freq[2]

arrA[ freq[2] ]

++arrA[ freq[2] ]

++freq[ arrA[1] ]



UPDATING count[] with
++count[ arrA[i] ];

++count[arrA[i]] works IF and ONLY IF:

•arrA[] stores positive integers (but can be modified 
for negative integers)

•count[] has the correct size so that any potential 
value in arrA[] has a corresponding index in 
count[]



WHAT IS THE SIZE OF count[]?

For positive integers, the size of count[] must be one more 
than the largest value we are counting (i.e. the max value in 
arrA[]) so that there is an index for this max value

e.g., 

if max value is 100 then count[] must be of size 101

In previous example, max value was 6 so size of count[] is 7

We need to be able to dynamically create the array count[]
with the correct size.



BACK TO CODE FOR COUNTING:
GIVEN ARRAY arrA[] OF SIZE size WITH 
POSITIVE INTEGERS:

1. Find maxVal (max value in arrA[])

2. Declare and initialise (to 0) an array count[maxVal + 1] 
which will hold the counts for each integer in arrA[].

3. Loop from i = 0 to size-1 inclusive and at each stage update by 
1 the location arrA[i] in count[]:

++count[ arrA[i] ];

no “if”  
required



APPROACH 3:
I am going to use the name freq[] for the array that holds 
the counts – it is of  size freqSize



Declaring freq[] given maxVal, 
the maximum value

Use malloc() to dynamically set the size of the array:

// assuming you have found maxVal

int *freq;

int freqSize;

freqSize = maxVal + 1;

freq = (int*)malloc(freqSize * sizeof(int));   //create



FULL FUNCTION



APPROACH 3 
Timestep analysis 
and Big-O analysis
(Ignore output – lines 51&52)
Let N = size
maxVal is maximum value in arrA[]

Line Cost numTimes Cost*numTimes Total

31-33
35,36

5 1 5

40 1 maxVal + 2 maxVal + 2

41 1 maxVal + 1 maxVal + 1

45 1 N + 1 N + 1

46 1 N N 

F(N) = 2N + 2maxVal + 9

Big-O: O(N + maxVal)



How to find maxVal?

This will require another scan of arrA[] (all N elements) but this will 
also be O(N) so will not affect the linear time complexity overall

We have seen the code for finding the minimum value previously (as 
part of Selection Sort), so will need to modify this slightly to find the 
maximum value, if it is not already known.



MODIFICATIONS

• Consider how/if the algorithm can be modified if the minVal is much 
greater than 0, e.g.,                       

arrA[8] = {40, 50, 40, 30, 80, 50, 40, 50};

• Consider how/if the algorithm can be modified to count both 
negative and positive integers, e.g.,

arrA[8] = {-4, -10, 0, -4, -2, 0, -2, 10};



APPLICATIONS
Can you solve the following problems in linear order 
time complexity?

Given an array of N integers in unsorted order with mostly
unique values and values are in the range [0-100]. Write 
an algorithm which will find and print the any value that is 
present more than once.

Given an array of N integers in the range [0-100] and in 
unsorted order, write an algorithm to check whether all 
values in the array are unique. 



SUMMARY

• If you have a small range then counting integers can be 
done very efficiently using an integer array to keep track 
of counts (other ways to store counts include hash maps 
and dictionaries)

• This forms the basis of the next sorting algorithm we will 
consider … countSort



TOPIC:
COUNTING AND COUNT SORT CT102: 

Algorithms



RECALL: Counting
If you have a small range (maxVal is small and minVal is 0) then counting N 
positive integers can be done very efficiently using an integer array to keep 
track of the counts: O(N + maxVal)



MODIFICATIONS

• Consider how/if the algorithm can be modified if the minVal is much greater than 0, e.g.,                       

arrA[8] = {40, 80, 30, 41, 52, 52, 41, 52};

• Consider how/if the algorithm can be modified to count both negative and positive integers, 
e.g.,

arrA[8] = {-4, -10, 0, -4, -2, 0, -2, 10};



SOLUTION
To work with negative integers (or to work with positive integers in a non-0 based range) we 
need to know both the minVal and the maxVal. 

The idea then is to store the minVal at index 0 and to offset the location of all other values
based on this minVal.

The size of freq will be  maxVal - minVal + 1
 freq[0] will store the count of the minVal
 freq[freqSize-1] will store the count of the maxVal

For any integer in arrA[], the associated location in freq[] will be:

arrA[i] - minVal

0 1 2 3 4 5 6 7 8 9

freq[]



EXAMPLE WITH POSITIVE & NEGATIVE INTEGERS
arrA[8] = {-4, -10, 0, -4, -2, 0, -2, 10};

In the above example, the minVal is -10 and the maxVal is 10 i.e., the range of 
integers is [-10, 10] then:

freqSize = 10-(-10)+1 = 21

At each stage: ++freq[arrA[i] – minVal]

When i=0 arrA[i] = -4 =>  ++freq[-4 --10] => ++freq[6] 

When  i=1 arrA[i] = -10 => ++freq[-10 --10] => ++freq[0] 

When  i=2 arrA[i] =  0  => ++freq[0 --10] => ++freq[10] 

etc.

0 1 2 3 4 5 6 7 8 9
freq[]

10 11 12 13 14 15 16 17 18 19 20

1
0 1 2 3 4 5 6 7 8 9

1 1
0 1 2 3 4 5 6 7 8 9

1
10 11 12 13 14 15 16 17 18 19



NON-ZERO BASED POSITIVE RANGE
? Question … why bother with this?

arrA[8] = {40, 80, 30, 41, 52, 52, 41, 52};

In the above example, the minVal is 30 and the maxVal is 80 i.e., the range of 
integers is [30, 80] then:

freqSize = 80-(30)+1 = 51

At each stage: ++freq[arrA[i] – minVal]

When i=0 arrA[i] = 40 => ++freq[40 - 30] => ++freq[10] 

When  i=1 arrA[i] = 80 => ++freq[80 - 30] => ++freq[50] 

When  i=2 arrA[i] = 30  => ++freq[30 - 30] => ++freq[0] 

etc.

0 1 2 3 4 5 6 7 8 9

freq[]
10 11 12 13 14 15 16 17 18 19 50

……



CHANGES NEEDED TO FUNCTION?

1. Function definition: 

void countSortRange(int arrA[], int size, int minVal, int maxVal) {  

2. The size of array freq[]: 

freqSize = maxVal - minVal + 1;

3. Counting

++freq[arrA[i] - minVal];



APPLICATIONS

1. Given an array of N integers in unsorted order with mostly unique values and values are in 
the range [0-100]. Write an algorithm which will find and print the any value that is present 
more than once.

2. Given an array of N integers in the range [0-100] and in unsorted order, write an 
algorithm to check whether all values in the array are unique. 



1. Given an array of  N integers in unsorted order with mostly unique values and 
values are in the range [0-100]. Write an algorithm which will find and print any
value that is present more than once.

Solution: 

All integers are positive and the maxVal value passed should be 100

Previous solution will work up to line 51

When printing out values, or storing them, (line 52) only want to print/store 
duplicates:

//output repeating values

for(i = 0; i < freqSize; i++) {

if (freq[i] > 1) {

printf("\n Number %d occurs %d times", i, freq[i]);

}

}



2. Given an array of  N integers in the range [0-100] and in unsorted order, write 
an algorithm to check whether all values in the array are unique. 

Solution: 

Previous solution will work up to line 51 but may want to re-write as 
a function which will return a Boolean (true for unique), false 
otherwise:
bool isUnique(int arrA[], int size, int maxVal){

Modify code to check if all values in freq[] are either 0 or 1 
//check for any non-unique value

bool isUnique = true;

for(i = 0; i < freqSize && isUnique; i++) {

if (freq[i] > 1) {

isUnique = false;

}

}



NOTE:

As isUnique() will be false 
once we find any repeated 
number, we do not need to do 
a full scan of freq[] and can 
incorporate the new code in to 
the counting.



New Problem: Given an array of  non-unique N integers in 
unsorted order, write an algorithm to sort the integers.

Idea:

If we know the frequency of each value, we can figure out where the value belongs in the sorted 
array.

For example, if we know that 0 occurs 5 times, then the first 5 locations (locations 0, 1, 2, 3 and 4) in 
the sorted array are 0. 

However, if possible we want to avoid using a nested loop or an if statement when we place items 

New Idea:

If we have the freq of the number of values <= any value in the array we can place the current 
value in index position one less than this and decrement the freq

For example, if we come across a 0 in the original array and know that there are 5 values <= 0, 
then the 0 we are at can be placed in position 4 and decrement freq to 4

Next time we come across a 0 in the original array we see that there are now 4 values <= 0, and 
we can place the next 0 in position 3



TOPIC:
COUNTING AND COUNT SORT CT102: 

Algorithms



RECALL: Counting
If you have a small range (maxVal is small and minVal is 0) then counting N
positive integers can be done very efficiently using an integer array to keep 
track of the counts: O(N + maxVal)



Problem Statement: Given an array of  non-unique N 
integers in unsorted order, write an algorithm to sort the 
integers.

Idea:

If we know the frequency of each value, we can figure out where the value belongs in the sorted 
array.

For example, if we know that 0 occurs 5 times, then the first 5 locations (locations 0, 1, 2, 3 and 4) in 
the sorted array are 0. 

However, if possible we want to avoid using a nested loop or an if statement when we place items 

New Idea:

If we have the freq of the number of values <= any value in the array we can place the current 
value in index position one less than this and decrement the freq

For example, if we come across a 0 in the original array and know that there are 5 values <= 0, 
then the 0 we are at can be placed in position 4 and decrement freq to 4

Next time we come across a 0 in the original array we see that there are now 4 values <= 0, and 
we can place the next 0 in position 3



EXAMPLE:
Given arrA[] = {1, 2, 1, 3, 2, 4, 6, 1, 1, 6};

0 4 2 1 1 0 2
0 1 2 3 4 5 6

0 0 0 0 0 0 0
0 1 2 3 4 5 6

0 4 6 7 8 8 10
0 1 2 3 4 5 6

freq[] freq[]

freq[]

Number of values <= 0 is 0

Number of values <= 1 is 4  = freq[1] + freq[0] and update freq[1]

Number of values <= 2 is 6  = freq[2] + freq[1] and update freq[2]

Number of values <= 3 is 7 = freq[2] + freq[1] and update freq[3]

etc.



HOW CAN WE USE THIS TO SORT?
Given arrA[10] = {1, 2, 1, 3, 2, 4, 6, 1, 1, 6};

0 4 6 7 8 8 10
0 1 2 3 4 5 6

freq[]

Starting at index 0 in arrA[] and traversing to end of arrA[]:
arrA[0] = 1, Number of values <= 1 is 4  so arrB[3] = 1 and --freq[1], it is now 3
arrA[1] = 2, Number of values <= 2 is 6  so arrB[5] = 2 and --freq[2], it is now 5
arrA[2] = 1, Number of values <= 1 is ?  so arrB[?] = 1 and --freq[1], it is now ?
arrA[3] = 3, Number of values <= 3 is 7  so arrB[6] = 3 and --freq[3], it is now 6
arrA[4] = 2, Number of values <= 2 is ?  so arrB[?] = 2 and --freq[2], it is now ?

0 1 2 3 4 5 6 7 8 9
arrB[]



WHAT IS HAPPENING AT EACH STAGE?
Given arrA[10] = {1, 2, 1, 3, 2, 4, 6, 1, 1, 6};

value = arrA[i];                //value to sort
count = freq[value];            //<= freq of value    
arrB[count - 1] = value;        //place in arrB
--freq[value];                  //update <= count

0 4 6 7 8 8 10
0 1 2 3 4 5 6

freq[]

arrB[]
0 1 2 3 4 5 6 7 8 9



FINDING CORRECT POSITION FOR EACH VALUE:
int arrA[10] = {1, 2, 1, 3, 2, 4, 6, 1, 1, 6};

When i = 0:

value = arrA[i]: value = arrA[0] = 1

count = freq[value]: count = freq[1] = 4

arrB[count-1] = value: arrB[3] = 1

--freq[value]: freq[1] is 3

0 4 6 7 8 8 10
0 1 2 3 4 5 6

freq[]

1
0 1 2 3 4 5 6 7 8 9

arrB[]

0 3 6 7 8 8 10
0 1 2 3 4 5 6

freq[]



FINDING CORRECT POSITION FOR EACH VALUE:
int arrA[10] = {1, 2, 1, 3, 2, 4, 6, 1, 1, 6};

When i = 1:

value = arrA[1]: value = arrA[1] = 2

count = freq[value]: count = freq[2] = 6

arrB[count-1] = value: arrB[5] = 2

--freq[value]: freq[2] is 5

0 3 6 7 8 8 10
0 1 2 3 4 5 6

freq[]

1 2
0 1 2 3 4 5 6 7 8 9

arrB[]

0 3 5 7 8 8 10
0 1 2 3 4 5 6

freq[]



FINDING CORRECT POSITION FOR EACH VALUE:
int arrA[10] = {1, 2, 1, 3, 2, 4, 6, 1, 1, 6};

When i = 2:

value = arrA[2]: value = arrA[2] = 1

count = freq[value]: count = freq[1] = 3

arrB[count-1] = value: arrB[2] = 1

--freq[value]: freq[1] is 2

0 3 5 7 8 8 10
0 1 2 3 4 5 6

freq[]

1 1 2
0 1 2 3 4 5 6 7 8 9

arrB[]

0 2 5 7 8 8 10
0 1 2 3 4 5 6

freq[]



COUNT SORT:
Inputs and Outputs

Inputs:

Array arrA[] of size N with n positive integer values in the range 0 - k.

Outputs:

Array arrB[] (same size as arrA[]) to hold the sorted values (originally empty). 
(** Note need this additional array to hold the sorted data)
Assumptions:

(Strong!) assumption: integer data

Initially we will assume the data is positive but negative integers can also be  
easily sorted with a small adjustment/offset

NOT 
general 
purpose 
sorting 

technique



Count Sort Steps:
1. Find maxVal as before, if not given

2. Create freq[maxVal+1] to hold count of each number in arrA[] as before

3. [new] Modify freq[] to hold the number of elements which are less than or equal 
to each value arrA[i]. For i >= 1:

freq[i] = freq[i] + freq[i-1]

4. Sort: For i from 0 to end of arrA[]:

value = arrA[i]; //value to sort

count = freq[value];            //<= freq of value
arrB[count-1] = value;          //place in arrB
--freq[value];                  //update counts



C CODE FRAGMENTS
//count

for(i = 0; i < size; i++) {

++freq[ arrA[i] ];

}

//get <= in freq[]

for(i = 1; i < freqSize; i++) {

freq[i] = freq[i] + freq[i - 1];

}

// place values from arrA into arrB; update freq[]

for(i = 0; i < size; i++) {

value = arrA[i];         //value to sort

count = freq[value];     //<= freq of value

arrB[count-1] = value;   //place value in arrB

--freq[value];           //decrement freq[]

} //next value in arrA



NOTE:
no need for extra variables count and value but they 
increase readability

Alternative:

// place values from arrA into arrB; update freq[]

for(i = 0; i < size; i++) {

arrB[ freq[ arrA[i] ] - 1] = arrA[i]; 

--freq[arrA[i]];        

}



FINAL STEP: Write back values to arrA[]

Remember arrA[] remains unsorted up to this point and arrB[] contains the 
sorted data.

//write back sorted values to arrA[] now that sorting is finished

for (i = 0; i < size; i++) {

arrA[i] = arrB[i];

}



void countSort(int[], int, int);



TIME STEP ANALYSIS:
Let N = size Let K = freqSize (maxVal+1)

Line Cost Num Times Cost*Num Times

32-39 6 1 6

42 1 K+1 K+1

43 (initialise freq) 1 K K

47 1 N+1 N+1

48 (count) 1 N N

52 1 K K

53 (calculate <=) 1 K-1 K-1

57 1 N+1 N+1

58-61 4 N 4N

65 1 N+1 N+1

66 (write back) 1 N N

TOTAL 9N + 4K + 9

Big-O O(N + K)

Dependent on size 
of original array 
and maxVal – the 
smaller maxVal the 

better



Time taken? 
Number of  comparisons and swaps?

Will be quick relative to other Sorting techniques

Number of comparisons and swaps?



ADDITIONAL QUESTIONS/WORK

1. Consider how you might modify the algorithm to count both positive and 
negative integers.

2. Add additional code to test countSort() with a larger file

3. Add additional code to check the actual running time of countSort()

4. Are there any benefits to be gained if the data is already sorted or 
partially sorted?



COUNT SORT FOR NEGATIVE INTEGERS
To w rk with negative integers we need to know both the minVal and the maxVal. 

The size of freq will be  maxVal-(minVal)+1

freq[0] will store the count of the minVal

freq[freqSize-1] will store the count of the maxVal

For example, if the minVal is -5 and the maxVal is 4 (i.e., the range of integers is [-5, 4] then:

freqSize = 4-(-5)+1 = 10

freq[0] stores the count of -5

…..

freq[9] stores the count of 4

0 1 2 3 4 5 6 7 8 9

freq[]



CHANGES NEEDED TO CODE:

// declaring freqSize

freqSize = maxVal - minVal + 1;

//counting

for(i = 0; i < size; i++) {

++freq[arrA[i] - minVal];

}

//sorting and updating freq

arrB[freq[arrA[i] - minVal] - 1] = arrA[i]; 

--freq[arrA[i] - minVal];



PUTTING IT ALL TOGETHER? … YOU TRY …. 



Summary

Count Sort is the best Sorting technique we have seen so far – linear order complexity 
- O(N+K)

But … can only be used with integer data and need to know maxVal (and minVal
potentially) – all other approaches can be used with any data type and do not need 
to know range of data in advance.

Not a comparison algorithm like the other three sorting algorithms we have 
considered.

Not an in-place algorithm like the other three sorting algorithms we have considered -
Uses two extra arrays – one to hold the frequencies and a second to hold the sorted data.



TOPIC: 
PROBLEM SOLVING WITH 

RECURSION
CT102 
Algorithms



RECURSION

Recursion means a 
reference to itself



“Reference 
to itself”

Drawing Hands
Esher, 1948



“Reference to itself”

From: http://symmetry-us.com/Journals/bridges2005/burns/index.html



RECURSION* –
Computing Definition:

Functions (and procedures) whose definition 
involves a reference to themselves (a call to 
themselves)

Specifically:

A recursive function A is one that calls itself or 
calls another function which calls function A

* I know recursion has been introduced already in CT103!



RECURSION IN COMPUTING

•We use function calls and recursion instead of loops and 
iteration to solve problems.

•Some programming languages support recursion better 
than others.

•Some problems are particularly suited to a recursive 
solution.

•The general idea is to solve a problem by solving a 
smaller version of the problem and continue this until we 
are at a trivial case (a “divide and conquer” approach).



RECALL:
When creating your own function need:

1. Function declaration

2. Function definition

3. Function call



RECALL: FLOW OF CONTROL

When a function is called, the program control is 
transferred to the called function. 

A called function performs a defined task and when its 
return statement is executed or when its function-ending 
closing brace is reached, it returns the program control 
back to the calling environment.



RECURSIVE PROBLEM 1: 

Function puzzle() calling puzzle()

1st call to function puzzle()



“recursive on all control 
paths”

Problem: 

o Will never stop because there 
is no stopping condition

o “Runtime stack overflow” 

o We say such a function is not
well defined



WELL DEFINED RECURSIVE FUNCTIONS
As with iteration, must ensure that a recursive function will 
not continue to run indefinitely. 

If using recursion we must ensure that:
 There are certain criteria, called base criteria, for which 
the function does not call itself (stopping conditions)
 Each time the function does call itself (directly or 
indirectly), it must be closer to the base criteria.

A recursive function with these two properties is said to be
well defined.



WELL-DEFINED:

Base Case: Must have a condition for which the function 
will not call itself (and will stop and usually give a result)

Reduce: For each recursive call, must move towards the 
base case (reduce)



ACTIVATIONS

With recursion, we often have the illusion of multiple 
copies of the function existing. These are referred to as 
activations. These activations appear and disappear as 
the program advances.

A number of activations may exist at the same time. 
However, of the activations existing at any given time, only 
one is actively progressing. The others are effectively in 
limbo, each waiting for another activation to terminate 
before it can terminate.



RUN TIME STACK

A stack data structure is used to keep track of activations 
– the data structure restricts where insertions and deletions 
can take place in a Last In First Out (LIFO) manner.

The function on top of the stack is the current active one.

When the current active function completes it is popped 
off stack (deleted) and activation moves to next function 
on the stack.

Each activation has its own environment with its own set of 
values for variables (local scope).



RECURRENCE/RECURSIVE TREE

A diagram which visualises the recursive calls and the 
work done for each recursive call and allows timestep 
analysis



Creating a well-defined version of  
puzzle();

1. add a stopping condition

2. add return statements



Counting how many times puzzle() is 
called at line 43 for any on-zero  
num? Let n = num



PROBLEM 2: A new function passed an integer 
array and its size
Is function test() well defined?



PROBLEM 2: test()
What does the function test() do? 
e.g., Check with: test(A,5) as given in main()



Example 2: Analysis
•Run time Stack with test(A,5) 



GENERAL APPROACH TO SOLVING PROBLEMS 
RECURSIVELY … 

1. What is the base case?

2. What should the answer be when we are at the base case?

3. How do you reduce to get to this base case?

4. What other work needs to be done for each function call?

5. How can these steps be put together? 



GENERAL STRUCTURE
Usually an if/else structure or if/else if/else:

if (base case is true) 
return  //stop recursion

else
reduce to base case and solve problem

if (base case 1 is true) 
return

else if (condition is true) 
return or reduce to base case

else
reduce to base case



MISTAKES TO AVOID:

o Wrong number of arguments passed to function … must 
match function declaration at all times

o Not having a base case

o Not reducing to the base case



PROBLEM 3 … 
already seen in ct103

oWrite a recursive function which finds the factorial of a 
number n

Recall: 
•The factorial of a non-negative integer n is the product of 
all integers less than or equal to n. 

•The factorial of 0 is 1 and factorial of 1 is 1



Steps for Factorial
int factorial(int n)

Base case: n <= 1 return 1

Reduce: return(n * factorial(n - 1));



factorial()



TIME STEP ANALYSIS

Note: The issue with factorial is the limit in terms of the factorial of n 
being stored (even using the maximum size int possible)

Try test yourself to see what is the max n you can find factorial for:

int long long ans; 

ans = factorial(number);

Line Cost Num Times Cost*Num
Times

Total

180 1 n n

181 1 1 1

184 1 or 2? n-1 2n – 2

3n - 1

O(n)



PROBLEM 4: Fibonacci Sequence
… already seen in CT103

Famous sequence (from 13th Century!) whose numbers grow very 
large, very quickly

For some function fib(n) that finds the nth Fibonacci number, the 
function can be defined recursively as:

fib(0) = 0
fib(1) = 1
fib(n) = fib(n-2) + fib(n-1) for n > 2



WHY IS THIS AN INEFFICIENT SOLUTION?



TIME STEP 
ANALYSIS

Line Cost Num Times Cost*Num Times Total

219 1 ?

220 1 ?

223 2 ?

O(?)



CONSIDERING LINE 
223 IN MORE DETAIL

For each recursive call, there will be 2 function calls fib(n – 1) and fib (n – 2)

Assuming n on entry:

1st recursive call: 2 more function calls = 2 = 21

2nd recursive calls: each of the 2 previous calls will have 2 calls each  = 4 = 22

3rd recursive calls: each of the 4 previous calls will have 2 calls each  = 8 = 23

4th recursive calls: each of the 8 previous calls will have 2 calls each  = 16 = 24

…

At some stage, n = 1 and n = 0 for some parts of the expansion and there will be 
2 less calls before all parts eventually complete



CONSIDERING LINE 
223 IN MORE DETAIL

So:

1st recursive call: 21 calls

2nd recursive calls 22calls

3rd recursive calls 23calls

4th recursive calls 24calls

…

So it looks like 2𝑛𝑛calls but in fact will be less than this 

We can say number of calls is always < 2𝑛𝑛

In fact, instead of 2 we have the golden ratio number for large n 1.618𝑛𝑛

So is O( 1.618𝑛𝑛)



PROBLEM 5: LINEAR SEARCH 
(Recursive Solution)

Write a recursive function which searches for an item in an 
array (of unsorted items) returning the position of the first 
occurrence of the item in the array if it exists or else -1.

Note: we have already seen an iterative version of this



Recursive idea for linear search:

•For each function call, if there are values remaining to 
check/search:
•Check if item is at the last position (size-1)
• If not search again, with sub-array of size one less (size-1)



STEPS:

int search(int arrA[], int size, int item) 

Two Base Cases:

• Nothing left to search: size == 0 return -1 to indicate 
not found

• Have found item: arrA[size - 1] == item return 
position which is size-1

Reduce:

search(arrA, size - 1, item);



LINEAR SEARCH



LINEAR SEARCH – CLASS WORK



TIME STEP ANALYSIS 
OF LINEAR SEARCH

Worst case?

N = ?

Line Cost Num Times Cost*Num
Times

Total

73 1 N+1

74 1 1

76 1 N

77  In worst 
case won’t 
happen

80 1 N

3N+2



IS BIG-O OF RECURSIVE LINEAR SEARCH 
DIFFERENT TO THAT OF ITERATIVE LINEAR 
SEARCH?



PROBLEM 6: BINARY SEARCH
RECURSIVE VERSION



BINARY SEARCH TIME 
STEP ANALYSIS

How does it differ to the iterative version?

Would you expect the Big-O of the recursive binary 
search to be different to the iterative binary search?

Can you remember what is the Big-O time complexity of 
the iterative binary search?



LINEAR AND BINARY 
SEARCH TIME STEP 
ANALYSIS

Same questions:

What is worst case situation? … item not in array

How much of the array needs to be searched in order to 
find this out? …
o For linear search … all n values
o For binary search … approx. log2  n values

What is best case situation? … item found after first 
comparison (wherever that happens to be)



Problem 7: Variation of  Binary Search …
What is happening? 
Assuming an array of  sorted, unique values



Problem 7: 
What is happening?

A ternary Search

Considering “thirds” of the array rather than “halves”

Have two midpoints, and three areas where item might be for each 
search.

Complexity is O(log3 n) but note that we have more comparisons -
extra check for equality, extra check to find correct portion to search 
again



RECALL PROBLEM 2 AGAIN: 



PROBLEM 2 ALTERNATIVE VERSION …. 
What’s the difference?
Assume tempsum has value 0 when function first called



Call with test(A, 5, 0);
A[5] = {2, 4, 6, 8, 10};

What is happening?

There is no “work left to do” for waiting activations/functions – each 
recursive call sends the temporary result as part of the recursive call



SUMMARY

Recursion allows us an “easy” was to solve problems by a 
“divide and conquer” approach.
Recursive solutions may not always be the most efficient 
solutions however.

Some programming languages offer better support for 
recursive solutions – C is not one of those languages!

We will continue with recursion when we consider merge 
sort and quick sort, two sorting algorithms which can be 
expressed very succinctly when using recursion in 
comparison to the iterative versions. 



RECURSION & MERGE SORT CT102
Algorithms



Recall: RECURSION IN COMPUTING

•We use function calls and recursion instead of loops and 
iteration to solve problems.

•Some programming languages support recursion better 
than others.

•Some problems are particularly suited to a recursive 
solution.

•The general idea is to solve a problem by solving a 
smaller version of the problem and continue this until we 
are at a trivial case (a “divide and conquer” approach).



WELL-DEFINED:

Base Case: Must have a condition for which the function 
will not call itself (and will stop and usually give a result)

Reduce: For each recursive call, must move towards the 
base case (reduce)



PROBLEM 5 LINEAR SEARCH –
RECURSIVE SOLUTION



PROBLEM 6: BINARY SEARCH
RECURSIVE VERSION



LINEAR AND BINARY 
SEARCH TIME STEP 
ANALYSIS

Same questions:

What is worst case situation? … item not in array

How much of the array needs to be searched in order to 
find this out? …

For linear search … all n values

For binary search … approx. log2  n values

What is best case situation?

Same questions:

What is worst case situation? 

How much of the array needs to be searched in order to 
find this out

What is best case situation?



Problem 7: Variation of  Binary Search …
What is happening? 
Assuming an array of  sorted, unique values



Problem 7: 
What is happening?

A ternary Search

Considering “thirds” of the array rather than “halves”

Have two midpoints, and three areas where item might be for each 
search.

Complexity is O(log2 n) but note that we have more comparisons extra 
check for equality, extra check to find correct portion to search again



RECALL PROBLEM 2 AGAIN: 



PROBLEM 2 ALTERNATIVE VERSION …. 
What’s the difference?
Assume tempsum has value 0 when function first called



Call with test(A, 5, 0);
A[5] = {2, 4, 6, 8, 10};



A recursive sorting algorithm:
MERGE SORT

o A “divide and conquer” approach to sorting
which divides the sorting problem in to smaller 
and smaller sorting sub-problems; solving the 
sorting task for the smaller case first before 
merging back the sorted numbers

o Developed by John von  Neumann in 1945



APPROACH:

oInstead of considering full array at one time, 
consider two sub-arrays with size as equal as 
possible.
o For each sub-array, consider two further sub-
arrays with size as equal as possible.
oKeep considering smaller sub-arrays until you 
are considering sub-arrays of size 1.
o For each sub-array of size 1 (in sorted order), 
merge back with next sub-array in sorted order



INPUT AND OUTPUT

Inputs: Array arrA[] of size integers in unsorted 
order with:

o lower bound lb (initially 0)

o upper bound ub (initially size – 1)

Outputs: Array arrA[] of size integers in 
ascending sorted order



STEPS:

Two main steps:

o Part 1: “dividing”: continuously reduce array 
and sub-arrays until you have sub-arrays of size 
1 (trivially in sorted order).

o Part 2: “conquering”: continuously merge back 
sorted sub-arrays in sorted order.



mid = int (0+7)/2 = 3 so separately consider:

7 17 25 3 7 10 6 17
0 1 2 3 4 5 6 7

arrA[8]

7 17 25 3
0 1 2 3

7 10 6 17
4 5 6 7

mid = int (0+3)/2 = 1

So separately consider:

mid = int (4+7)/2 = 5

So separately consider:

EXAMPLE: PART 1: “dividing”
Keeping splitting, as evenly as possible:

7 17
0 1

25 3
2 3

7 10
4 5

6 17
6 7

7
0

25
2

7
4

6
6

17
1

3
3

10
5

17
7

Finally considering all single values which are trivially sorted (relative to themselves):



EXAMPLE: PART 2: “conquering”
Recombine in sorted order

7
0

25
2

6
6

17
1

3
3

10
5

17
7

merge

7 17
0 1

3 25
2 3

7 10
4 5

6 17
6 7

0 1 2 3

6 7 10 17
4 5 6 7

0 1 2 3 4 5 6 7

7
4

merge merge merge

merge merge

merge

3 6

3 7 17 25

7 7 10 17 17 25



FUNCTIONS FOR BOTH STEPS:

o Dividing: array, current lower bound and upper 
bound (to give correct portion of array being 
considered):
mergeSort(int [], int, int);

o Merging: array, current lower bound, mid and 
upper bound (to give correct portions of array 
being merged):
merge(int [], int, int, int);



mergeSort()an integer array A[]
void mergeSort(int [], int, int);



HOW DOES THIS PROGRESS?
WHAT LINE DOES THE SORTING HAPPEN AT?

int A[8] = {7,  17,  25,  3,  7,  10,  6, 17};



void merge (int[], int, int, int);

The actual sorting work, “conquering”, takes place when 
merging the sorted sub-arrays.

Have seen an iterative solution to this already which now 
can be modified …



2 4 12 14

1 12 17 19 29

arrB

arrC

arrA

24

RECALL: Example of  merging 2 sorted 
arrays:

44 49



RECALL CODE :
to merge two 
sorted arrays



Modifications required to previous 
merge function
o Both arrays are in fact different parts of one array so 
only need to pass one array to the function and ensure 
that the index values are set up correctly:
o lb to mid
o mid + 1 to ub

oThis time we will want to keep duplicates
o Note that although we still need an array to store the 
values after each comparison, we must also write back the 
contents of the temporary array over the correct range in 
the original array so that future calls of the mergeSort()
algorithm will have the correctly sorted sub-arrays.
oNote that although mergeSort() is recursive this version 
of merge() is iterative.



Setting up Indexes and Comparing 
o Create arrC[] which should be the same size as the portion of  
arrA[] being merged; index k will be used to traverse arrC[]

o Initialise indexes to the start of both portions of the array and also 
correctly initialise k
 i = lb;
 j = mid + 1;
 k = 0;

o The upper bounds (after which loop should stop) are at:
o mid for i
o ub for j

o At each stage, compare values at arrA[i] and arrA[j], 
moving smaller value into new array arrC[k] and updating 
relevant  indexes (i, j, k )



Once comparisons have finished … 

oAt some stage, will have reached the end of one portion 
of the array (and all its values will have been copied in 
order to arrC[]).

oAt this stage, the remaining values from the second 
portion of the array can be written straight to arrC[]
without comparison.

o When finished, the sorted portion must be written back 
from arrC[] to arrA[] from lb to ub in arrA[]



e.g., for final merge:

3 7 17 25
0 1 2 3

6 7 10 17
4 5 6 7

0 1 2 3 4 5 6 7

i=0 mid=3 ub=7j=0

arrA

arrC

k=0



C CODE 



merge()
Time step analysis

Line Cost numTimes cost*
numTimes

Total

110-118 7 1 7
120 1 𝑛𝑛

2
+ 1 𝑛𝑛

2
+ 1

121 1 𝑛𝑛
2

𝑛𝑛
2

122-123 or 126-
127 & 129

3 𝑛𝑛
2

3𝑛𝑛
2

133 or 139 1 𝑛𝑛
2

𝑛𝑛
2

134-136 or 140-
142

3 𝑛𝑛
2

3𝑛𝑛
2

146-147 2 1 2
148 1 n + 1 n + 1
149-151 3 n 3n 4n + 9𝑛𝑛

2
+ 10

17n + 20



COMPLEXITY ANALYSIS

But how many times is merge() and mergeSort() carried 
out once the initial call to mergeSort() occurs?



HOW MANY TIMES?

Line Cost numTimes cost*numTimes Total

L39 1

L41 1

L42 1

L43 f(𝑛𝑛
2
) ?

L44 f(𝑛𝑛
2
) ?

L45 17n + 20 ?



Consider first call to mergeSort()
when n = size

Line Cost

L39 1

L41 1

L42 1

L43 f(𝑛𝑛
2
)

L44 f(𝑛𝑛
2

)

L45 17n + 20

f(n) = 2 f(𝑛𝑛
2
) + 17n + 23



What happens for next 
2nd call?
Substitute for f(n)

Call: Cost

1 f(n) = 2 f(𝑛𝑛
2
) + 17n + 23

We will ignore constants 17 and 23 calling them 
c and const

f(n) = 2 f(𝑛𝑛
2
) + c n + const

2 f(n) = 2 (f(𝑛𝑛
4
) + f(𝑛𝑛

4
)+ 𝑐𝑐𝑛𝑛

2
+ const) + cn + const

f(n) = 2 (2f(𝑛𝑛
4
) + 𝑐𝑐𝑛𝑛

2
+ const) + cn + const

f(n) = 4f(𝑛𝑛
4
) + 2𝑐𝑐𝑛𝑛

2
+ const) + cn + const

f(n) = 4f(𝑛𝑛
4
) + 2cn + const



What happens for 3rd call?
Again, substitute for f(n)
f(n) = 2 f(

𝑛𝑛
2

) + c n + const

Call: Cost

2 f(n) = 4f(𝑛𝑛
4

) + 2cn + const

3 f(n) = 4 (f(𝑛𝑛
8

) + f(𝑛𝑛
8

)+ 𝑐𝑐𝑛𝑛
4

+ const) + 2cn + const

f(n) = 4 (2f(𝑛𝑛
8

) + 𝑐𝑐𝑛𝑛
4

+ const) + 2cn + const

f(n) = 8f(𝑛𝑛
8

) +cn + const) + 2cn + const

f(n) = 8f(𝑛𝑛
8

) +3cn + const

In general: f(n) = 2𝑘𝑘 f( 𝑛𝑛
2𝑘𝑘

) + k cn + const

i.e., for 3rd call: f(n) = 23 f( 𝑛𝑛
23

) + 3cn + const



Solve for k

Eventually, 𝑛𝑛
2𝑘𝑘

will be equal to 1 (at the final recursive call), i.e., 𝑛𝑛
2𝑘𝑘

= 1

So therefore multiplying across: n = 2𝑘𝑘



Solve for k
with n = 2𝑘𝑘

Now we must solve for k:

If n = 2𝑘𝑘 , multiply both sides by log2 to get rid of power of 2:

log2 n = k

Can now substitute for k in f(n) = 𝑛𝑛 + c k n + const
Giving: 𝑛𝑛 + c log2 n n + const
O(n log2 n )

f(n) = 2𝑘𝑘f( 𝑛𝑛
2𝑘𝑘

) +c k n + const

f(n) = 𝑛𝑛 f(𝑛𝑛
𝑛𝑛

) + c k n + const

f(n) = 𝑛𝑛 f(1) + c k n + const

Let f(1) = 
const time

f(n) = 𝑛𝑛 + c k n + const



COMPLEXITY ANALYSIS SUMMARY

o Average and worst case performance is O(𝑛𝑛 𝑙𝑙𝑙𝑙𝑙𝑙2n)

o Generally has fewer comparisons than quicksort (which 
we will see next)
o Is a general purpose sorting technique – works on any 
data type where a comparison is possible

o However, it does not sort in place. That is, it requires an 
array of the same size to hold the values temporarily and 
also requires a “write-back” stage. Therefore in practice, 
because it has poor space complexity it is not used for 
sorting data in arrays despite its good time complexity



Question from exam paper on 
mergeSort()



(a) Using some sample data, and with reference to 
the code line numbers, explain, in your own words, 
how the mergeSort() function works. (4 marks)

L1
L2
L3
L4
L5
L6
L7
L8
L9
L10
L11

// must be called initially with lb = 0 and ub = size - 1
void mergeSort (int arrA[], int lb, int ub) 
{  

int mid;
if (lb < ub) {

mid = int((lb + ub) /2);
mergeSort (arrA, lb, mid);
mergeSort (arrA, mid + 1, ub);
merge (arrA, lb, mid, ub);

}
}



(b) Using some sample data, and with reference to
the code line numbers, explain, in your own words,
how the merge() function works. (4 marks)

L13
L14
L15
L16
L17
L18
L19
L20
L21
L22
L23
L24
L25
L26
L27
L28
L29
L30
L31
L32

void merge (int arrA[], int lb, int mid, int ub)
{

int i, j, k;
int *arrC;
int size = ub - lb + 1;
arrC = (int*) malloc(size * sizeof(int));

for (i = lb, j = mid + 1, k = 0; i <= mid && j <= ub; k++) {
if (arrA[i] <= arrA[j])

arrC[k] = arrA[i++];
else

arrC[k] = arrA[j++];
}
while (i <= mid)

arrC[k++] = arrA[i++];
while (j <= ub)

arrC[k++] = arrA[j++];
for (i = lb, k = 0; i <= ub; i++, k++)

arrA[i] = arrC[k];
}



ANOTHER QUESTION TO CONSIDER?

How can we re-write mergeSort() iteratively?

Will consider this later after looking at quickSort



I t e r a t i ve  ve r s i o n s  o f
QUICKSORT AND MERGE SORT

CT102
Algorithms



ITERATIVE QUICKSORT
How to modify the quicksort function to remove 
the recursive calls?

void quickSort(int arrA[], int startval, int endval) {

if((endval - startval) < 1) {

return;

}

else {

int k = partition(arrA, startval, endval); 

quickSort(arrA, startval, k - 1);  //left partition

quickSort(arrA, k + 1, endval);   //right partition

}

}



WHAT NEEDS TO CHANGE?
Partition part will not 
need to change (as is 
already iterative).

We need a way to keep 
track of the correct sub-
portions of the array that 
are to partitioned, i.e. 
startval and endval and 
these will need to be 
updated as we continue 
with left and right sub-
portions.

void quickSort(int arrA[], int startval, int endval) {

if((endval - startval) < 1){

return;

}

else {

int k = partition(arrA, startval, endval); 

quickSort(arrA, startval, k - 1);  //left partition

quickSort(arrA, k + 1, endval);   //right partition

}

}



ONE APPROACH: Use an additional array to 
keep track of  startval and endval

This array will always hold pairs of values (startval, endval) 

We will continuously add and delete from this array to get the current 
values of startval and endval to send to the partition function.

Call this array next[] and we will only access it from the “top” where 
the most recent pair of values have been added.

Use variable top to access pairs of values.



How to make sure you are accessing 
correct pairs?
To get current pair of values:

endval = next[top--]; (or endval = next[top]; top--;)

startval = next[top--];

To add next pair of values (if something left to add) and have k

// left of pivot:

next[++top] = startval;

next[++top] = k - 1;

// right of pivot:

next[++top] = k + 1;

next[++top] = endval;
N.B. they are added 
in the correct order

N.B. 
use -- and ++ 
correctly



To add next pair of  values 
(if  something left to add):

Given we have value k returned from partition, then

if (k - 1 > startval) {

// there are values to left of pivot

if (k + 1 < endval) {

// there are values to right of pivot



COMBINING … 

if (k - 1 > startval) {

// left of pivot:

next[++top] = startval;

next[++top] = k - 1;

}

if (k + 1 < endval) {

// right of pivot:

next[++top] = k + 1;

next[++top] = endval;

}



WHEN TO STOP?

Initially on entry, top = -1;

We add the first startval and endval to next[] so then, top should 
be 1.

When all startval and endval pairs are removed from next[] all 
the work will be finished and top should have value -1 again.

Therefore, keep going:

while (top >= 0) {



FULL FUNCTION



10 12 25 3 7 11 6 17
0 1 2 3 4 5 6 7

arrA[8]

EXAMPLE: 
(using 1st position for pivot)

0 7
0 1 2 3 4 5 6 7

6 3 7
0 1 2 3

25 11 12 17
4 5 6 7

10

After 2nd partition

k = 7

next[8]

arrA[8]

0 2 4 7
0 1 2 3 4 5 6 7

next[8]

6 3 7
0 1 2 3

11 12 25 25
4 5 6 7

10arrA[8]

0 2 4 6
0 1 2 3 4 5 6 7

next[8]



EXAMPLE: 
(using 1st position for pivot)

After 3rd partition k = 6
6 3 7
0 1 2 3

11 12 17 25
4 5 6 7

10arrA[8]

0 2 4 5
0 1 2 3 4 5 6 7

next[8]

0 2
0 1 2 3 4 5 6 7

next[8]

6 3 7
0 1 2 3

11 12 17 25
4 5 6 7

10arrA[8]

3 6 7
0 1 2 3

11 12 17 25
4 5 6 7

10arrA[8]



ANALYSIS

Still have the same behaviour in terms of splitting and placing values, 
so still O(n 𝑙𝑙𝑙𝑙𝑙𝑙2n)

However, the trade-off is having an extra array to keep track of the 
startval and endval pairs but this would be more efficient than the 
recursive stack generally (for programming languages not particularly 
suited to recursion).



QUESTION
Can you now modify the iterative version to include a call to insertion 
sort for small sub-arrays? At what line(s) do we need to add this?



ITERATIVE MERGE SORT

Recall two main steps in merge sort:

o Part 1: “dividing”: continuously reduce array 
and sub-arrays until you have sub-arrays of size 
1 (trivially in sorted order)

o Part 2: “conquering”: continuously merge back 
sorted sub-arrays in sorted order



Recall: Line 43 and 44 “just” consider smaller and smaller sub-portions 
of the array until Line 41 is false, then the merging (and comparisons) 
start (Line 45)

For an iterative version, we want a way to reduce to these smaller 
sub-portions using a loop instead of Line 43 and 44.

void mergeSort(int [], int, int);



ONE APPROACH:

Given an array arrA[] with size values:

• first merge all sub-arrays of size 1 to create sorted subarrays of size 
2

• then merge all sorted sub-arrays of size 2 to create sorted sub-
arrays of size 4

• then merge all sorted sub-arrays of size 4 to create sorted sub-
arrays of size 8 

… etc

•finally merge the two sorted sub-arrays, each of size/2 to create the 
sorted array



int currSize; 
int lb, mid, ub;

Use a variable currSize which should begin at size 1 (considering only one value) 
and increment by a factor of 2 for each iteration

for (currSize=1; currSize <= size - 1; currSize = 2 * currSize) {

At each stage, will need to know the current lb for the sub-portions of the array 
being considered based on currSize

for (lb = 0; lb < size - 1; lb = lb + 2 * currSize) {

Once we have lb we can calculate mid and ub based on this lb and currSize

As long as the values don’t go past the end of the array then: 

mid =  lb + currSize – 1 ;

ub =   lb + 2 * currSize – 1;



PUTTING ALL THIS TOGETHER:



EXAMPLE

currSize lb mid ub arrA

1 0 0 1 {7, 17, 25, 3, 7, 10, 6, 17}

1 2 2 3 {7, 17, 3, 25, 7, 10, 6, 17}

1 4 4 5 {7, 17, 3, 25, 7, 10, 6, 17}

1 6 6 7 {7, 17, 3, 25, 7, 10, 6, 17}

7 17 25 3 7 10 6 17
0 1 2 3 4 5 6 7

arrA[8]

for (currSize=1; currSize <= size - 1; currSize = 2*currSize) {

for (lb = 0; lb < size - 1; lb = lb + 2 * currSize) {

if (lb + currSize - 1 < size - 1)  mid = lb + currSize - 1;

else mid = size - 1;

if (lb + 2 * currSize - 1 < size - 1) ub = lb + 2 * currSize - 1;

else ub = size - 1;

Consider at start, currSize =1



EXAMPLE

currSize lb mid ub arrA

2 0 1 3 {3, 7, 17, 25, 7, 10, 6, 17}

2 4 5 7 {3, 7, 17, 25, 6, 7, 10, 17}

7 17 3 25 7 10 6 17
0 1 2 3 4 5 6 7

arrA[8]

for (currSize=1; currSize <= size - 1; currSize = 2*currSize) {

for (lb = 0; lb < size - 1; lb = lb + 2 * currSize) {

if (lb + currSize - 1 < size - 1)  mid = lb + currSize - 1;

else mid = size - 1;

if (lb + 2 * currSize - 1 < size - 1) ub = lb + 2 * currSize - 1;

else ub = size - 1;

Now update currSize: currSize = 2*currSize = 2*1 = 2



EXAMPLE

currSize lb mid ub arrA

4 0 3 7 {3, 6, 7, 7, 10, 17, 17, 25}

3 7 17 25 6 7 10 17
0 1 2 3 4 5 6 7

arrA[8]

for (currSize=1; currSize <= size - 1; currSize = 2*currSize) {

for (lb = 0; lb < size - 1; lb = lb + 2 * currSize) {

if (lb + currSize - 1 < size - 1)  mid = lb + currSize - 1;

else mid = size - 1;

if (lb + 2 * currSize - 1 < size - 1) ub = lb + 2 * currSize - 1;

else ub = size - 1;

Now update currSize: currSize = 2*currSize = 2*2 = 4

Now update currSize: currSize = 2*currSize = 2*4 = 8



SUMMARISING:

currSize lb mid ub arrA

1 0 0 1 {7, 17, 25, 3, 7, 10, 6, 17}

1 2 2 3 {7, 17, 3, 25, 7, 10, 6, 17}

1 4 4 5 {7, 17, 3, 25, 7, 10, 6, 17}

1 6 6 7 {7, 17, 3, 25, 7, 10, 6, 17}

2 0 1 3 {3, 7, 17, 25, 7, 10, 6, 17}

2 4 5 7 {3, 7, 17, 25, 6, 7, 10, 17}

4 0 3 7 {3, 6, 7, 7, 10, 17, 17, 25}

7 17 25 3 7 10 6 17
0 1 2 3 4 5 6 7

arrA[8]



SUMMARY

• Quick sort and Merge Sort give the best performance 
on average (O(n 𝑙𝑙𝑙𝑙𝑙𝑙2n)) when sorting general 
purpose data

• Although the recursive implementation is easy to 
understand (and contains less code) both algorithms 
are often implemented  iteratively.

•Note that the merge() and partition() functions are 
unchanged in the iterative versions.
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Another “divide and conquer” Recursive 
Sorting algorithm: quick sort

Widely used in practice in any application needing to 
sort data – operating systems, database systems, built-in 
libraries, and methods.

On average the algorithm provides the fastest 
comparison sort for general data.
We will consider a partially recursive solution, although it 
can be re-written to be fully iterative.



SORTING IN C
(Outside of  CT102 and CT103!)

•The built in sorting function in C is a variant of quicksort 
and sorts data in an array
•In stdlib.h
void qsort(void *base, size_t nitems, size_t size, int 
(*compare)(const void *, const void*))

•Sorts the nitems of the array pointed by base. Every 
element has a size of size-t bytes long. The qsort
function will sort according to the comparator function 
specified in compare

•The qsort function does not return a value. The array 
data is modified in the specified order



APPROACH: 
Sorting values in an integer array arrA[]

Quicksort works by splitting – or partitioning values 
in array A - by choosing a pivot such that:
All items to left of pivot are  <= pivot
All items to right of pivot are > pivot
We hope that about half the items will be less than the 
pivot value and half the items will be greater than it

Then the two sub parts (left and right of pivot) are 
sorted separately using the same approach
Base case is when there is only 1 element left and 
the data will then be sorted

pivotA <=pivot >pivot



WHY DOES THIS WORK?

Consider splitting/partitioning an array into two 
halves using previous idea and using selection sort 
to sort each of the two halves.

The total time required to sort the two sub-arrays 
is only half the time that would have been 
required to sort the original array … i.e. half the 
number of comparisons are required.



EXAMPLE

Given the following integer array of size 8.

Pick the value at index location 0 to be pivot value (i.e., 10)

10 12 25 3 7 11 6 17
0 1 2 3 4 5 6 7

arrA[8]



10 12 25 3 7 11 6 17
0 1 2 3 4 5 6 7

arrA[8]

Now consider sub-array portions:

EXAMPLE: (using 1st position for pivot)

6 3
0 1

7
2

12 25
4 5

11 17
6 7

10
3

0 1 2 4 5 6 7

10
3

0 1 2 3 4 5 6 7

0 to 2: 4 to 7:

10

6 3 7
0 1 2 3

12 25 11 17
4 5 6 7

10 Now have one value 
placed in correct 
position and all 
other values in 
correct portion of 
array

3 6 7 1211 25 17

Now consider sub-array portion 6 to 7:

6 7

17 253 6 7 10 11 12
0 1 2 3 4 5



WORK DONE

For each pivot chosen and partitioning of array:
One value (pivot) can be placed in its correct 
position and will not have to be moved again (we do 
not know this location at the start though)
The amount of comparisons/work done for 
subsequent calls is reduced – ideally halved … as 
the values have been moved to <= pivot or to > 
pivot and will not have to ever be compared to each 
other 

pivotarrA <=pivot >pivot



PARTITIONING

The main work is to:
o Get pivot value
o Partition the array in to the 2 subparts: 
 values <=pivot on LHS of pivot
 values > pivot on RHS of pivot
o Place pivot value in correct position (we will call it 
position k)

Repeat this for smaller and smaller sub-arrays until there 
is nothing left to partition



INPUT AND OUTPUT

Inputs: Array arrA[] of integers in unsorted order 
with: 

o lower bound startval

o upper bound endval

Outputs: Array arrA[] of integers in ascending 
sorted order.



Partial function:



Base case

One value left in the array:

if ((endval - startval) < 1){

return;

}



Reduce

If not at base case then should call function with 
smaller arrays (left and right partitions)

If pivot is at location k then calls should be:
//now sort the two sub-arrays

quickSort(arrA, startval, k - 1);  //left partition

quickSort(arrA, k + 1, endval);   //right partition



Choosing pivot value?

Any value can be chosen between startval and 
endval as the pivot. 
For convenience, we will initially take the value at 
startval to be the pivot*
When partitioning is complete, pivot must be 
moved to the correct (and final) position in the 
array, which is k.

* we will revisit this decision later.



EXAMPLE:
Consider the following data in an integer array
arrA[]

int arrA[7] = {10, 17, 2, 7, 13, 6, 11};

Pick pivot at index = 0, so pivot is 10

10 17 2 7 13 6 11
0 1 2 3 4 5 6

arrA[7]

How to move 10 to its correct position and move 
all other values to left or right of this? 



PARTITION … one idea …
assuming pivot is stored at arrA[0] 
o Use two extra arrays: 

lessThEq[] to hold values <= pivot

grThan[] to hold values > pivot

o Loop through arrA[] from startval to endval checking 
each value against the pivot value and moving to correct 
array

o When finished write back the values to arrA[] in the 
following order:
•all values in lessThEq[], starting at startval in arrA[]
• the pivot value (and let k = this location)
•all values in grThan[], ending at endval in arrA[]



EXAMPLE:
Consider the following data in an integer array
arrA[] of  size 7

Pick pivot at index = 0, so pivot is 10

2 7 6 10 17 13 11
0 1 2 3 4 5 6

arrA[7]

2 7 6
0 1 2 3 4 5 6

lessThEq[7]

17 13 11
0 1 2 3 4 5 6

grThan[7]

10 17 2 7 13 6 11
0 1 2 3 4 5 6

arrA[7]



PARTITION … better idea … “in place 
partition” - using the same array rather than 
creating temporary arrays
One approach:
 If pivot not at startval, move it to startval
From LHS (startval + 1), start comparing values to the 
pivot value … keep going as long as values are <= pivot. 
From RHS of array (endval), start comparing elements to 
pivot, keep going as long as values are > pivot. 
 If there are still values to check and LHS value and RHS 
value are out of order, swap these and keep going with 
comparison.
 If all values have been compared, swap pivot value with 
the value on RHS that is <= pivot



EXAMPLE:
Consider the following data in an integer array
arrA[] of  size 7

7 6 2 10 13 17 11
0 1 2 3 4 5 6

k i

arrA[7]

pivot = 10;

10 17 2 7 13 6 11
0 1 2 3 4 5 6

i k

arrA[7]

10 6 2 7 13 17 11
0 1 2 3 4 5 6

k i

arrA[7]

Initial array

Final array
(after 1 
partition)

After 
first 
swap



STEPS: 
1. Put pivot value in first location (*)

2. Set up left and right traversals of array
 Index i to traverse array from left; set to startval+1initially
 Index k to traverse array from right; set to endval initially

3. With variable i, start comparing values to pivot 
value at each stage, moving on to next location (i++), if 
value is <= pivot and i <= k

4. With variable k, start comparing values to pivot 
value at each stage, moving on to next location (k--), if 
current value is > pivot and k >= i



C CODE:

i = startval + 1;

k = endval;

while(k >= i) {

while (arrA[i] <= pivot && i <= k) {

i++;

}

while (arrA[k] > pivot && k >= i) {

k--;

}   

//swap needed?

}

10 17 2 7 13 6 11
0 1 2 3 4 5 6

i k

arrA[7]



YOU TRY … 

L1 i = startval + 1;

L2 k = endval;

L3 while(k >= i) {

L4 while (arrA[i] <= pivot && i <= k) {

L5        i++;

L6    }

L7 while (arrA[k] > pivot && k >= i) {

L8        k--;

L9    }   

L10 //k still > i?

L11 }

10 7 2 17 13 6 21 9 14 20
0 1 2 3 4 5 6 7 8 9

start
val

arrA[10]

Pick pivot at index = 0, so pivot is 10

startval = 0 and endval = 9

What is the value of i when get to line 10 (L10)?

What is the value of k when get to line 10 (L10)?



YOU TRY … 

L1 i = startval + 1;

L2 k = endval;

L3 while(k >= i) {

L4 while (arrA[i] <= pivot && i <= k) {

L5        i++;

L6    }

L7 while (arrA[k] > pivot && k >= i) {

L8        k--;

L9    }   

L10 //k still > i

L11 }

After this swap when will we next get to L10?

Now, what is the value of i when get to line 10 (L10)?

Now, what is the value of k when get to line 10 (L10)?

10 7 2 17 13 6 21 9 14 20
0 1 2 3 4 5 6 7 8 9

arrA[10]

10 7 2 9 13 6 21 17 14 20
0 1 2 3 4 5 6 7 8 9

arrA[10]



YOU TRY … 

L1 i = startval + 1;

L2 k = endval;

L3 while(k >= i) {

L4 while (arrA[i] <= pivot && i <= k) {

L5        i++;

L6    }

L7 while (arrA[k] > pivot && k >= i) {

L8        k--;

L9    }   

L10 //k still > i?

L11 }

10 7 2 9 13 6 21 17 14 20
0 1 2 3 4 5 6 7 8 9

i k

arrA[10]

10 7 2 9 6 13 21 17 14 20
0 1 2 3 4 5 6 7 8 9

i k

arrA[10]

10 7 2 9 6 13 21 17 14 20
0 1 2 3 4 5 6 7 8 9

k i

arrA[10]



AT SOME STAGE …. 
one of  two possibilities:

1. Not all of the array has been traversed:
i at value which is > pivot (L4 false) and
k at value which is <= pivot (L7 false) and
k >= i (L3 true)
2. All of the array has been traversed (i.e. all values 
have been compared to the  current pivot value): (L3
false)

L1 i = startval + 1;

L2 k = endval;

L3 while (k >= i) {

L4 while (arrA[i] <= pivot && i <= k) {

L5        i++;

L6    }

L7 while (arrA[k] > pivot && k >= i) {

L8        k--;

L9    }   

L10 //k still > i?

L11 }



1. Not all of the array has been 
traversed:
In this case swap the values at i and k, and continue 
with i and k loop:
if (k > i) {

swap(&arrA[i], &arrA[k]);

}

10 7 2 9 13 6 21 17 14 20
0 1 2 3 4 5 6 7 8 9

i k

arrA[10]

10 7 2 17 13 6 21 9 14 20
0 1 2 3 4 5 6 7 8 9

i k

arrA[10]



2. i and k have passed each other
Finished work for this partition so put pivot in its correct 
location and return this location (k):  swap pivot value
with value at k
swap(&arrA[startval], &arrA[k]);

10 7 2 9 6 13 21 17 14 20
0 1 2 3 4 5 6 7 8 9

k i

arrA[10]

10 7 2 9 6 13 21 17 14 20
0 1 2 3 4 5 6 7 8 9

start
val

k i

arrA[10]

6 7 2 9 10 13 21 17 14 20
0 1 2 3 4 5 6 7 8 9

arrA[10]



Defining swap()

void swap (int *, int *);

// call with  ... swap(&arrA[i], &arrA[j]); to swap 

// values in array arrA[] at locations i and j

void swap(int* a, int* b)

{

int temp = *a;

*a = *b;

*b = temp;

}



partition() code in full:

Note:
The partition 
function (the main 
work) is iterative –
using loops for 
control, not 
recursion



BETTER VERSION?

We would like to re-write the partition() 
function without the nested while loop.

Idea is:

oKeep pivot at startval.

o k is used to compare values and also 
increments to the endval.

oLocation of i is at the “last small” value 
found.

oWhen some k location finds a value <= 
pivot, i is incremented and the value at i
and k is swapped. 

oWhen finished, swap values at locations i
and startval



ALTERNATIVE PARTITION
(still using same swap() function)



EXAMPLE:

10 17 2 7 13 6 11
0 1 2 3 4 5 6

i j

arrA[7]

pivot = 10;

10 17 2 7 13 6 11
0 1 2 3 4 5 6

i k

arrA[7]

10 17 2 7 13 6 11
0 1 2 3 4 5 6

i k

arrA[7]

Initial array

Swap at 
i and k



EXAMPLE:

10 2 17 7 13 6 11
0 1 2 3 4 5 6

i k

arrA[7]

pivot = 10;

After 
swap 
(L233)
and k++

10 2 17 7 13 6 11
0 1 2 3 4 5 6

i k

arrA[7]

10 2 7 17 13 6 11
0 1 2 3 4 5 6

i k

arrA[7]
After 
swap 
(L233)
and k++



EXAMPLE:
pivot = 10;

10 2 7 17 13 6 11
0 1 2 3 4 5 6

i k

arrA[7]

10 2 7 6 13 17 11
0 1 2 3 4 5 6

i k

arrA[7]
After swap 
(L233)
and k++

6 2 7 10 13 17 11
0 1 2 3 4 5 6

i k

arrA[7]
Final swap 
(L237)



Analysis of  
partition2()
for one call with array of  size N
and startval at 0

Line Cost numTimes cost*
numTimes

225-227 3 1 7
229 1 n n
230 1 n – 1 n – 1
231 and 232
Assume half of the values will be 
<= pivot *not guaranteed

2 𝑛𝑛 − 1
2

n - 1

233 1? or more? 
assume 4

𝑛𝑛 − 1
2

4(𝑛𝑛−1
2

)
= 2n – 2

237 4 1 4
238 1 1 1

f(n) = 5n + 8



How about full function?
Again assume that array is partitioned evenly

For 1st call …. 

Line Cost

L142 1

L143 1

L146 5n + 8

L148 f(𝑛𝑛
2
)

L149 f(𝑛𝑛
2
)

f(n) = 2 f(𝑛𝑛
2
) + 5n + 8



What happens for next 
2nd call?
Substitute for f(n)

Call: Cost

1 f(n) = 2 f(𝑛𝑛
2
) + 5n + 8

We will ignore constants 5 and 8 calling them c and const

f(n) = 2 f(𝑛𝑛
2
) + c n + const

2 f(n) = 2 (f(𝑛𝑛
4
) + f(𝑛𝑛

4
)+ 𝑐𝑐𝑛𝑛

2
+ const) + cn + const

f(n) = 2 (2f(𝑛𝑛
4
) + 𝑐𝑐𝑛𝑛

2
+ const) + cn + const

f(n) = 4f(𝑛𝑛
4
) + 2𝑐𝑐𝑛𝑛

2
+ const) + cn + c

f(n) = 4f(𝑛𝑛
4
) + 2cn + const



What happens for 3rd call?
Again, substitute for f(n)
f(n) = 2 f(

𝑛𝑛
2

) + c n + const

Call: Cost

2 f(n) = 4f(𝑛𝑛
4

) + 2cn + const

3 f(n) = 4 (f(𝑛𝑛
8

) + f(𝑛𝑛
8

)+ 𝑐𝑐𝑛𝑛
4

+ const) + 2cn + const

f(n) = 4 (2f(𝑛𝑛
8

) + 𝑐𝑐𝑛𝑛
4

+ const) + 2cn + const

f(n) = 8f(𝑛𝑛
8

) +cn + const) + 2cn + const

f(n) = 8f(𝑛𝑛
8

) +3cn + const

As we have seen already with merge sort … 

In general: f(n) = 2𝑘𝑘 f( 𝑛𝑛
2𝑘𝑘

) + k cn + const

i.e., for 3rd call: f(n) = 23 f( 𝑛𝑛
23

) + 3cn + const



SOLVING FOR k … 
If the array is partitioned evenly, then on average, each 
partition produces 2 sub-array portions:
place 1 item and produce 2 sub-array portions
place 2 items and produce 4 sub-array portions
place 4 items and produce 8 sub-array portions
 etc. 
 until we have 1 item in each sub-array portion

Eventually, 𝑛𝑛
2𝑘𝑘

will be equal to 1 (at the final recursive call), 
i.e., 𝑛𝑛

2𝑘𝑘
= 1

So therefore multiplying across: n = 2𝑘𝑘



As before, solve for k
with n = 2𝑘𝑘

Now we must solve for k:

If n = 2𝑘𝑘 , multiply both sides by log2 to get rid of power of 2:

log2 n = k

Can now substitute for k in f(n) = 𝑛𝑛 + c k n + const
Giving: 𝑛𝑛 + c log2 n * n+ const
O(n log2 n )

f(n) = 2𝑘𝑘f( 𝑛𝑛
2𝑘𝑘

) +c k n + const

f(n) = 𝑛𝑛 f(𝑛𝑛
𝑛𝑛

) + c k n + const

f(n) = 𝑛𝑛 f(1) + c k n + const

Let f(1) = 
const time

f(n) = 𝑛𝑛 + c k n + const



NOTE ON PERFORMANCE

However, this performance is dependent on the value of the 
pivot:
o A “good” pivot will split the array very evenly in two halves 
thus giving the O(n log n) complexity
o A “poor” pivot will not split the array at all and give O(n2) 
complexity

Generally we will not see improvements in performance on 
small arrays
Quicksort is often modified so that when the sub-array is 
small (e.g., size = 10) an algorithm that performs fewer 
swaps and comparisons is used – think about how you might 
do this!



10 12 25 30 35 41 44 70
0 1 2 3 4 5 6 7

arrA[8]

EXAMPLE: (using 1st position for pivot)

10 12 25
0 1 2 3

35 41 44 70
4 5 6 7

30

After 1st partition, 
everything goes to 
right of pivot at 
location 0

After 2nd partition, 
everything goes to 
right of pivot at 
location 1

After 3rd partition, 
everything goes to 
right of pivot at 
location 2

10 12 25
0 1 2 3

35 41 44 70
4 5 6 7

30

etc.



10 12 25 30 35 41 44 70
0 1 2 3 4 5 6 7

arrA[8]

NOTE: would have the exact same problem if  
using the last position for pivot)

10 12 25
0 1 2 3

35 41 44 70
4 5 6 7

30

After 1st partition, 
everything goes to 
left of pivot at 
location 7

After 2nd partition, 
everything goes to 
left of pivot at 
location 6

After 3rd partition, 
everything goes to 
left of pivot at 
location 5

10 12 25
0 1 2 3

35 41 44 70
4 5 6 7

30

etc.



0 1 2 35 30 41 40 35
0 1 2 3 4 5 6 7

arrA[8]

NOTE: a less extreme version of  this problem 
would occur if  the first portion of  the array has 
the smallest values

0 1 2
0 1 2 3

30 41 40 70
4 5 6 7

35

After 1st partition, 
everything goes to 
right of pivot at 
location 0

After 2nd partition, 
everything goes to 
right of pivot at 
location 1

After 3rd partition, then start to make more than one sub-array per 
partition call



PICKING BETTER PIVOTS

As well as the modification when the sub-arrays are small, a 
better choice of pivot value is also used in practice to get 
better performance.

For example:
o pivot  location at middle of the array is chosen per run.

o pivot location is chosen randomly per run (good and quick 
random number generator needed).

o pivot location is chosen from getting the median of the 
values at the first, last and middle location of the array per 
run.



10 12 25 30 35 41 44 70
0 1 2 3 4 5 6 7

arrA[8]

WOULD USING MID POSITION HELP?
mid = int(startval + endval)/2;

10 12 25
0 1 2

35 41 44 70
4 5 6 7

30

mid = 3 and get two sub-arrays:

0 to 2 and 4 to 7

mid = 1 and get two 
sub-arrays:

0 to 0 and 2 to 2

etc.

mid = 5 and get two sub-arrays:

4 to 4 and 6 to 7



IMPLEMENTING BETTER PIVOTS?

We should still move the pivot to the startval location, 
but we do not need to pick the value at this location.

Try implementing the previous approaches to get pivot 
value (based on current startval and endval):

int mid = int(startval + endval) / 2;

swap (&arrA[mid], &arrA[startval]);

pivot = arrA[startval];



TESTING:
o Try test the quicksort code with the larger files.

oAs well as checking number of comparisons and swaps we are also 
interested in counting the number of function calls required for 
quicksort.

o In this situation, you need to declare and initialise global counters 
that are incremented on each entry to the relevant functions



RESULTS (comparing with merge sort):



RESULTS 
(comparing with other techniques):



HYBRID QUICK SORT:
Quicksort is often modified so that when the sub-array is small (e.g., 
size = 10) an algorithm that performs fewer swaps and comparisons 
is used

What needs to change in function quicksort to allow this modification? 

void quickSort(int arrA[], int startval, int endval) {

if((endval - startval) < 1){

return;

}

else {

int k = partition(arrA, startval, endval); 

quickSort(arrA, startval, k - 1);  //left partition

quickSort(arrA, k + 1, endval);   //right partition

}

}



HYBRID QUICK SORT:
void quickSortHybrid(int arrA[], int startval, int endval)

{

if((endval - startval) < 1) {

return;

}

else if (endval - startval + 1 < 10) { //subarrays of size < 10

// call Insertion Sort or Selection Sort

}

else { 

int k = partition1(arrA, startval, endval); 

quickSort(arrA, startval, k - 1);  //left partition

quickSort(arrA, k + 1, endval);   //right partition

}

}



MODIFICATIONS TO INSERTION SORT?
what lines need to change and how?
void insertionSort(int[], int);



MODIFICATIONS TO INSERTION SORT?
what lines need to change and how?
void insertionSort(int[], int);

//Insertion Sort: a sub-portion of the array

void insSort(int arrA[], int startval, int endval) {

int i, j, curr;

for (i = startval + 1; i <= endval; i++) {

curr = arrA[i];

for (j = i - 1; j >= startval && curr < arrA[j]; j--) { 

arrA[j+1] = arrA[j];

}

if (i != j + 1) {

arrA[j + 1] = curr;

}

} // end i for

}



ITERATIVE QUICK SORT
How to modify the quicksort function to remove 
the recursive calls? (Next lecture)
void quickSort(int arrA[], int startval, int endval) {

if((endval - startval) < 1) {

return;

}

else {

int k = partition(arrA, startval, endval); 

quickSort(arrA, startval, k - 1);  //left partition

quickSort(arrA, k + 1, endval);   //right partition

}

}



SUMMARY

• Quicksort along with Merge Sort give the best 
performance on average (O(n 𝑙𝑙𝑙𝑙𝑙𝑙2n)) when sorting 
general purpose data.
• Quicksort is the default sorting program used in all 
applications – however a fully iterative, and often 
hybrid, version tends to be used (see next).
• Important to understand the partition aspect as this is 
where the main work (“conquering”) is done, as well as 
the difference between the recursive and iterative 
approach to dividing the array.
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