
CT102:
ALGORITHMS

Searching
Linear Lists

SEARCHING

oSearching is a
fundamental operation in
computing – seen in many
different areas and across
many problems
oMost programming
languages have built in
searching functions that can
be used at a later stage
(but not in Algorithms!).

LINEAR SEARCH: OUTLINE

Problem: In a linear data structure, find the position of a given
item, returning the position the item is found or else value -1 if
item is not found.

Input: Array arrA with (distinct) values; Size of array (size); item
to find (item)

Output: one integer value indicating not found (-1) or the
position item was found at.

Algorithm idea: Start at index position 0, for each position until
the end of array, keep checking if value at current position is
the item required; once finished searching, output result

LINEAR SEARCH: EXAMPLES

Searching for “Enya” in array names[]

Searching for 100 in array costs[]:

names[5] Louis Ben Enya Don Ali

costs[5] 1007 2002 2007 1000 2003

LINEAR SEARCH ALGORITHM (FRAGMENT OF C)

int i;

int position = -1;

for (i = 0; i < size; i++){

if (arrA[i] == item) {

position = i; //found

}

}

WHAT DO WE NEED TO ADD TO
THIS TO ACTUALLY RUN IT?

• Need #include <stdio.h> and main(){ … }

• Need data! An array of integers, its size and an item to find

• … for now, we will hard code the array data but we should
enter search item (using scanf)

• Need to output answer … use printf() statement(s)

FULL CODE WHEN WORKING WITH
INTEGERS:

QUESTIONS

Consider this code with a sample array (as given):

int arrA[6] = {12, 6, 4, 2, 13, 19};

And searching for item = 6

How does the algorithm progress?

QUESTIONS:
How fast/slow is it?

WORKSHEET 2 QUESTION 1:

What inefficiencies can you see in this version of a linear
search assuming integer array arrA[] of size sizeand
searching for item? (i.e. assume you are given an array
and the item)

WRITING A BETTER VERSION?

ORDERED (SORTED) ARRAYS

An array is ordered if its values are in either ascending or
descending order

In an ascending array, the value of each element is less than
(or equal to if duplicates allowed) the value of the next
element.

In a descending array, the value of each element is greater
than (or equal to if repeats allowed) to the value of the next
element.

names[] Aaron Ali Cait Dara Eli

years[] 2022 2020 2017 2015 2012

WORKING WITH SORTED DATA …

Question was … Any efficiencies that can be made to the
linear search if we can assume that the data is in sorted
order with distinct (no repeating) values?

For example, array:

int arrA[6] = {2, 6, 14, 29, 32, 49};

and searching for item = 9

WORKSHEET 2 QUESTION 2 CODE:

But, if data in array is sorted, can
have an even better approach,
using a BINARY SEARCH …

BINARY SEARCH: OUTLINE

Problem: In a linear data structure with data in sorted
order, with no duplicates, find the position of a given item,
returning the position found or else value -1 if not found.

Input: Array arrA[] with data values is sorted order; Size
of array (size); item to find (item)

Output: one integer value indicating not found (-1) or the
position item was found at.

Assumptions: Without loss of generality, we will assume the
input array contains integer values and that the values are
sorted in ascending order.

BINARY SEARCH: IDEA

Until there is nothing left to search:
Start, as close as possible to the middle of the array
Check if value at middle position is the item required
 If yes, stop and return position
 If no, check whether the value required is less than or
greater than the value at the middle position. As a result of
this check, repeat the search with the lower (left) or upper
(right) portion of the array.

EXAMPLE:
Search for item = 60 in array A of size 11

6 12 17 21 33 34A 42 59 60 93 97

0 10
mid

54 6

6 12 17 21 33 34 42 59 60 93 97

0 108
mid

54 6

Note: This has taken two checks to find item in comparison to ??? if using the linear search code?

FINDING MIDDLE POSITION OF ARRAY:

Somewhere “near” the middle

Depending on size of array or sub-arrays may not always
be “exact” middle

First mid in array of size size

int begSec, endSec, mid;

begSec = 0;

endSec = size - 1;

mid = int((begSec + endSec)/ 2);

RECALL: int()

int(n) returns the truncation of n

That is, the integer whose absolute value is no greater than
that of n

WORKING WITH mid …

Compare item with arrA[mid] … middle value in
array

Three possible situations:
item == A[mid] so can stop
item > A[mid] so continue searching upper half of
array (from mid + 1 to size -1)
item < A[mid] so continue searching lower half of
array (from 0 to mid - 1)

EXAMPLE: SEARCH FOR ITEM = 60 IN ARRAY A OF SIZE 11

6 12 17 21 33 34A 42 59 60 93 97

0 10
mid

54 6

UPDATING mid …

if (item > arrA[mid]) {

begSec = mid + 1;

}

else if (item < arrA[mid]) {

endSec = mid - 1;

}

mid = int((begSec + endSec) / 2);

STOPPING CONDITION

while (

begSec <= endSec &&

arrA[mid] != item)

{

That is, will stop when have checked all possible locations
in the [begSec, endSec] range or have found item

LOOKING AT CODE AND SHARING CODE ..

WORKING WITH THE CODE

> What function declaration do we need for this?

> What data needs to be passed to the function?

> How do we “call” function?

> And why did we write this as a function anyway?

HOW “LONG” DOES IT TAKE?
(HOW FAST/SLOW?)

• How does it compare to linear search? [Will return to this]

• Can you write the linear search code as a function?

HOW TO CHECK ARRAY IS SORTED?

Binary Search assumes that the data in the array is in
sorted order - algorithm will not work correctly unless this
assumption holds

? How to check if an array of integers is in sorted
ascending order (no duplicates)? See worksheet 2,
question 4.

? If not sorted, how to sort [Later topic]

ADVANCED SEARCHING:
PATHFINDING ALGORITHMS

oA particularly important type of (non-linear) searching is called
pathfinding which involves finding the shortest route between
two paths.

oThis relates to a topics already seen in Social Network Analysis
– the finding the shortest path between two points in a large
network.

EXAMPLES

GENERAL
APPROACH

Need to keep track of:

• Nodes/Points/Spaces already visited

• Nodes (Neighbours) of current node where you can move to
…. If there are a number of options here, must pick one point
to move to, but potentially “explore” other points later on if the
current choice does not result in success and delete nodes on the
path that did not lead to success.

SUMMARY

Searching is a fundamental operation in computing

Very few applications are built that don’t involve a search feature
(think about this!)

The most general search that works on any type of data is a linear
search – for an array of size N, at most N items will have to be
checked

If data is in a sorted order then a much more efficient search can be
used – binary search - for an array of size N, at most log2(N) items
will have to be checked.

TUTORIAL THURSDAY ….

If you are confused about any of this material or with any of the C
code used please come to the tutorial on Thursday where we can go
through the code in more detail

CT102:
ALGORITHMS AND INFORMATION
SYSTEMS

Topic:
Algorithms
and Algorithm
Analysis

FOCUS OF ALGORITHM ANALYSIS …

The analysis and comparison of algorithms with
respect to resources used, that is:

• Space (memory)

• Time (to run)

Important Question for us: When two programs
solve the same problem differently why is one
better than the other?

FOR MEANINGFUL COMPARISON, MUST
HAVE SOME STANDARDISATION

•both programs in the same language

•executable code produced by the same compiler

•the same hardware platform for each test

•identical data sets to test both programs

•data sets that test many cases (expected,
unexpected, edge/corner cases)

3 APPROACHES USED FOR COMPARISON

1. Actual Time: Code and Run and track time
2. Estimate time: Count time “steps” in code

(without running)
3. Estimate rate of growth of time used: Use Big-

O notation (and others) for large input sizes

APPROACH 1 ... CODE AND RUN

Get actual values for time and space
Often focus on key operations as well as overall
time to run (i.e. focus on time functions that do
the main work take, not Input/output work)

Generally in practice, … want a (good) idea of
the time and space efficiency of an algorithm
before we fully code a solution

APPROACH 1 IN C .. using time.h

clock_t time = clock();

double timeTaken;

//do the work

// check time elapsed

timeTaken = clock() - time;

// convert to seconds

printf("\n time taken is %lf

seconds", timeTaken/CLOCKS_PER_SEC);

The C library function

clock_t clock(void)

returns the number of clock
ticks elapsed since the
program was launched.

To get the number of seconds
used by the CPU, you will
need to divide by
CLOCKS_PER_SEC

ADDING THIS TO linearSearch

APPROACH 2 ... COUNT “TIME STEPS”

The idea is to estimate the amount of work there is
to do by summing up “time steps” in each statement.

The result is a function, f, which represents these time
steps and is (usually) dependent on the data size
input which is represented as some constant (e.g,. N)
and then function is represented as f(N)

APPROACH 2 ... COUNT “TIME STEPS” ctd.

Each simple statement = 1 time step

Examples: declarations, initialisations, calculations, if
conditions, function call, etc.
 int i = 0;
 if (position == -1) {
 while (begSec <= endSec) {

Each memory access = 1 time step

Approach 2 ctd., ... Count “time steps”

 Loops, function execution, use of built in libraries are
not simple statements and are usually dependent on
the input size
 Loops:
 In a simple case, any statement in a loop is “multiplied” by
the number of iterations of a loop
 The condition can be taken as 1 timestep (checked multiple
times)
 In for loops, where there are 2 actions per iteration
(minimum) – can choose to count each action OR count
everything in loop guard as 1 timestep (usual approach).

Do we always know when the loop will stop?

TYPES OF ANALYSIS

For approach 2 and 3 there are 3 types of analysis that can
be performed and that we are interested in:

Worst case: The function defined by the maximum number of
steps taken in any instance of size n.

Best case: The function defined by the minimum number of
steps taken in any instance of size n.

Average case: The function defined by the average number of
steps over all instances of size n. (Assumes that the input is
random)

WHICH TO USE?

• Mostly interested in average and worst case situations –
best case situation is often not useful for analysis

• For time step analysis often focus on worst case analysis
as it is important to know the upper limit on how poorly an
algorithm can perform

• Our average case may be better than this in many
situations or at least, can be no worse than this

Using Worst Case Analysis, how to Calculate the Time Steps
and the Function which Represents the Worst Case
Situation?

Generally ignore Input/Output statements (should be
standard across solutions)

For each line of code/statement:

o List the time step count (cost)

o List the maximum number of times it is done (numTimes)

o Multiply cost by numTimes for each step

o Add up all the steps to get the function – most likely
dependent on N the input size

WHAT IS N?

N is the number of elements in the input
Can be:
Size of an array (or list or tree or graph)
Number of words in a file
Number of elements to sort
Number of transactions to check for fraud patterns
Number of movies to display or recommend
Number of tweets to analyse to check if they are
political ads.
etc.

COUNTING TIME STEPS
Can annotate code or create a table like the
following:

Line Cost numTimes cost*numTimes Total

COUNTING TIME STEPS
FOR LINEAR SEARCH

TIME STEP ANALYSIS:
Linear Search

Let N = array size (number of
items to search)

Line Cost (max)
numTimes

cost*numTimes Total

60 1 1 1

61 1 1 1

63 1 N+1 N+1

64 1 N N

65 1 1 1

68 1 1 1

2N + 5

Alternative: counting
individual statements
in for loop guard as 3

Let N = array size (number of
items to search)

Line Cost (max)
numTimes

cost*numTimes Total

60 1 1 1

61 1 1 1

63 (i = 0) 1 1 1

63 3 N+1 3N+3

65 1 N N

68 1 1 1

60 1 1 1

4N + 8

COMPARING:
2N + 5
4N + 8

Note that although 4N + 8 timesteps will always take more time than
2N + 5, they are both “linear” or “grow in the same way”.

Generally some simplifications must be made when counting lines of
code even if in reality we know that the following two lines of code will
take different amounts of time:

int i;

for(i = 0; i < size && position == -1; ++i)

As many lines of code will not be equivalent it is usual to use a cost of 1,
both for lines that might seem more simple, or more complex, than
“normal”.

0

500

1000

1500

2000

2500

0 100 200 300 400 500 600

2N + 5 4N + 8

You Try … TIME STEP ANALYSIS:
Checking if an array is sorted
Given an integer array, arrA[], and its size (size) write an algorithm
(code) in C to check if the array is sorted, returning 1 (or Boolean True) if the
array is sorted and 0 (or Boolean False) if the array is not sorted. You may
assume that we wish to search for sorted ascending order.

 Using the function written, perform a time step analysis to get a function
representing the number of time steps needed (as a function of the size of
the array):

Which fragment of code correctly identifies if an
array has values in ascending sorted order?
A, B, C or D

COMPLETE THE
TIME STEP ANALYSIS:
Let N = size

TIME STEP ANALYSIS
BINARY SEARCH

TIME STEP ANALYSIS:
Binary Search

Line Cost numTimes Cost*Num Times Total

56-59 & 61 1 for each
(5 in total)

1 for each 5

63 1 ?

64&65 or
64, 67&68

(pick larger)
3

?

71 1 ?

74, 75, 77
or
74 and 77

(pick larger)
3

1 3

How many times?

Let N = size of array
Ignore printf at line 54
as it is not part of solution

LOOKING AT LOOP GUARD:
while (begSec <= endSec && arrA[mid] != item)

Worst case analysis when item is not in array means arrA[mid] is never
equal to item or item is found at the very last check

Assume N items in the array:

1st check: check for item and approx. ½ of items left to check (𝑁𝑁
2

items)

2nd check: check for item and approx. ½ of items left to check (½ of 𝑁𝑁
2

= 𝑁𝑁
4

= 𝑁𝑁
22

)

3nd check: check for item and approx. ½ of items left to check (½ of 𝑁𝑁
4

= 𝑁𝑁
8

= 𝑁𝑁
23

)

4th check: check for item and approx. ½ of items left to check (½ of 𝑁𝑁
8

= 𝑁𝑁
16

= 𝑁𝑁
24

)

etc.

kth check: check for item and approx. 𝑁𝑁
2𝑘𝑘

items left to check

Note: At each stage reducing by a power of 2 (not linear)

SOLVING ….
𝑁𝑁
2𝑘𝑘

= 1

How many checks will be needed to have one value left to check?
𝑁𝑁
2𝑘𝑘

= 1

N = 2k

•Multiplying both sides by log2 to get:

log2 N = log2 2k

log2 N = k

Therefore, in the worst case, need log2 N checks to find item or to
know that it isn’t there

WILL “STEPS OF POWER OF 2” ALWAYS
GIVE US LOG2 BEHAVIOUR?

Consider this loop guard:
for (i = 1; i < n; i = i * 2) {

for (i = 1; i < n; i = i * 2) {

n Values of i: Number of iterations

10 1, 2, 4, 8, 4

20 1, 2, 4, 8, 16 5

30 1, 2, 4, 8, 16 5

40 1, 2, 4, 8, 16, 32 6

50 1, 2, 4, 8, 16, 32 6

60 1, 2, 4, 8, 16, 32 6

70 1, 2, 4, 8, 16, 32, 64 7

etc.

Consider this loop guard:

for (i = n; i > 0; i = int (i / 2)) {

for (i = n; i > 0; i = int (i / 2)) {

n Values of i:
Number of
iterations log2(n)

10 10, 5, 2, 1 4 3.32
20 20, 10, 5, 2, 1 5 4.32
30 30, 15, 7, 3, 1 5 4.91
40 40, 20, 10, 5, 2, 1 6 5.32
50 50, 25, 14, 7, 3, 1 6 5.64
60 60, 30, 15, 7, 3, 1 6 5.91
70 70, 35, 17, 8, 4, 2, 1 7 6.13
80
….

10000 approx log2 (n) 13.28

BACK TO:
Binary Search
time step analysis:

Line Cost numTimes Cost*Num Times Total

56-59 & 61 5 1 5

63 1 𝑙𝑙𝑙𝑙𝑙𝑙2(N) 𝑙𝑙𝑙𝑙𝑙𝑙2(N)

64&65 or
64, 67&68

(pick larger)
3

𝑙𝑙𝑙𝑙𝑙𝑙2(N) 3𝑙𝑙𝑙𝑙𝑙𝑙2(N)

71 1 𝑙𝑙𝑙𝑙𝑙𝑙2(N) 𝑙𝑙𝑙𝑙𝑙𝑙2(N)

74, 75, 77 or
74 and 77

(pick larger)
3

1 3

5𝑙𝑙𝑙𝑙𝑙𝑙2(N) + 8

Let N = size of array
Ignore printf at line 54
Ignore ±1 iterations in
loop

HOW DOES THIS COMPARE TO LINEAR
SEARCH?

Linear Search: f(N) = 2N + 5

Binary Search: f(N) = 5𝑙𝑙𝑙𝑙𝑙𝑙2(N) + 8

0

500

1000

1500

2000

2500

0 100 200 300 400 500 600 700 800 900 1000

f1(n) = 2n+5; f2(n) = 5log2(n)+8

f1(n) f2(n)

APPROACH 2 ... COUNT “TIME STEPS”
SUMMARY
Generally,
Do not count I/O steps
Gives a good approximation of the actual run
time
But, requires effort in counting
Often we want a more generic way to compare
algorithms … especially across different
programming languages … without getting
distracted with coefficients, additive and
multiplicative constants of n (the input size)

APPROACH 3: RATE OF GROWTH

n n3 2n 1234 fn = n3+2n+1234

10 1000 20 1234 2254

100 1000000 200 1234 1001434

1000 1E+09 2000 1234 1000003234

10000 1E+12 20000 1234 1E+12

1000000 1E+18 2000000 1234 1E+18

Given that n will have different values for each
run it is usually the rate of growth or increase of
f(n) that we want to analyse
For example, if timestep analysis gives us: n3 +
2n + 1234 it is only as n gets larger that f(n)
starts to get very large

SUMMARY

Algorithm analysis is a fundamental aspect of
Algorithms

Important to know and understand the different
approaches for Algorithm Analysis and how to
analyse algorithms using a number of approaches
We will consider 3 approaches:

Actual run time

Time step analysis (generally worst case)
Big O Analysis (rate of growth) – next lecture

CT102:
ALGORITHMS AND INFORMATION
SYSTEMS

Topic:
Algorithms
and Algorithm
Analysis

RECALL:
FOCUS OF ALGORITHM ANALYSIS …

The analysis and comparison of algorithms with
respect to resources used, that is:

• Space (memory)

• Time (to run)

Important Question for us: When two programs
solve the same problem differently why is one
better than the other?

RECALL:
3 APPROACHES USED FOR COMPARISON

1. Actual Time: Code and Run and track time
2. Estimate time: Count time “steps” in code

(without running)
3. Estimate rate of growth of time used: Use Big-

O notation (and others) for large input sizes

COMPLETE THE
TIME STEP ANALYSIS:
Let N = size

Line Cost (max)
numTimes

cost*numTimes Total

13 1 1 1

14 1 1 1

16 1 N N

17 1 N-1 N-1

18 1 1 1

21 1 1 1

2N+3

TIME STEP ANALYSIS
BINARY SEARCH

TIME STEP ANALYSIS:
Binary Search

Line Cost numTimes Cost*Num Times Total

56-59 & 61 1 for each
(5 in total)

1 for each 5

63 1 ?

64&65 or
64, 67&68

(pick larger)
3

?

71 1 ?

74, 75, 77
or
74 and 77

(pick larger)
3

1 3

How many times?

Let N = size of array
Ignore printf at line 54
as it is not part of solution

LOOKING AT LOOP GUARD:
while (begSec <= endSec && arrA[mid] != item)

Worst case analysis when item is not in array means arrA[mid] is never
equal to item or item is found at the very last check

Assume N items in the array:

1st check: check for item and approx. ½ of items left to check (𝑁𝑁
2

items)

2nd check: check for item and approx. ½ of items left to check (½ of 𝑁𝑁
2

= 𝑁𝑁
4

= 𝑁𝑁
22

)

3nd check: check for item and approx. ½ of items left to check (½ of 𝑁𝑁
4

= 𝑁𝑁
8

= 𝑁𝑁
23

)

4th check: check for item and approx. ½ of items left to check (½ of 𝑁𝑁
8

= 𝑁𝑁
16

= 𝑁𝑁
24

)

etc.

kth check: check for item and approx. 𝑁𝑁
2𝑘𝑘

items left to check

Note: At each stage reducing by a power of 2 (not linear)

SOLVING ….
𝑁𝑁
2𝑘𝑘

= 1

How many checks will be needed to have one value left to check?
𝑁𝑁
2𝑘𝑘

= 1

N = 2k

•Multiplying both sides by log2 to get:

log2 N = log2 2k

log2 N = k

Therefore, in the worst case, need log2 N checks to find item or to
know that it isn’t there

WILL “STEPS OF POWER OF 2” ALWAYS
GIVE US LOG2 BEHAVIOUR?

Consider this loop guard:
for (i = 1; i < n; i = i * 2) {

for (i = 1; i < n; i = i * 2) {

n Values of i: Number of iterations

10 1, 2, 4, 8, 4

20 1, 2, 4, 8, 16 5

30 1, 2, 4, 8, 16 5

40 1, 2, 4, 8, 16, 32 6

50 1, 2, 4, 8, 16, 32 6

60 1, 2, 4, 8, 16, 32 6

70 1, 2, 4, 8, 16, 32, 64 7

etc.

Consider this loop guard:

for (i = n; i > 0; i = int (i / 2)) {

for (i = n; i > 0; i = int (i / 2)) {

n Values of i:
Number of
iterations log2(n)

10 10, 5, 2, 1 4 3.32
20 20, 10, 5, 2, 1 5 4.32
30 30, 15, 7, 3, 1 5 4.91
40 40, 20, 10, 5, 2, 1 6 5.32
50 50, 25, 14, 7, 3, 1 6 5.64
60 60, 30, 15, 7, 3, 1 6 5.91
70 70, 35, 17, 8, 4, 2, 1 7 6.13
80
….

10000 approx log2 (n) 13.28

BACK TO:
Binary Search
time step analysis:

Line Cost numTimes Cost*Num Times Total

56-59 & 61 5 1 5

63 1 𝑙𝑙𝑙𝑙𝑙𝑙2(N) 𝑙𝑙𝑙𝑙𝑙𝑙2(N)

64&65 or
64, 67&68

(pick larger)
3

𝑙𝑙𝑙𝑙𝑙𝑙2(N) 3𝑙𝑙𝑙𝑙𝑙𝑙2(N)

71 1 𝑙𝑙𝑙𝑙𝑙𝑙2(N) 𝑙𝑙𝑙𝑙𝑙𝑙2(N)

74, 75, 77 or
74 and 77

(pick larger)
3

1 3

5𝑙𝑙𝑙𝑙𝑙𝑙2(N) + 8

Let N = size of array
Ignore printf at line 54
Ignore ±1 iterations in
loop

HOW DOES THIS COMPARE TO LINEAR
SEARCH?

Linear Search: f(N) = 2N + 5

Binary Search: f(N) = 5𝑙𝑙𝑙𝑙𝑙𝑙2(N) + 8

0

500

1000

1500

2000

2500

0 100 200 300 400 500 600 700 800 900 1000

f1(n) = 2n+5; f2(n) = 5log2(n)+8

f1(n) f2(n)

APPROACH 2 ... COUNT “TIME STEPS”
SUMMARY
Generally,
Do not count I/O steps
Gives a good approximation of the actual run
time
But, requires effort in counting
Often we want a more generic way to compare
algorithms … especially across different
programming languages … without getting
distracted with coefficients, additive and
multiplicative constants of n (the input size)

APPROACH 3: RATE OF GROWTH

n n3 2n 1234 f(n) = n3+2n+1234

10 1000 20 1234 2254

100 1000000 200 1234 1001434

1000 1E+09 2000 1234 1000003234

10000 1E+12 20000 1234 1E+12

1000000 1E+18 2000000 1234 1E+18

Given that n will have different values for each run it is
usually the rate of growth or increase of f(n) that we want
to analyse

For example, if timestep analysis gives us:

F(n) = n3 + 2n + 1234

it is only as n gets larger that f(n) starts to get very large

COMMONLY USED RATE OF GROWTH
FUNCTIONS

f(n) is usually compared with some standard
mathematical functions, such as:
•log2 n
•n
•n log2n
•n2

•n3

•2n

WHAT IS THE RATE OF GROWTH OF THESE
STANDARD FUNCTIONS?
Look at different values of n to see difference
….

n log2 n n log2 n n2 n3 2n

5 2.32 11.60 25 125 32

10 3.32 33.22 100 1000 1024

100 6.64 664.39 10000 1000000 1.27E+30

1000 9.97 9965.78 1000000 1E+09 1.1E+301

10000 13.29 132877.1 1E+08 1E+12 #NUM!

STANDARD FUNCTIONS AND ALGORITHM
EXAMPLES

Class Name Algorithm Example & Notes
1 Constant No dependence on n

log n Logarithmic Binary search

n Linear Linear search

n log n Super linear Mergesort, Quicksort

n2 Quadratic Typically an algorithm with a nested loop – with both
loops iterating over n items. Selection, Insertion and Bubble
Sort

n3 Cubic Typically an algorithm with 3 nested loops – with all loops
iterating over n items

2n Exponential Some recursive solutions and pathfinding algorithms

n! Factorial Unusable except for very small n

BIG-O NOTATION

Big-O notation gives a measure of rate of growth in terms
of upper and lower bounds in comparison to some
standard functions.

N.B. Ignores coefficients and additive and multiplicative
constants.
For example:

n and 2n are considered the same.

n and n + 500 are considered the same.

n2 and 5n2 are considered the same.

MORE FORMALLY:

Given f(n) for some algorithm:

f(n) is O(g(n)) means that it is always possible to find some k such
that:

f(n) <= k g(n) for n >= 𝑛𝑛0 (large enough n)

k g(n) is an upper bound on f(n)

EXAMPLES:
What is big O (upper bound) for the following
functions

f(n) = 3n + 8

O(f(n)) is n: O(n)

f(n) = 𝑛𝑛
2

2
+ 10n + 5

O(f(n)) is n2 O(n2)

f(n) = 2103

O(f(n)) is 1: O(1)

O, Ω, Θ

We can also define similar functions for the lower bound
(omega Ω) and lower and upper bounds (theta Θ).

Generally concentrate on the upper bound O as:

•knowing the lower bound (Ω) is of no practical importance
(best case).

•although knowing Θ gives a more exact definition of the
behaviour (on average) it can be more difficult to
calculate.

DOMINANCE RELATIONS

Therefore, Big O notation can be used to describe
the growth rate for any particular algorithm
where the coefficients, additive and multiplicative
constants of the actual f(n) are of very little
consequence - what is important is to understand
the ordering:

n! >> 2n >> n3 >> n2 >> n log n >> n >> log n >> 1

Note on POLYNOMIALS:

Any algorithm whose time complexity is O(nx) when x
> 1 is said to be of polynomial time order.

Two points on polynomials:

• Grow rapidly - for all practical problems: O(n3)
algorithm is going to be much worse than an O(n)
algorithm so in general a linear algorithm (O(n)) is
better

•However, for small n, polynomial can be better.

FOR EXAMPLE:
f1(n) = 17n + 1250 => f(n) is O(n)

f2(n) = n2 + 1 => f(n) is O(n2)

0

2000

4000

6000

8000

10000

12000

0 20 40 60 80 100 120

f1(n): O(n) f2(n):O(n2)

f1(n) f2(n)

But what about the constants?
i.e., For Big O, what is k and 𝑛𝑛0 ?

k*g(n)

f(n)

Time

Aside: can also define similar constants
for lower bound (Ω), and average (Θ)

c*g(n)

f(n)

c1*g(n)

f(n)

c2*g(n)

Ω Θ

EXAMPLES

What is Big O (upper bound) for the
following functions

(listing a value for k and 𝑛𝑛0)

1. f(n) = 3n + 8:

f(n) <= 4n for n >= 8.

O(f(n)) is O(n) k = 4 n0 = 8

2. f(n) = n4 + 100n2 + 50

f(n) <= ?

O(f(n)) is ? k is? n0 is ?

n f(n)=3n+8 4n

1 11 4

2 14 8

3 17 12

4 20 16

5 23 20

6 26 24

7 29 28

8 32 32

9 35 36

10 38 40

11 41 44

12 44 48

13 47 52

List appropriate values for k and 𝑛𝑛0 for
the function f(n) = n4 + 100n2 + 50

n f(n)= n4 + 100n2 + 50 2n4

1 151 2
2 466 32
3 1031 162
4 1906 512
5 3175 1250
6 4946 2592
7 7351 4802
8 10546 8192
9 14711 13122
10 20050 20000
11 26791 29282
12 35186 41472

O(f(n)) is O(n4)
k is 2
n0 is 11

NOTE:

For any f(n) we can, picking some g(n) from f(n),
always find some value for k and 𝑛𝑛0

Therefore, unless we need it for other analysis, we
do not need to worry about finding the values for
k and 𝑛𝑛0 (i.e., we know that it exists but we don’t
need to find it)

GENERAL STEPS TO FIND BIG-O RUNTIME

•Understand what the input is and represent it as
n

•Find the maximum (worst case) number of time
steps in the algorithm in terms of n (can ignore
statements not dependent on n) representing as
function f(n).
•Eliminate all but the highest order terms in f(n).
•Remove all the constant and multiplicative factors
in f(n).

CLASS QUESTION:

Given the following function which sums all the values in an integer array
(arrA[]) with a given size. Perform a time step analysis of the function
_sumArray() What is Big O (upper bound) for the function? Enter your
answer in the menti room given.

Line Cost (max)
numTimes

cost*
numTimes

Total

16

17

18

19

22

f(n) =

Consider another problem that you have
already seen a solution for (in CT103) …
Bubble Sort
Inputs: An array arrA with given size with n distinct
integers in unsorted order

Outputs: An array arrA with n distinct integers in
increasing sorted order
Process:
Get one element in correct position: “Bubble” largest
element up to correct position by traversing array and
comparing - and moving if necessary - adjacent
elements.
Keep doing this for all n items

APPROACH
(“BUBBLING” LARGEST)

for(k = 0; k < size; k++){

for(i = 0; i < size - 1; i++){

if(arrA[i] > arrA[i + 1]){

//out of order so swap values

} //end if

} //end inner for (i loop)

} //end outer for (k loop)

APPROACH
(“BUBBLING” LARGEST)

for(k = 0; k < size; k++){

for(i = 0; i < size – 1 - k; i++){

if(arrA[i] > arrA[i + 1]){

//out of order so swap values

} //end if

} //end inner for (i loop)

} //end outer for (k loop)

void bubbleSort(int[], int);
See Blackboard for function code

HOW TO CALL FUNCTION bubbleSort()
WITH SAMPLE DATA?

ALGORITHM ANALYSIS

When should we start and end clock if counting actual
time?

What are the key operations?

What is the worst case situation?

What is the best and worst case
situation for bubble sort?

RUNNING CODE:

Modifying code to count:

•How many comparisons are done

•How many swaps are done

Use two counters:

numSwaps

numCmprs

Adding in counts and clock()
Don’t forget: #include "time.h"

TIME STEP ANALYSIS
Let N = size
Assume worst case

Line Cost numTimes Cost*numTimes Total

21 1 1 1

23 1 N+1 N+1

24 1 ?

25 1 ?

27, 28, 29
worst case

1+1+1 ?

f(N) =

Looking more
closely at line 24:

1st iteration of outer loop (k=0) numTimes of line 24 = N (checking 0 to N-1-0)

2nd iteration of outer loop (k=1) numTimes of line 24 = N-1 (checking 0 to N-1-1)

3rd iteration of outer loop (k=2) numTimes of line 24 = N-2 (checking 0 to N-1-2)

… etc.

2nd last iteration of outer loop (k=N-2) numTimes of line 24 = 2 (0 to N-1-(N-2))

Last iteration of outer loop (k=N-1) numTimes of line 24 = 1 (0 to N-1-(N-1))

So adding them all up:

N + N-1+ N-2 + N-3 + ….+ 2 + 1 = sum of N integers from 1 to N

Formula for sum of N integers is 𝑁𝑁(𝑁𝑁+1)
2

= 𝑁𝑁
2+𝑁𝑁
2

e.g., sum of integers from 1 to 5 (1+2+3+4+5) = 5
2+5
2

= 30
2

= 15

Looking more
closely at line 25:

Line 25 (if statement) is carried out one less than line 24 so sum is
from 1 to N-1:

Substituting N-1 for N in 𝑁𝑁(𝑁𝑁+1)
2

gives: 𝑁𝑁−1(𝑁𝑁−1+1)
2

= 𝑁𝑁
2−𝑁𝑁
2

i.e.., if N = 5 at line 24, then line 24 is carried out 25 times (in total)
but line 25 is carried out : 5

2−5
2

= 20
2

= 10 times in total

EQUIVALENTLY …

We have a general formula for the sum of N consecutive
integers, starting at any integer:

Sum = N(firstNum + lastNum)/2

e.g. sum of integers from 2 to 10 (9 integers)
9(2+10) / 2 = (9*12)/2 = 54

From previous analysis of line 25: summing from 1 to N-1
=

N-1(1 + N-1)/2

TIME STEP ANALYSIS
Let N = size
Assume worst case

Line Cost numTimes Cost*numTimes Total
21 1 1 1

23 1 N+1 N+1

24 1 𝑁𝑁(𝑁𝑁 + 1)
2

𝑁𝑁2 + 𝑁𝑁
2

25 1 𝑁𝑁2 − 𝑁𝑁
2

𝑁𝑁2 − 𝑁𝑁
2

27, 28, 29
worst case

1+1+1 𝑁𝑁2 − 𝑁𝑁
2 3(𝑁𝑁

2−𝑁𝑁
2

)

f(N) = 5𝑁𝑁
2 −𝑁𝑁
2

+ 2

BIG-O ANALYSIS

As f(N) = 5𝑁𝑁
2 − 𝑁𝑁
2

+ 2 then we say Bubble sort is O(𝑁𝑁2)
where N is the number of values in the array.

There are also a number of other sorting algorithms which
have O(𝑁𝑁2) time complexity and we will consider these
next.

However, we will see that Bubble sort is one of the worst
sorting algorithms we can use for general data.

HOW TO TEST THIS ON LARGER DATA?

We will start working with data from files once you have it
covered in CT103

SUMMARY
o The complexity of an algorithm M is the function f(n) which gives the
running time and/or storage space requirement of the algorithm in terms of
the size n of the input data
o f(n) usually refers to the running time of the algorithm – and can be found
by time step analysis - by counting time steps in a worst case scenario
o It is the growth of f(n) as n increases that is often interest – and we often
concentrate on Big O notation
o In all cases, we can distinguish between best, average and worst case
analysis but we consider worst case mostly.
oAlthough Bubble Sort is never a good choice for a sorting algorithm we
have covered some important aspects of sorting in this lecture, particularly
with respect to the analysis of the algorithm and considering worst case
situations.
oNext we will consider two more O(𝑁𝑁2) sorting algorithms Insertion Sort and
Selection Sort and also start to work with larger arrays

CT102: ALGORITHMS AND
INFORMATION SYSTEMS

More O(n2)
Sorting and

Analysis

Recall: Bubble Sort code
void bubbleSort(int[], int);

TIME STEP ANALYSIS
Let N = size
Assume worst case

Line Cost numTimes Cost*numTimes Total

21 1 1 1

23 1 N+1 N+1

24 1 ?

25 1 ?

27, 28, 29
worst case

1+1+1 ? 3 *

f(N) =

Looking more
closely at line 24:

1st iteration of outer loop (k=0) numTimes of line 24 = N (checking 0 to N-1-0)

2nd iteration of outer loop (k=1) numTimes of line 24 = N-1 (checking 0 to N-1-1)

3rd iteration of outer loop (k=2) numTimes of line 24 = N-2 (checking 0 to N-1-2)

… etc.

2nd last iteration of outer loop (k=N-2) numTimes of line 24 = 2 (0 to N-1-(N-2))

Last iteration of outer loop (k=N-1) numTimes of line 24 = 1 (0 to N-1-(N-1))

So adding them all up:

N + N-1+ N-2 + N-3 + ….+ 2 + 1 = sum of N integers from 1 to N

Formula for sum of N integers from 1 to N is 𝑁𝑁(𝑁𝑁+1)
2

= 𝑁𝑁
2+𝑁𝑁
2

e.g., sum of integers from 1 to 5 (1+2+3+4+5) = 5
2+5
2

= 30
2

= 15

Looking more
closely at line 25:

Line 25 (if statement) is carried out one less than line 24 so sum is
from 1 to N-1:

Substituting N-1 for N in 𝑁𝑁(𝑁𝑁+1)
2

gives: 𝑁𝑁−1(𝑁𝑁−1+1)
2

= 𝑁𝑁
2−𝑁𝑁
2

i.e., if N = 5 at line 24, then line 24 is carried out 25 times (in total)
but line 25 is carried out : 5

2−5
2

= 20
2

= 10 times in total

EQUIVALENTLY …

We have a general formula for the sum of N consecutive
integers, starting at any integer:

𝑁𝑁∗(𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑁𝑁𝑓𝑓𝑓𝑓+𝑙𝑙𝑙𝑙𝑓𝑓𝑓𝑓𝑁𝑁𝑓𝑓𝑓𝑓)
2

e.g. sum of integers from 2 to 10 (9 integers)


9∗(2+10)

2
= 9∗12

2
= 54

From previous analysis of line 25: summing from 1 to N-1
= 𝑁𝑁−1(1+𝑁𝑁−1)

2
= 𝑁𝑁

2− 𝑁𝑁
2

TIME STEP ANALYSIS
Let N = size
Assume worst case

Line Cost numTimes Cost*numTimes Total
21 1 1 1

23 1 N+1 N+1

24 1 𝑁𝑁(𝑁𝑁 + 1)
2

𝑁𝑁2 + 𝑁𝑁
2

25 1 𝑁𝑁2 − 𝑁𝑁
2

𝑁𝑁2 − 𝑁𝑁
2

27, 28, 29
worst case

1+1+1 𝑁𝑁2 − 𝑁𝑁
2 3(𝑁𝑁

2−𝑁𝑁
2

)

f(N) = 5𝑁𝑁
2 −𝑁𝑁
2

+ 2

BIG-O ANALYSIS

As f(N) = 5𝑁𝑁
2 − 𝑁𝑁
2

+ 2 then we say Bubble sort is O(𝑁𝑁2)
where N is the number of values in the array.

There are also a number of other sorting algorithms which
have O(𝑁𝑁2) time complexity and we will consider these
next.

However, we will see that Bubble sort is one of the worst
sorting algorithms we can use for general data.

SELECTION SORT
Searches entire array and finds (selects) the
largest/smallest element and puts is where it belongs
 e.g., smallest belongs in A[0] for array A.

Searches the array looking for the second largest/smallest
and puts it where it belongs
 e.g., for 2nd smallest in A[1] for array A

Searches the array looking for the third largest/smallest
and puts it where it belongs
 e.g., for 3rd smallest in A[2] for array A

etc.

EXAMPLE: SORT THE FOLLOWING DATA USING SELECTION
SORT

33 12 70 21 -3 34A

0 541 2 3

ALGORITHM OUTLINE

Input: Array A of integers with given size

Output: Array with data sorted in increasing order

Approach (finding smallest)

for (i = 0; i < size - 1; i++){

min =

// find location of smallest value in range i to size-1

// swap values at A[min] and A[i]

}

HOW TO FIND MINIMUM?
Considered in Worksheet 2, Question 5:

“Given an integer array, arrA[], and its size (size) write an algorithm
(code) in C to find the smallest integer in the array, printing out the
integer and its position in the array. You may assume that all values in
the array are distinct (i.e., there is only one smallest value).”

33 12 70 21 -3 34arrA

0 541 2 3

Modifying previous for Selection Sort:
We will write this as part of the Selection sort function for
now to make the timestep analysis easier (i.e. not as its own
function)

We want to keep finding “new” minimums until we have
finished sorting, from i = 0 to size - 1

min = i; // for some i
//find next smallest
for (j = min + 1; j < size; j++) {

if (arrA[min] > arrA[j]) {
min = j;

}
} // end j for
return(min);
}

33 12 70 21 -3 34arrA

0 541 2 3

SELECTION SORT
void selectionSort(int[], int);

33 12 70 21 -3 34arrA

0 541 2 3

TIME STEP ANALYSIS:
SELECTION SORT:

Let N = size of array
Assume worst case - values always out of order

Line Cost Num Times Cost*Num Times Total

33 1 1

35 1 N

36 1 N-1

38 1 ?

39 1 ?

40 1 ?

45, 46, 47, 48 4 N-1

CONSIDER LINE 38:

When i = 0 (min = 0), j = 1, the condition (j < size) is checked N times

When i = 1 (min = 1), j = 2, the condition (j < size) is checked N-1 times

When i = 2 (min = 2), j = 3, the condition (j < size) is checked N-2 times

When i = size-2, j = size-1, the condition (j < size) is checked twice

So adding all these up:

N+N-1+N-2 + ….. + 2 = (sum of integers from 2 to N):
𝑁𝑁−1(2+𝑁𝑁)

2
= 𝑁𝑁

2+𝑁𝑁
2

- 1

CONSIDER LINE 39:
if statement

Line 39 (if statement) iterates once less than line 38 for each time j loop
iterates:

i = 0, j = 1, line 38 checked N times, so Line 39 checked N-1 times

i = 1, j = 2, line 38 checked N-1 times, so Line 39 checked N-2 times

i = 2, j = 3, line 38 checked N-2 times, so Line 39 checked N-3 times

….

i = size-2, j = size-1, line 38 checked twice, so Line 39 checked once

So summing up: N-1+ N-2 …. +2 + 1 =𝑁𝑁−1(1+ 𝑁𝑁 −1)
2

= 𝑁𝑁2− 𝑁𝑁
2

CONSIDER LINE 40

If we assume the condition arrA[min] > arrA[j] is always true at
Line 39 then Line 40 will also take 𝑁𝑁

2−𝑁𝑁
2

timesteps.

Line Cost Num Times Cost*Num Times

33 1 1 1
35 1 N N
36 1 N-1 N-1
38 1 𝑁𝑁2+𝑁𝑁

2
- 1 𝑁𝑁2+𝑁𝑁

2
- 1

39 1 𝑁𝑁2−𝑁𝑁
2

𝑁𝑁2−𝑁𝑁
2

40 1 𝑁𝑁2−𝑁𝑁
2

𝑁𝑁2−𝑁𝑁
2

45, 46, 47, 48 4 N-1 4(N-1)

f(N) = ?

YOU TRY ….
PUTTING IT ALL TOGETHER

Handy algebraic
expression solver:

http://www.webmath.c
om/anything.html

BIG-O ANALYSIS

Selection sort is also O(𝑁𝑁2) where N is the number of
values in the array.

Where do we need to add code to count
comparisons and swaps?

What line(s) are comparisons happening at? Where will we count them?

What line(s) are swaps happening at? Where will we count them?

INSERTION SORT

Scans elements in a list inserting each element into its
proper position in the previously sorted list.

Steps (sorting items in an array):

•Consider first 2 elements in array and if out of order, sort
those 2 (relative to each other)

•Consider 3rd element and if out of order, sort the first
three elements relative to each other

•At each stage, consider new element and insert it in its
correct position in the previously sorted sub-array

EXAMPLE:
SORT THE FOLLOWING DATA USING INSERTION SORT

33 12 70 21 -3 34arrA

0 541 2 3

ALGORITHM OUTLINE

Input: Array arrA[] of integers of given size

Output: Array with data sorted in increasing order

Approach:

Start at position i=1 and let curr = arrA[i]

Compare curr with item at position i-1

If curr is out of order, find the correct position for curr in
previously sorted sub-array

As you are finding correct position “Make room” for curr so
that it can be inserted in the correct position (i.e. move values
up by one)

Note: Must stop comparing when we reach position 0

ALGORITHM OUTLINE

// Given array arrA[] with size, of type integer; integer i

int i, j, curr;

for (i = 1; i < size; i++) {

curr = arrA[i];

for (j = i - 1; j >= 0 && curr < arrA[j]; j--) {
//move ("make room")

arrA[j + 1] = arrA[j];

}

//place curr

}

ALGORITHM OUTLINE

// Given array arrA[] with size, of type integer; integer i

int i, j, curr;

for (i = 1; i < size; i++) {

curr = arrA[i];

for (j = i - 1; j >= 0 && curr < arrA[j]; j--) {
//move ("make room")

arrA[j + 1] = arrA[j];

}

//place curr

}

Finding correct position

Two cases are checked in j loop to find correct position
for curr:

o find some element in array at position j which is less than
curr:

curr < arrA[j] not true

or

o have reached the start of the array (i.e. at 0) and curr
must be inserted there (at position 0), i.e., j >= 0 not true

In addition, must “make room” as we compare so that when
we find the correct position we can add it without having to
do extra work:

If currently comparing curr to value at arrA[j], then:
Let arrA[j + 1] = arrA[j] until correct position found for curr

INSERTION SORT
void insertionSort(int[], int);

33 12 70 21 -3 34arrA

0 541 2 3

INSERTION SORT
TIME STEP ANALYSIS:
Let N= size of array
Assume worst case …

Line Cost Num Times Cost*Num Times Total

32 1 1

34 1 ?

35 1 ?

37 1 ?

39 1 ?

42&43 2 ?

for loop at
line 37:

Worst case: curr always belongs at arrA[0]:

when i = 1, j = 0, line 37 checked twice (once true, once not)

when i = 2, j = 1, line 37 checked 3 times

when i = 3, j = 2, line 37 checked 4 times

….

when i = N-1, j = N-2, line 37 checked N times

So adding all these up: N+N-1+N-2 + ….. + 2 = 𝑁𝑁−1(2+𝑁𝑁)
2

= 𝑁𝑁
2+𝑁𝑁
2

- 1

LINE 39: MOVING

Line 39 iterates 1 less for each new j value in while loop:

when i = 1, j = 0, line 37 checked twice, so Line 39 occurs once

when i = 2, j = 1, line 37 checked 3 times, so Line 39 occurs twice

when i = 3, j = 2, line 37 checked 4 times , so Line 39 occurs 3 times

….

when i = N-1, j = N-2, line 37 checked N times, so Line 39 occurs N-1 times

So adding all these up: N-1+N-2 + ….. + 1 = 𝑁𝑁−1 (1 +𝑁𝑁 −1)
2

= 𝑁𝑁2−𝑁𝑁
2

PUTTING IT ALL
TOGETHER:

Line Cost Num Times

32 1

34 1

35 1

37 1

39 1

42&43 2

BIG-O ANALYSIS

Insertion sort is also O(𝑁𝑁2) where N is the number of
values in the array.

However we can see differences in terms of comparisons
and swaps …

Where do we need to add code to count
comparisons and swaps?

What line(s) are comparisons happening at? Where will we count
them?

What line(s) are swaps happening at? Where will we count them?

Sorting 1000 integers
Some results for a “typical” run (all sorting the
same integers)

WHAT DOES THE DATA LOOK LIKE?

For a 1000 “random” integer numbers-
Good mixed distribution
Were not sorted

QUESTIONS

1. Would you expect performance to be different if:

Integers in file were already sorted

Integers in file were sorted in descending sorte d order?

2. When you add code to count steps and comparisons should the time step
analysis be updated to include the new code?

SUMMARY

Bubble, Selection and Insertion Sort are similar
types of sorting algorithms – they work by
comparing and swapping/moving data - and are
characterised by a nested loop that gives a
quadratic function dependent on N, the number of
values to sort.

CT102:
ALGORITHMS

Parallel Arrays
& Merging
Sorted Arrays

PARALLEL ARRAYS

Parallel arrays refer to multiple arrays of the same size
used to store records.

A separate array, with data of the same type, is used for
each field of the record.

Each array must have the same size but may have
different data types.

Values for a record are located at the same index value
in each array.

MOTIVATION

Consider the case where you want to hold different types of data
for the same occurrence:

For example:
Name and assignment marks per student in a class.
Average, minimum, maximum and stdev per exam in a year.

With parallel arrays we can imagine data relating to something
of interest in a ‘column’ of array entries.

An index value can access the same locations in different arrays,
e.g. location 0, 1, 2, etc.

EXAMPLE:

Data held on students is:
name, id, examScore

with
name a string,
id an integer
examScore an integer

If using arrays, then can use 3 parallel arrays to hold this
information …

EXAMPLE: 3 Parallel arrays to hold name, id and
exam score

For an individual student:
 name[i] gives student name
 id[i] gives the corresponding id of that student
 examScore[i] gives the corresponding exam score of that student

e.g,
 name[1] is student named Sam, his id can be found at id[1] (432)
and his exam score can be found at examScore[1] (65)

Julie Sam Ron Ann

123 432 35 415 515id

examScore

name

686540 70 85

Sue

STEPS WHEN CREATING PARALLEL ARRAYS

Declare each array, specifying names, data types
and size:
The size of all arrays should be the same
Data types of arrays can be different

Populate the arrays in parallel, i.e., put values into
each array at location 0, location 1, location 2, etc.

IN C:

int i;

int size = 5;

char *names[] = {"Julie","Sam","Ron","Ann","Sue"};

int id[] = {123, 432, 35, 415,515};

int examScore[] = {40, 65, 68, 70, 85};

for (i = 0; i < size; i++) {

printf("Name: %s, ID: %d, Exam Score: %d \n",

names[i], id[i], examScore[i]);

}

MERGING SORTED ARRAYS

Given two sorted lists of data (possibly with duplicate
values) merging involves combining the values from both lists,
in sorted order, into a single sorted list.

INPUTS, OUTPUTS AND ASSUMPTIONS

Inputs:

Sorted array arrA[] of size sizeA, unique values

Sorted array arrB[] of size sizeB, unique values

Outputs:

Sorted array arrC[] of size sizeC containing data from
arrA[] and arrB[], unique values

Assumptions:

Duplicates are not included in arrC[], i.e. each value is
only present once

Note: Can easily modify code to include duplicates later.

2 4 12 14

1 12 17 19 29

arrA

arrC

arrB

24

EXAMPLE:
What values are in arrC[]?

44 49

INDEXING 3 ARRAYS

Maintain 3 indexes - one for each array:
i is index for arrA
j is index for arrB
k is index for arrC

i and j represent the index of the next values to be
compared in the arrays to merge.

k represents the next position to be filled in the new
array arrC

Size of arrC?
 Can be no larger than sizeA + sizeB

STEPS:

while not at the end of arrA and ArrB compare
arrA[i] and arrB[j] putting smallest into arrC[k]

increment i, j and k appropriately.

if at end of arrA and there are values left in arrB, put
values from arrB into arrC (incrementing j and k)

else if at end of arrB and there are values left in
arrA, move values from arrA into arrC (incrementing
i and k)

GETTING STARTED….

void merge (int arrA[], int sizeA, int arrB[], int sizeB) {

int i, j, k;

int sizeC;

i = j = k = 0;

GETTING STARTED….

// Setting size of C

sizeC = sizeA + sizeB;

// declare arrC of size sizeC using malloc (memory allocation)

int *arrC;

arrC = (int*) malloc(sizeC * sizeof(int));

COMPARING ….

FINISHED COMPARING ….

TIME STEP ANALYSIS
let P = sizeA and M = sizeB

Line Cost Num Times Cost*Num Times Total

10, 11, 13, 14,
17, 18

6 1 each 6

20 1 P+1 or M+1
Assume P+1
without loss
of
generality

P+1

22 or 22 & 27
or 22, 27 & 32

3 P times 3P

23, 24, 25
or 28, 29, 30
or 33, 34, 35,
36

4 P times 4P

8P+7

TIME STEP ANALYSIS ctd.

Line Cost Num Times Cost*Num Times Total

(previous) 8P + 7

43 or
43 and 52

2 1 2

45 or 54
(only one)

1 M-j + 1
Assume j = 0
worst case

M+1

46, 47, 48
(or
55, 56, 57)

3 M-j
Assume j = 0
worst case

3M

60 1 1 1 1

8P+4M+11

O(P+M)

Modifications needed if we have non
unique values in each array and want to
keep all duplicates?

Delete Lines 32 to 36

Change operator to <=

Keep remaining code

Same code at start

HOW DOES TIME STEP ANALYSIS DIFFER?
Line Cost Num Times Cost*Num Times Total

10, 11, 13, 14,
17, 18

6 1 each 6

20 1 P+1 or M+1
Assume P+1
without loss
of
generality

P+1

22 or 22 & 27
or 22, 27 & 32

2 P times 2P

23, 24, 25
or 28, 29, 30
or 33, 34, 35,
36

3 P times 3P

6P+7

TIME STEP ANALYSIS ctd.

Line Cost Num Times Cost*Num Times Total

(previous) 6P + 7

43 or
43 and 52

2 1 2

45 or 54
(only one)

1 M-j + 1
Assume j = 0
worst case

M+1

46, 47, 48
(or
55, 56, 57)

3 M-j
Assume j = 0
worst case

3M

60 1 1 1 1

6P+4M+11

O(P+M)

SUMMARY

We often want to keep data in sorted order (so that a binary search
can be performed more efficiently than a linear search)

However we must also be able to easily add data to our sorted data
(i.e., maintaining the sorted order).

One way to do this is to add new data to a temporary file (adding it
in sorted order, or sorting after it has been added), and then merge
this sorted data with the existing sorted data … for this we need a
merge algorithm.

Because Big-O is linear (O(P+M)) this is always better than merging
the data in unsorted order and re-sorting it.

CT102: ALGORITHMS
Topic:
Counting
Positive
Integers

COUNTING

Many complex systems are built on components that involve
counting

For example, some data mining approaches, search engines (as
seen with tf*idf), information entropy and information gain,
compression techniques (as seen with frequencies), etc.

In general, counting involves finding the number of occurrences,
or frequency, of one or more items, or groups of items, in a
collection.

YOU TRY …
Counting integers in arrays

Given an array arrA[] of size N, containing (unsorted)
positive integer values in the range [0-6] write a function
to count the frequency of each integer in the array:

For example,
arrA[15] = {1, 1, 1, 2, 2, 4, 3, 1, 1, 6, 5, 4, 1, 1, 6};

APPROACH 1
Check each value and update appropriate count

Approach 1 is not very efficient!
Alternatives?
Approach 2: Don’t loop for each value – can check for
each value within one loop and update appropriate
count, e.g. count0, count1, count2, etc.

Approach 2 is not very efficient! Especially
if we are counting many different values
Alternatives?

Approach 3 We can use an integer array (count[]) to keep
track of the counts for us as we loop through array (or file). In
the case of counting positive integers:
 Index position 0 holds count of 0s
 Index position 1 holds count of 1s
 Index position 2 holds count of 2s

 etc.

The size of this array will be dictated by how many distinct
values nee to be counted.

All locations in the array must be initialised to 0 at start

EXAMPLE: using array count[] to hold
counts

arrA[15] = {1, 1, 1, 2, 2, 4, 3, 1, 1, 6, 5, 4, 1, 1, 6};

0 0 0 0 0 0 0
0 1 2 3 4 5 6

count[]

Initially:

After counting:

0 7 2 1 2 1 2
0 1 2 3 4 5 6

count[]

i.e.,
count[0] will contain the number of times 0 occurs in arrA[] (0)

count[1] will contain the number of times 1 occurs in arrA[] (7)

count[2] will contain the number of times 1 occurs in arrA[] (2) etc.

APPROACH 3 ADVANTAGES

A more important advantage of approach 3 is that we do not need an if
statement to explicitly check if we have a 0 or a 1 or a 2 etc.

How to count then?

The value in the original array (arrA[]) becomes the index value of the
counting array (count[]):

•When value is 0 in arrA[], go to index position 0 in count[], update:
++count[0]

•When value is 1 in arrA[], go to index position 1 in count[], update count
++count[1]

•When value is 2 in arrA[], go to index position 2 in count[], update count
++count[2]

• At each stage: ++count[arrA[i]]

ARRAY count[]

Consider example again …
arrA[15] = {1, 1, 1, 2, 2, 4, 3, 1, 1, 6, 5, 4, 1, 1, 6};

EXAMPLE:
arrA[15] = {1, 1, 1, 2, 2, 4, 3, 1, 1, 6, 5, 4, 1, 1, 6};

0 0 0 0 0 0 0
0 1 2 3 4 5 6

count[]

Initially:

i arrA[i] ++count[arrA[i]] Value at count[arrA[i]]

0 arrA[0] is 1 ++count[arrA[0]]
++count[1]

1

1 arrA[1] is 1 ++count[arrA[1]]
++count[1]

2

2 arrA[2] is 1 ++count[arrA[2]]
++count[2]

3

3 arrA[3] is 2 ++count[arrA[3]]
++count[2]

1

4 arrA[4] is 2 ++count[arrA[4]]
++count[2]

2

etc

WORKSHEET QUESTIONS

Array indexes:

Given the following arrays: arrA[] and freq[]:

arrA[10] = {4, 5, 4, 3, 0, 1, 4, 5, 5, 4};

freq[6] = {0, 0, 0, 0, 0, 0};

What value do each of the following have?

arrA[2]

freq[2]

arrA[freq[2]]

++arrA[freq[2]]

++freq[arrA[1]]

UPDATING count[] with
++count[arrA[i]];

++count[arrA[i]] works IF and ONLY IF:

•arrA[] stores positive integers (but can be modified
for negative integers)

•count[] has the correct size so that any potential
value in arrA[] has a corresponding index in
count[]

WHAT IS THE SIZE OF count[]?

For positive integers, the size of count[] must be one more
than the largest value we are counting (i.e. the max value in
arrA[]) so that there is an index for this max value

e.g.,

if max value is 100 then count[] must be of size 101

In previous example, max value was 6 so size of count[] is 7

We need to be able to dynamically create the array count[]
with the correct size.

BACK TO CODE FOR COUNTING:
GIVEN ARRAY arrA[] OF SIZE size WITH
POSITIVE INTEGERS:

1. Find maxVal (max value in arrA[])

2. Declare and initialise (to 0) an array count[maxVal + 1]
which will hold the counts for each integer in arrA[].

3. Loop from i = 0 to size-1 inclusive and at each stage update by
1 the location arrA[i] in count[]:

++count[arrA[i]];

no “if”
required

APPROACH 3:
I am going to use the name freq[] for the array that holds
the counts – it is of size freqSize

Declaring freq[] given maxVal,
the maximum value

Use malloc() to dynamically set the size of the array:

// assuming you have found maxVal

int *freq;

int freqSize;

freqSize = maxVal + 1;

freq = (int*)malloc(freqSize * sizeof(int)); //create

FULL FUNCTION

APPROACH 3
Timestep analysis
and Big-O analysis
(Ignore output – lines 51&52)
Let N = size
maxVal is maximum value in arrA[]

Line Cost numTimes Cost*numTimes Total

31-33
35,36

5 1 5

40 1 maxVal + 2 maxVal + 2

41 1 maxVal + 1 maxVal + 1

45 1 N + 1 N + 1

46 1 N N

F(N) = 2N + 2maxVal + 9

Big-O: O(N + maxVal)

How to find maxVal?

This will require another scan of arrA[] (all N elements) but this will
also be O(N) so will not affect the linear time complexity overall

We have seen the code for finding the minimum value previously (as
part of Selection Sort), so will need to modify this slightly to find the
maximum value, if it is not already known.

MODIFICATIONS

• Consider how/if the algorithm can be modified if the minVal is much
greater than 0, e.g.,

arrA[8] = {40, 50, 40, 30, 80, 50, 40, 50};

• Consider how/if the algorithm can be modified to count both
negative and positive integers, e.g.,

arrA[8] = {-4, -10, 0, -4, -2, 0, -2, 10};

APPLICATIONS
Can you solve the following problems in linear order
time complexity?

Given an array of N integers in unsorted order with mostly
unique values and values are in the range [0-100]. Write
an algorithm which will find and print the any value that is
present more than once.

Given an array of N integers in the range [0-100] and in
unsorted order, write an algorithm to check whether all
values in the array are unique.

SUMMARY

• If you have a small range then counting integers can be
done very efficiently using an integer array to keep track
of counts (other ways to store counts include hash maps
and dictionaries)

• This forms the basis of the next sorting algorithm we will
consider … countSort

TOPIC:
COUNTING AND COUNT SORT CT102:

Algorithms

RECALL: Counting
If you have a small range (maxVal is small and minVal is 0) then counting N
positive integers can be done very efficiently using an integer array to keep
track of the counts: O(N + maxVal)

MODIFICATIONS

• Consider how/if the algorithm can be modified if the minVal is much greater than 0, e.g.,

arrA[8] = {40, 80, 30, 41, 52, 52, 41, 52};

• Consider how/if the algorithm can be modified to count both negative and positive integers,
e.g.,

arrA[8] = {-4, -10, 0, -4, -2, 0, -2, 10};

SOLUTION
To work with negative integers (or to work with positive integers in a non-0 based range) we
need to know both the minVal and the maxVal.

The idea then is to store the minVal at index 0 and to offset the location of all other values
based on this minVal.

The size of freq will be maxVal - minVal + 1
 freq[0] will store the count of the minVal
 freq[freqSize-1] will store the count of the maxVal

For any integer in arrA[], the associated location in freq[] will be:

arrA[i] - minVal

0 1 2 3 4 5 6 7 8 9

freq[]

EXAMPLE WITH POSITIVE & NEGATIVE INTEGERS
arrA[8] = {-4, -10, 0, -4, -2, 0, -2, 10};

In the above example, the minVal is -10 and the maxVal is 10 i.e., the range of
integers is [-10, 10] then:

freqSize = 10-(-10)+1 = 21

At each stage: ++freq[arrA[i] – minVal]

When i=0 arrA[i] = -4 => ++freq[-4 --10] => ++freq[6]

When i=1 arrA[i] = -10 => ++freq[-10 --10] => ++freq[0]

When i=2 arrA[i] = 0 => ++freq[0 --10] => ++freq[10]

etc.

0 1 2 3 4 5 6 7 8 9
freq[]

10 11 12 13 14 15 16 17 18 19 20

1
0 1 2 3 4 5 6 7 8 9

1 1
0 1 2 3 4 5 6 7 8 9

1
10 11 12 13 14 15 16 17 18 19

NON-ZERO BASED POSITIVE RANGE
? Question … why bother with this?

arrA[8] = {40, 80, 30, 41, 52, 52, 41, 52};

In the above example, the minVal is 30 and the maxVal is 80 i.e., the range of
integers is [30, 80] then:

freqSize = 80-(30)+1 = 51

At each stage: ++freq[arrA[i] – minVal]

When i=0 arrA[i] = 40 => ++freq[40 - 30] => ++freq[10]

When i=1 arrA[i] = 80 => ++freq[80 - 30] => ++freq[50]

When i=2 arrA[i] = 30 => ++freq[30 - 30] => ++freq[0]

etc.

0 1 2 3 4 5 6 7 8 9

freq[]
10 11 12 13 14 15 16 17 18 19 50

……

CHANGES NEEDED TO FUNCTION?

1. Function definition:

void countSortRange(int arrA[], int size, int minVal, int maxVal) {

2. The size of array freq[]:

freqSize = maxVal - minVal + 1;

3. Counting

++freq[arrA[i] - minVal];

APPLICATIONS

1. Given an array of N integers in unsorted order with mostly unique values and values are in
the range [0-100]. Write an algorithm which will find and print the any value that is present
more than once.

2. Given an array of N integers in the range [0-100] and in unsorted order, write an
algorithm to check whether all values in the array are unique.

1. Given an array of N integers in unsorted order with mostly unique values and
values are in the range [0-100]. Write an algorithm which will find and print any
value that is present more than once.

Solution:

All integers are positive and the maxVal value passed should be 100

Previous solution will work up to line 51

When printing out values, or storing them, (line 52) only want to print/store
duplicates:

//output repeating values

for(i = 0; i < freqSize; i++) {

if (freq[i] > 1) {

printf("\n Number %d occurs %d times", i, freq[i]);

}

}

2. Given an array of N integers in the range [0-100] and in unsorted order, write
an algorithm to check whether all values in the array are unique.

Solution:

Previous solution will work up to line 51 but may want to re-write as
a function which will return a Boolean (true for unique), false
otherwise:
bool isUnique(int arrA[], int size, int maxVal){

Modify code to check if all values in freq[] are either 0 or 1
//check for any non-unique value

bool isUnique = true;

for(i = 0; i < freqSize && isUnique; i++) {

if (freq[i] > 1) {

isUnique = false;

}

}

NOTE:

As isUnique() will be false
once we find any repeated
number, we do not need to do
a full scan of freq[] and can
incorporate the new code in to
the counting.

New Problem: Given an array of non-unique N integers in
unsorted order, write an algorithm to sort the integers.

Idea:

If we know the frequency of each value, we can figure out where the value belongs in the sorted
array.

For example, if we know that 0 occurs 5 times, then the first 5 locations (locations 0, 1, 2, 3 and 4) in
the sorted array are 0.

However, if possible we want to avoid using a nested loop or an if statement when we place items

New Idea:

If we have the freq of the number of values <= any value in the array we can place the current
value in index position one less than this and decrement the freq

For example, if we come across a 0 in the original array and know that there are 5 values <= 0,
then the 0 we are at can be placed in position 4 and decrement freq to 4

Next time we come across a 0 in the original array we see that there are now 4 values <= 0, and
we can place the next 0 in position 3

TOPIC:
COUNTING AND COUNT SORT CT102:

Algorithms

RECALL: Counting
If you have a small range (maxVal is small and minVal is 0) then counting N
positive integers can be done very efficiently using an integer array to keep
track of the counts: O(N + maxVal)

Problem Statement: Given an array of non-unique N
integers in unsorted order, write an algorithm to sort the
integers.

Idea:

If we know the frequency of each value, we can figure out where the value belongs in the sorted
array.

For example, if we know that 0 occurs 5 times, then the first 5 locations (locations 0, 1, 2, 3 and 4) in
the sorted array are 0.

However, if possible we want to avoid using a nested loop or an if statement when we place items

New Idea:

If we have the freq of the number of values <= any value in the array we can place the current
value in index position one less than this and decrement the freq

For example, if we come across a 0 in the original array and know that there are 5 values <= 0,
then the 0 we are at can be placed in position 4 and decrement freq to 4

Next time we come across a 0 in the original array we see that there are now 4 values <= 0, and
we can place the next 0 in position 3

EXAMPLE:
Given arrA[] = {1, 2, 1, 3, 2, 4, 6, 1, 1, 6};

0 4 2 1 1 0 2
0 1 2 3 4 5 6

0 0 0 0 0 0 0
0 1 2 3 4 5 6

0 4 6 7 8 8 10
0 1 2 3 4 5 6

freq[] freq[]

freq[]

Number of values <= 0 is 0

Number of values <= 1 is 4 = freq[1] + freq[0] and update freq[1]

Number of values <= 2 is 6 = freq[2] + freq[1] and update freq[2]

Number of values <= 3 is 7 = freq[2] + freq[1] and update freq[3]

etc.

HOW CAN WE USE THIS TO SORT?
Given arrA[10] = {1, 2, 1, 3, 2, 4, 6, 1, 1, 6};

0 4 6 7 8 8 10
0 1 2 3 4 5 6

freq[]

Starting at index 0 in arrA[] and traversing to end of arrA[]:
arrA[0] = 1, Number of values <= 1 is 4 so arrB[3] = 1 and --freq[1], it is now 3
arrA[1] = 2, Number of values <= 2 is 6 so arrB[5] = 2 and --freq[2], it is now 5
arrA[2] = 1, Number of values <= 1 is ? so arrB[?] = 1 and --freq[1], it is now ?
arrA[3] = 3, Number of values <= 3 is 7 so arrB[6] = 3 and --freq[3], it is now 6
arrA[4] = 2, Number of values <= 2 is ? so arrB[?] = 2 and --freq[2], it is now ?

0 1 2 3 4 5 6 7 8 9
arrB[]

WHAT IS HAPPENING AT EACH STAGE?
Given arrA[10] = {1, 2, 1, 3, 2, 4, 6, 1, 1, 6};

value = arrA[i]; //value to sort
count = freq[value]; //<= freq of value
arrB[count - 1] = value; //place in arrB
--freq[value]; //update <= count

0 4 6 7 8 8 10
0 1 2 3 4 5 6

freq[]

arrB[]
0 1 2 3 4 5 6 7 8 9

FINDING CORRECT POSITION FOR EACH VALUE:
int arrA[10] = {1, 2, 1, 3, 2, 4, 6, 1, 1, 6};

When i = 0:

value = arrA[i]: value = arrA[0] = 1

count = freq[value]: count = freq[1] = 4

arrB[count-1] = value: arrB[3] = 1

--freq[value]: freq[1] is 3

0 4 6 7 8 8 10
0 1 2 3 4 5 6

freq[]

1
0 1 2 3 4 5 6 7 8 9

arrB[]

0 3 6 7 8 8 10
0 1 2 3 4 5 6

freq[]

FINDING CORRECT POSITION FOR EACH VALUE:
int arrA[10] = {1, 2, 1, 3, 2, 4, 6, 1, 1, 6};

When i = 1:

value = arrA[1]: value = arrA[1] = 2

count = freq[value]: count = freq[2] = 6

arrB[count-1] = value: arrB[5] = 2

--freq[value]: freq[2] is 5

0 3 6 7 8 8 10
0 1 2 3 4 5 6

freq[]

1 2
0 1 2 3 4 5 6 7 8 9

arrB[]

0 3 5 7 8 8 10
0 1 2 3 4 5 6

freq[]

FINDING CORRECT POSITION FOR EACH VALUE:
int arrA[10] = {1, 2, 1, 3, 2, 4, 6, 1, 1, 6};

When i = 2:

value = arrA[2]: value = arrA[2] = 1

count = freq[value]: count = freq[1] = 3

arrB[count-1] = value: arrB[2] = 1

--freq[value]: freq[1] is 2

0 3 5 7 8 8 10
0 1 2 3 4 5 6

freq[]

1 1 2
0 1 2 3 4 5 6 7 8 9

arrB[]

0 2 5 7 8 8 10
0 1 2 3 4 5 6

freq[]

COUNT SORT:
Inputs and Outputs

Inputs:

Array arrA[] of size N with n positive integer values in the range 0 - k.

Outputs:

Array arrB[] (same size as arrA[]) to hold the sorted values (originally empty).
(** Note need this additional array to hold the sorted data)
Assumptions:

(Strong!) assumption: integer data

Initially we will assume the data is positive but negative integers can also be
easily sorted with a small adjustment/offset

NOT
general
purpose
sorting

technique

Count Sort Steps:
1. Find maxVal as before, if not given

2. Create freq[maxVal+1] to hold count of each number in arrA[] as before

3. [new] Modify freq[] to hold the number of elements which are less than or equal
to each value arrA[i]. For i >= 1:

freq[i] = freq[i] + freq[i-1]

4. Sort: For i from 0 to end of arrA[]:

value = arrA[i]; //value to sort

count = freq[value]; //<= freq of value
arrB[count-1] = value; //place in arrB
--freq[value]; //update counts

C CODE FRAGMENTS
//count

for(i = 0; i < size; i++) {

++freq[arrA[i]];

}

//get <= in freq[]

for(i = 1; i < freqSize; i++) {

freq[i] = freq[i] + freq[i - 1];

}

// place values from arrA into arrB; update freq[]

for(i = 0; i < size; i++) {

value = arrA[i]; //value to sort

count = freq[value]; //<= freq of value

arrB[count-1] = value; //place value in arrB

--freq[value]; //decrement freq[]

} //next value in arrA

NOTE:
no need for extra variables count and value but they
increase readability

Alternative:

// place values from arrA into arrB; update freq[]

for(i = 0; i < size; i++) {

arrB[freq[arrA[i]] - 1] = arrA[i];

--freq[arrA[i]];

}

FINAL STEP: Write back values to arrA[]

Remember arrA[] remains unsorted up to this point and arrB[] contains the
sorted data.

//write back sorted values to arrA[] now that sorting is finished

for (i = 0; i < size; i++) {

arrA[i] = arrB[i];

}

void countSort(int[], int, int);

TIME STEP ANALYSIS:
Let N = size Let K = freqSize (maxVal+1)

Line Cost Num Times Cost*Num Times

32-39 6 1 6

42 1 K+1 K+1

43 (initialise freq) 1 K K

47 1 N+1 N+1

48 (count) 1 N N

52 1 K K

53 (calculate <=) 1 K-1 K-1

57 1 N+1 N+1

58-61 4 N 4N

65 1 N+1 N+1

66 (write back) 1 N N

TOTAL 9N + 4K + 9

Big-O O(N + K)

Dependent on size
of original array
and maxVal – the
smaller maxVal the

better

Time taken?
Number of comparisons and swaps?

Will be quick relative to other Sorting techniques

Number of comparisons and swaps?

ADDITIONAL QUESTIONS/WORK

1. Consider how you might modify the algorithm to count both positive and
negative integers.

2. Add additional code to test countSort() with a larger file

3. Add additional code to check the actual running time of countSort()

4. Are there any benefits to be gained if the data is already sorted or
partially sorted?

COUNT SORT FOR NEGATIVE INTEGERS
To w rk with negative integers we need to know both the minVal and the maxVal.

The size of freq will be maxVal-(minVal)+1

freq[0] will store the count of the minVal

freq[freqSize-1] will store the count of the maxVal

For example, if the minVal is -5 and the maxVal is 4 (i.e., the range of integers is [-5, 4] then:

freqSize = 4-(-5)+1 = 10

freq[0] stores the count of -5

…..

freq[9] stores the count of 4

0 1 2 3 4 5 6 7 8 9

freq[]

CHANGES NEEDED TO CODE:

// declaring freqSize

freqSize = maxVal - minVal + 1;

//counting

for(i = 0; i < size; i++) {

++freq[arrA[i] - minVal];

}

//sorting and updating freq

arrB[freq[arrA[i] - minVal] - 1] = arrA[i];

--freq[arrA[i] - minVal];

PUTTING IT ALL TOGETHER? … YOU TRY ….

Summary

Count Sort is the best Sorting technique we have seen so far – linear order complexity
- O(N+K)

But … can only be used with integer data and need to know maxVal (and minVal
potentially) – all other approaches can be used with any data type and do not need
to know range of data in advance.

Not a comparison algorithm like the other three sorting algorithms we have
considered.

Not an in-place algorithm like the other three sorting algorithms we have considered -
Uses two extra arrays – one to hold the frequencies and a second to hold the sorted data.

TOPIC:
PROBLEM SOLVING WITH

RECURSION
CT102
Algorithms

RECURSION

Recursion means a
reference to itself

“Reference
to itself”

Drawing Hands
Esher, 1948

“Reference to itself”

From: http://symmetry-us.com/Journals/bridges2005/burns/index.html

RECURSION* –
Computing Definition:

Functions (and procedures) whose definition
involves a reference to themselves (a call to
themselves)

Specifically:

A recursive function A is one that calls itself or
calls another function which calls function A

* I know recursion has been introduced already in CT103!

RECURSION IN COMPUTING

•We use function calls and recursion instead of loops and
iteration to solve problems.

•Some programming languages support recursion better
than others.

•Some problems are particularly suited to a recursive
solution.

•The general idea is to solve a problem by solving a
smaller version of the problem and continue this until we
are at a trivial case (a “divide and conquer” approach).

RECALL:
When creating your own function need:

1. Function declaration

2. Function definition

3. Function call

RECALL: FLOW OF CONTROL

When a function is called, the program control is
transferred to the called function.

A called function performs a defined task and when its
return statement is executed or when its function-ending
closing brace is reached, it returns the program control
back to the calling environment.

RECURSIVE PROBLEM 1:

Function puzzle() calling puzzle()

1st call to function puzzle()

“recursive on all control
paths”

Problem:

o Will never stop because there
is no stopping condition

o “Runtime stack overflow”

o We say such a function is not
well defined

WELL DEFINED RECURSIVE FUNCTIONS
As with iteration, must ensure that a recursive function will
not continue to run indefinitely.

If using recursion we must ensure that:
 There are certain criteria, called base criteria, for which
the function does not call itself (stopping conditions)
 Each time the function does call itself (directly or
indirectly), it must be closer to the base criteria.

A recursive function with these two properties is said to be
well defined.

WELL-DEFINED:

Base Case: Must have a condition for which the function
will not call itself (and will stop and usually give a result)

Reduce: For each recursive call, must move towards the
base case (reduce)

ACTIVATIONS

With recursion, we often have the illusion of multiple
copies of the function existing. These are referred to as
activations. These activations appear and disappear as
the program advances.

A number of activations may exist at the same time.
However, of the activations existing at any given time, only
one is actively progressing. The others are effectively in
limbo, each waiting for another activation to terminate
before it can terminate.

RUN TIME STACK

A stack data structure is used to keep track of activations
– the data structure restricts where insertions and deletions
can take place in a Last In First Out (LIFO) manner.

The function on top of the stack is the current active one.

When the current active function completes it is popped
off stack (deleted) and activation moves to next function
on the stack.

Each activation has its own environment with its own set of
values for variables (local scope).

RECURRENCE/RECURSIVE TREE

A diagram which visualises the recursive calls and the
work done for each recursive call and allows timestep
analysis

Creating a well-defined version of
puzzle();

1. add a stopping condition

2. add return statements

Counting how many times puzzle() is
called at line 43 for any on-zero
num? Let n = num

PROBLEM 2: A new function passed an integer
array and its size
Is function test() well defined?

PROBLEM 2: test()
What does the function test() do?
e.g., Check with: test(A,5) as given in main()

Example 2: Analysis
•Run time Stack with test(A,5)

GENERAL APPROACH TO SOLVING PROBLEMS
RECURSIVELY …

1. What is the base case?

2. What should the answer be when we are at the base case?

3. How do you reduce to get to this base case?

4. What other work needs to be done for each function call?

5. How can these steps be put together?

GENERAL STRUCTURE
Usually an if/else structure or if/else if/else:

if (base case is true)
return //stop recursion

else
reduce to base case and solve problem

if (base case 1 is true)
return

else if (condition is true)
return or reduce to base case

else
reduce to base case

MISTAKES TO AVOID:

o Wrong number of arguments passed to function … must
match function declaration at all times

o Not having a base case

o Not reducing to the base case

PROBLEM 3 …
already seen in ct103

oWrite a recursive function which finds the factorial of a
number n

Recall:
•The factorial of a non-negative integer n is the product of
all integers less than or equal to n.

•The factorial of 0 is 1 and factorial of 1 is 1

Steps for Factorial
int factorial(int n)

Base case: n <= 1 return 1

Reduce: return(n * factorial(n - 1));

factorial()

TIME STEP ANALYSIS

Note: The issue with factorial is the limit in terms of the factorial of n
being stored (even using the maximum size int possible)

Try test yourself to see what is the max n you can find factorial for:

int long long ans;

ans = factorial(number);

Line Cost Num Times Cost*Num
Times

Total

180 1 n n

181 1 1 1

184 1 or 2? n-1 2n – 2

3n - 1

O(n)

PROBLEM 4: Fibonacci Sequence
… already seen in CT103

Famous sequence (from 13th Century!) whose numbers grow very
large, very quickly

For some function fib(n) that finds the nth Fibonacci number, the
function can be defined recursively as:

fib(0) = 0
fib(1) = 1
fib(n) = fib(n-2) + fib(n-1) for n > 2

WHY IS THIS AN INEFFICIENT SOLUTION?

TIME STEP
ANALYSIS

Line Cost Num Times Cost*Num Times Total

219 1 ?

220 1 ?

223 2 ?

O(?)

CONSIDERING LINE
223 IN MORE DETAIL

For each recursive call, there will be 2 function calls fib(n – 1) and fib (n – 2)

Assuming n on entry:

1st recursive call: 2 more function calls = 2 = 21

2nd recursive calls: each of the 2 previous calls will have 2 calls each = 4 = 22

3rd recursive calls: each of the 4 previous calls will have 2 calls each = 8 = 23

4th recursive calls: each of the 8 previous calls will have 2 calls each = 16 = 24

…

At some stage, n = 1 and n = 0 for some parts of the expansion and there will be
2 less calls before all parts eventually complete

CONSIDERING LINE
223 IN MORE DETAIL

So:

1st recursive call: 21 calls

2nd recursive calls 22calls

3rd recursive calls 23calls

4th recursive calls 24calls

…

So it looks like 2𝑛𝑛calls but in fact will be less than this

We can say number of calls is always < 2𝑛𝑛

In fact, instead of 2 we have the golden ratio number for large n 1.618𝑛𝑛

So is O(1.618𝑛𝑛)

PROBLEM 5: LINEAR SEARCH
(Recursive Solution)

Write a recursive function which searches for an item in an
array (of unsorted items) returning the position of the first
occurrence of the item in the array if it exists or else -1.

Note: we have already seen an iterative version of this

Recursive idea for linear search:

•For each function call, if there are values remaining to
check/search:
•Check if item is at the last position (size-1)
• If not search again, with sub-array of size one less (size-1)

STEPS:

int search(int arrA[], int size, int item)

Two Base Cases:

• Nothing left to search: size == 0 return -1 to indicate
not found

• Have found item: arrA[size - 1] == item return
position which is size-1

Reduce:

search(arrA, size - 1, item);

LINEAR SEARCH

LINEAR SEARCH – CLASS WORK

TIME STEP ANALYSIS
OF LINEAR SEARCH

Worst case?

N = ?

Line Cost Num Times Cost*Num
Times

Total

73 1 N+1

74 1 1

76 1 N

77 In worst
case won’t
happen

80 1 N

3N+2

IS BIG-O OF RECURSIVE LINEAR SEARCH
DIFFERENT TO THAT OF ITERATIVE LINEAR
SEARCH?

PROBLEM 6: BINARY SEARCH
RECURSIVE VERSION

BINARY SEARCH TIME
STEP ANALYSIS

How does it differ to the iterative version?

Would you expect the Big-O of the recursive binary
search to be different to the iterative binary search?

Can you remember what is the Big-O time complexity of
the iterative binary search?

LINEAR AND BINARY
SEARCH TIME STEP
ANALYSIS

Same questions:

What is worst case situation? … item not in array

How much of the array needs to be searched in order to
find this out? …
o For linear search … all n values
o For binary search … approx. log2 n values

What is best case situation? … item found after first
comparison (wherever that happens to be)

Problem 7: Variation of Binary Search …
What is happening?
Assuming an array of sorted, unique values

Problem 7:
What is happening?

A ternary Search

Considering “thirds” of the array rather than “halves”

Have two midpoints, and three areas where item might be for each
search.

Complexity is O(log3 n) but note that we have more comparisons -
extra check for equality, extra check to find correct portion to search
again

RECALL PROBLEM 2 AGAIN:

PROBLEM 2 ALTERNATIVE VERSION ….
What’s the difference?
Assume tempsum has value 0 when function first called

Call with test(A, 5, 0);
A[5] = {2, 4, 6, 8, 10};

What is happening?

There is no “work left to do” for waiting activations/functions – each
recursive call sends the temporary result as part of the recursive call

SUMMARY

Recursion allows us an “easy” was to solve problems by a
“divide and conquer” approach.
Recursive solutions may not always be the most efficient
solutions however.

Some programming languages offer better support for
recursive solutions – C is not one of those languages!

We will continue with recursion when we consider merge
sort and quick sort, two sorting algorithms which can be
expressed very succinctly when using recursion in
comparison to the iterative versions.

RECURSION & MERGE SORT CT102
Algorithms

Recall: RECURSION IN COMPUTING

•We use function calls and recursion instead of loops and
iteration to solve problems.

•Some programming languages support recursion better
than others.

•Some problems are particularly suited to a recursive
solution.

•The general idea is to solve a problem by solving a
smaller version of the problem and continue this until we
are at a trivial case (a “divide and conquer” approach).

WELL-DEFINED:

Base Case: Must have a condition for which the function
will not call itself (and will stop and usually give a result)

Reduce: For each recursive call, must move towards the
base case (reduce)

PROBLEM 5 LINEAR SEARCH –
RECURSIVE SOLUTION

PROBLEM 6: BINARY SEARCH
RECURSIVE VERSION

LINEAR AND BINARY
SEARCH TIME STEP
ANALYSIS

Same questions:

What is worst case situation? … item not in array

How much of the array needs to be searched in order to
find this out? …

For linear search … all n values

For binary search … approx. log2 n values

What is best case situation?

Same questions:

What is worst case situation?

How much of the array needs to be searched in order to
find this out

What is best case situation?

Problem 7: Variation of Binary Search …
What is happening?
Assuming an array of sorted, unique values

Problem 7:
What is happening?

A ternary Search

Considering “thirds” of the array rather than “halves”

Have two midpoints, and three areas where item might be for each
search.

Complexity is O(log2 n) but note that we have more comparisons extra
check for equality, extra check to find correct portion to search again

RECALL PROBLEM 2 AGAIN:

PROBLEM 2 ALTERNATIVE VERSION ….
What’s the difference?
Assume tempsum has value 0 when function first called

Call with test(A, 5, 0);
A[5] = {2, 4, 6, 8, 10};

A recursive sorting algorithm:
MERGE SORT

o A “divide and conquer” approach to sorting
which divides the sorting problem in to smaller
and smaller sorting sub-problems; solving the
sorting task for the smaller case first before
merging back the sorted numbers

o Developed by John von Neumann in 1945

APPROACH:

oInstead of considering full array at one time,
consider two sub-arrays with size as equal as
possible.
o For each sub-array, consider two further sub-
arrays with size as equal as possible.
oKeep considering smaller sub-arrays until you
are considering sub-arrays of size 1.
o For each sub-array of size 1 (in sorted order),
merge back with next sub-array in sorted order

INPUT AND OUTPUT

Inputs: Array arrA[] of size integers in unsorted
order with:

o lower bound lb (initially 0)

o upper bound ub (initially size – 1)

Outputs: Array arrA[] of size integers in
ascending sorted order

STEPS:

Two main steps:

o Part 1: “dividing”: continuously reduce array
and sub-arrays until you have sub-arrays of size
1 (trivially in sorted order).

o Part 2: “conquering”: continuously merge back
sorted sub-arrays in sorted order.

mid = int (0+7)/2 = 3 so separately consider:

7 17 25 3 7 10 6 17
0 1 2 3 4 5 6 7

arrA[8]

7 17 25 3
0 1 2 3

7 10 6 17
4 5 6 7

mid = int (0+3)/2 = 1

So separately consider:

mid = int (4+7)/2 = 5

So separately consider:

EXAMPLE: PART 1: “dividing”
Keeping splitting, as evenly as possible:

7 17
0 1

25 3
2 3

7 10
4 5

6 17
6 7

7
0

25
2

7
4

6
6

17
1

3
3

10
5

17
7

Finally considering all single values which are trivially sorted (relative to themselves):

EXAMPLE: PART 2: “conquering”
Recombine in sorted order

7
0

25
2

6
6

17
1

3
3

10
5

17
7

merge

7 17
0 1

3 25
2 3

7 10
4 5

6 17
6 7

0 1 2 3

6 7 10 17
4 5 6 7

0 1 2 3 4 5 6 7

7
4

merge merge merge

merge merge

merge

3 6

3 7 17 25

7 7 10 17 17 25

FUNCTIONS FOR BOTH STEPS:

o Dividing: array, current lower bound and upper
bound (to give correct portion of array being
considered):
mergeSort(int [], int, int);

o Merging: array, current lower bound, mid and
upper bound (to give correct portions of array
being merged):
merge(int [], int, int, int);

mergeSort()an integer array A[]
void mergeSort(int [], int, int);

HOW DOES THIS PROGRESS?
WHAT LINE DOES THE SORTING HAPPEN AT?

int A[8] = {7, 17, 25, 3, 7, 10, 6, 17};

void merge (int[], int, int, int);

The actual sorting work, “conquering”, takes place when
merging the sorted sub-arrays.

Have seen an iterative solution to this already which now
can be modified …

2 4 12 14

1 12 17 19 29

arrB

arrC

arrA

24

RECALL: Example of merging 2 sorted
arrays:

44 49

RECALL CODE :
to merge two
sorted arrays

Modifications required to previous
merge function
o Both arrays are in fact different parts of one array so
only need to pass one array to the function and ensure
that the index values are set up correctly:
o lb to mid
o mid + 1 to ub

oThis time we will want to keep duplicates
o Note that although we still need an array to store the
values after each comparison, we must also write back the
contents of the temporary array over the correct range in
the original array so that future calls of the mergeSort()
algorithm will have the correctly sorted sub-arrays.
oNote that although mergeSort() is recursive this version
of merge() is iterative.

Setting up Indexes and Comparing
o Create arrC[] which should be the same size as the portion of
arrA[] being merged; index k will be used to traverse arrC[]

o Initialise indexes to the start of both portions of the array and also
correctly initialise k
 i = lb;
 j = mid + 1;
 k = 0;

o The upper bounds (after which loop should stop) are at:
o mid for i
o ub for j

o At each stage, compare values at arrA[i] and arrA[j],
moving smaller value into new array arrC[k] and updating
relevant indexes (i, j, k)

Once comparisons have finished …

oAt some stage, will have reached the end of one portion
of the array (and all its values will have been copied in
order to arrC[]).

oAt this stage, the remaining values from the second
portion of the array can be written straight to arrC[]
without comparison.

o When finished, the sorted portion must be written back
from arrC[] to arrA[] from lb to ub in arrA[]

e.g., for final merge:

3 7 17 25
0 1 2 3

6 7 10 17
4 5 6 7

0 1 2 3 4 5 6 7

i=0 mid=3 ub=7j=0

arrA

arrC

k=0

C CODE

merge()
Time step analysis

Line Cost numTimes cost*
numTimes

Total

110-118 7 1 7
120 1 𝑛𝑛

2
+ 1 𝑛𝑛

2
+ 1

121 1 𝑛𝑛
2

𝑛𝑛
2

122-123 or 126-
127 & 129

3 𝑛𝑛
2

3𝑛𝑛
2

133 or 139 1 𝑛𝑛
2

𝑛𝑛
2

134-136 or 140-
142

3 𝑛𝑛
2

3𝑛𝑛
2

146-147 2 1 2
148 1 n + 1 n + 1
149-151 3 n 3n 4n + 9𝑛𝑛

2
+ 10

17n + 20

COMPLEXITY ANALYSIS

But how many times is merge() and mergeSort() carried
out once the initial call to mergeSort() occurs?

HOW MANY TIMES?

Line Cost numTimes cost*numTimes Total

L39 1

L41 1

L42 1

L43 f(𝑛𝑛
2
) ?

L44 f(𝑛𝑛
2
) ?

L45 17n + 20 ?

Consider first call to mergeSort()
when n = size

Line Cost

L39 1

L41 1

L42 1

L43 f(𝑛𝑛
2
)

L44 f(𝑛𝑛
2

)

L45 17n + 20

f(n) = 2 f(𝑛𝑛
2
) + 17n + 23

What happens for next
2nd call?
Substitute for f(n)

Call: Cost

1 f(n) = 2 f(𝑛𝑛
2
) + 17n + 23

We will ignore constants 17 and 23 calling them
c and const

f(n) = 2 f(𝑛𝑛
2
) + c n + const

2 f(n) = 2 (f(𝑛𝑛
4
) + f(𝑛𝑛

4
)+ 𝑐𝑐𝑛𝑛

2
+ const) + cn + const

f(n) = 2 (2f(𝑛𝑛
4
) + 𝑐𝑐𝑛𝑛

2
+ const) + cn + const

f(n) = 4f(𝑛𝑛
4
) + 2𝑐𝑐𝑛𝑛

2
+ const) + cn + const

f(n) = 4f(𝑛𝑛
4
) + 2cn + const

What happens for 3rd call?
Again, substitute for f(n)
f(n) = 2 f(

𝑛𝑛
2

) + c n + const

Call: Cost

2 f(n) = 4f(𝑛𝑛
4

) + 2cn + const

3 f(n) = 4 (f(𝑛𝑛
8

) + f(𝑛𝑛
8

)+ 𝑐𝑐𝑛𝑛
4

+ const) + 2cn + const

f(n) = 4 (2f(𝑛𝑛
8

) + 𝑐𝑐𝑛𝑛
4

+ const) + 2cn + const

f(n) = 8f(𝑛𝑛
8

) +cn + const) + 2cn + const

f(n) = 8f(𝑛𝑛
8

) +3cn + const

In general: f(n) = 2𝑘𝑘 f(𝑛𝑛
2𝑘𝑘

) + k cn + const

i.e., for 3rd call: f(n) = 23 f(𝑛𝑛
23

) + 3cn + const

Solve for k

Eventually, 𝑛𝑛
2𝑘𝑘

will be equal to 1 (at the final recursive call), i.e., 𝑛𝑛
2𝑘𝑘

= 1

So therefore multiplying across: n = 2𝑘𝑘

Solve for k
with n = 2𝑘𝑘

Now we must solve for k:

If n = 2𝑘𝑘 , multiply both sides by log2 to get rid of power of 2:

log2 n = k

Can now substitute for k in f(n) = 𝑛𝑛 + c k n + const
Giving: 𝑛𝑛 + c log2 n n + const
O(n log2 n)

f(n) = 2𝑘𝑘f(𝑛𝑛
2𝑘𝑘

) +c k n + const

f(n) = 𝑛𝑛 f(𝑛𝑛
𝑛𝑛

) + c k n + const

f(n) = 𝑛𝑛 f(1) + c k n + const

Let f(1) =
const time

f(n) = 𝑛𝑛 + c k n + const

COMPLEXITY ANALYSIS SUMMARY

o Average and worst case performance is O(𝑛𝑛 𝑙𝑙𝑙𝑙𝑙𝑙2n)

o Generally has fewer comparisons than quicksort (which
we will see next)
o Is a general purpose sorting technique – works on any
data type where a comparison is possible

o However, it does not sort in place. That is, it requires an
array of the same size to hold the values temporarily and
also requires a “write-back” stage. Therefore in practice,
because it has poor space complexity it is not used for
sorting data in arrays despite its good time complexity

Question from exam paper on
mergeSort()

(a) Using some sample data, and with reference to
the code line numbers, explain, in your own words,
how the mergeSort() function works. (4 marks)

L1
L2
L3
L4
L5
L6
L7
L8
L9
L10
L11

// must be called initially with lb = 0 and ub = size - 1
void mergeSort (int arrA[], int lb, int ub)
{

int mid;
if (lb < ub) {

mid = int((lb + ub) /2);
mergeSort (arrA, lb, mid);
mergeSort (arrA, mid + 1, ub);
merge (arrA, lb, mid, ub);

}
}

(b) Using some sample data, and with reference to
the code line numbers, explain, in your own words,
how the merge() function works. (4 marks)

L13
L14
L15
L16
L17
L18
L19
L20
L21
L22
L23
L24
L25
L26
L27
L28
L29
L30
L31
L32

void merge (int arrA[], int lb, int mid, int ub)
{

int i, j, k;
int *arrC;
int size = ub - lb + 1;
arrC = (int*) malloc(size * sizeof(int));

for (i = lb, j = mid + 1, k = 0; i <= mid && j <= ub; k++) {
if (arrA[i] <= arrA[j])

arrC[k] = arrA[i++];
else

arrC[k] = arrA[j++];
}
while (i <= mid)

arrC[k++] = arrA[i++];
while (j <= ub)

arrC[k++] = arrA[j++];
for (i = lb, k = 0; i <= ub; i++, k++)

arrA[i] = arrC[k];
}

ANOTHER QUESTION TO CONSIDER?

How can we re-write mergeSort() iteratively?

Will consider this later after looking at quickSort

I t e r a t i ve ve r s i o n s o f
QUICKSORT AND MERGE SORT

CT102
Algorithms

ITERATIVE QUICKSORT
How to modify the quicksort function to remove
the recursive calls?

void quickSort(int arrA[], int startval, int endval) {

if((endval - startval) < 1) {

return;

}

else {

int k = partition(arrA, startval, endval);

quickSort(arrA, startval, k - 1); //left partition

quickSort(arrA, k + 1, endval); //right partition

}

}

WHAT NEEDS TO CHANGE?
Partition part will not
need to change (as is
already iterative).

We need a way to keep
track of the correct sub-
portions of the array that
are to partitioned, i.e.
startval and endval and
these will need to be
updated as we continue
with left and right sub-
portions.

void quickSort(int arrA[], int startval, int endval) {

if((endval - startval) < 1){

return;

}

else {

int k = partition(arrA, startval, endval);

quickSort(arrA, startval, k - 1); //left partition

quickSort(arrA, k + 1, endval); //right partition

}

}

ONE APPROACH: Use an additional array to
keep track of startval and endval

This array will always hold pairs of values (startval, endval)

We will continuously add and delete from this array to get the current
values of startval and endval to send to the partition function.

Call this array next[] and we will only access it from the “top” where
the most recent pair of values have been added.

Use variable top to access pairs of values.

How to make sure you are accessing
correct pairs?
To get current pair of values:

endval = next[top--]; (or endval = next[top]; top--;)

startval = next[top--];

To add next pair of values (if something left to add) and have k

// left of pivot:

next[++top] = startval;

next[++top] = k - 1;

// right of pivot:

next[++top] = k + 1;

next[++top] = endval;
N.B. they are added
in the correct order

N.B.
use -- and ++
correctly

To add next pair of values
(if something left to add):

Given we have value k returned from partition, then

if (k - 1 > startval) {

// there are values to left of pivot

if (k + 1 < endval) {

// there are values to right of pivot

COMBINING …

if (k - 1 > startval) {

// left of pivot:

next[++top] = startval;

next[++top] = k - 1;

}

if (k + 1 < endval) {

// right of pivot:

next[++top] = k + 1;

next[++top] = endval;

}

WHEN TO STOP?

Initially on entry, top = -1;

We add the first startval and endval to next[] so then, top should
be 1.

When all startval and endval pairs are removed from next[] all
the work will be finished and top should have value -1 again.

Therefore, keep going:

while (top >= 0) {

FULL FUNCTION

10 12 25 3 7 11 6 17
0 1 2 3 4 5 6 7

arrA[8]

EXAMPLE:
(using 1st position for pivot)

0 7
0 1 2 3 4 5 6 7

6 3 7
0 1 2 3

25 11 12 17
4 5 6 7

10

After 2nd partition

k = 7

next[8]

arrA[8]

0 2 4 7
0 1 2 3 4 5 6 7

next[8]

6 3 7
0 1 2 3

11 12 25 25
4 5 6 7

10arrA[8]

0 2 4 6
0 1 2 3 4 5 6 7

next[8]

EXAMPLE:
(using 1st position for pivot)

After 3rd partition k = 6
6 3 7
0 1 2 3

11 12 17 25
4 5 6 7

10arrA[8]

0 2 4 5
0 1 2 3 4 5 6 7

next[8]

0 2
0 1 2 3 4 5 6 7

next[8]

6 3 7
0 1 2 3

11 12 17 25
4 5 6 7

10arrA[8]

3 6 7
0 1 2 3

11 12 17 25
4 5 6 7

10arrA[8]

ANALYSIS

Still have the same behaviour in terms of splitting and placing values,
so still O(n 𝑙𝑙𝑙𝑙𝑙𝑙2n)

However, the trade-off is having an extra array to keep track of the
startval and endval pairs but this would be more efficient than the
recursive stack generally (for programming languages not particularly
suited to recursion).

QUESTION
Can you now modify the iterative version to include a call to insertion
sort for small sub-arrays? At what line(s) do we need to add this?

ITERATIVE MERGE SORT

Recall two main steps in merge sort:

o Part 1: “dividing”: continuously reduce array
and sub-arrays until you have sub-arrays of size
1 (trivially in sorted order)

o Part 2: “conquering”: continuously merge back
sorted sub-arrays in sorted order

Recall: Line 43 and 44 “just” consider smaller and smaller sub-portions
of the array until Line 41 is false, then the merging (and comparisons)
start (Line 45)

For an iterative version, we want a way to reduce to these smaller
sub-portions using a loop instead of Line 43 and 44.

void mergeSort(int [], int, int);

ONE APPROACH:

Given an array arrA[] with size values:

• first merge all sub-arrays of size 1 to create sorted subarrays of size
2

• then merge all sorted sub-arrays of size 2 to create sorted sub-
arrays of size 4

• then merge all sorted sub-arrays of size 4 to create sorted sub-
arrays of size 8

… etc

•finally merge the two sorted sub-arrays, each of size/2 to create the
sorted array

int currSize;
int lb, mid, ub;

Use a variable currSize which should begin at size 1 (considering only one value)
and increment by a factor of 2 for each iteration

for (currSize=1; currSize <= size - 1; currSize = 2 * currSize) {

At each stage, will need to know the current lb for the sub-portions of the array
being considered based on currSize

for (lb = 0; lb < size - 1; lb = lb + 2 * currSize) {

Once we have lb we can calculate mid and ub based on this lb and currSize

As long as the values don’t go past the end of the array then:

mid = lb + currSize – 1 ;

ub = lb + 2 * currSize – 1;

PUTTING ALL THIS TOGETHER:

EXAMPLE

currSize lb mid ub arrA

1 0 0 1 {7, 17, 25, 3, 7, 10, 6, 17}

1 2 2 3 {7, 17, 3, 25, 7, 10, 6, 17}

1 4 4 5 {7, 17, 3, 25, 7, 10, 6, 17}

1 6 6 7 {7, 17, 3, 25, 7, 10, 6, 17}

7 17 25 3 7 10 6 17
0 1 2 3 4 5 6 7

arrA[8]

for (currSize=1; currSize <= size - 1; currSize = 2*currSize) {

for (lb = 0; lb < size - 1; lb = lb + 2 * currSize) {

if (lb + currSize - 1 < size - 1) mid = lb + currSize - 1;

else mid = size - 1;

if (lb + 2 * currSize - 1 < size - 1) ub = lb + 2 * currSize - 1;

else ub = size - 1;

Consider at start, currSize =1

EXAMPLE

currSize lb mid ub arrA

2 0 1 3 {3, 7, 17, 25, 7, 10, 6, 17}

2 4 5 7 {3, 7, 17, 25, 6, 7, 10, 17}

7 17 3 25 7 10 6 17
0 1 2 3 4 5 6 7

arrA[8]

for (currSize=1; currSize <= size - 1; currSize = 2*currSize) {

for (lb = 0; lb < size - 1; lb = lb + 2 * currSize) {

if (lb + currSize - 1 < size - 1) mid = lb + currSize - 1;

else mid = size - 1;

if (lb + 2 * currSize - 1 < size - 1) ub = lb + 2 * currSize - 1;

else ub = size - 1;

Now update currSize: currSize = 2*currSize = 2*1 = 2

EXAMPLE

currSize lb mid ub arrA

4 0 3 7 {3, 6, 7, 7, 10, 17, 17, 25}

3 7 17 25 6 7 10 17
0 1 2 3 4 5 6 7

arrA[8]

for (currSize=1; currSize <= size - 1; currSize = 2*currSize) {

for (lb = 0; lb < size - 1; lb = lb + 2 * currSize) {

if (lb + currSize - 1 < size - 1) mid = lb + currSize - 1;

else mid = size - 1;

if (lb + 2 * currSize - 1 < size - 1) ub = lb + 2 * currSize - 1;

else ub = size - 1;

Now update currSize: currSize = 2*currSize = 2*2 = 4

Now update currSize: currSize = 2*currSize = 2*4 = 8

SUMMARISING:

currSize lb mid ub arrA

1 0 0 1 {7, 17, 25, 3, 7, 10, 6, 17}

1 2 2 3 {7, 17, 3, 25, 7, 10, 6, 17}

1 4 4 5 {7, 17, 3, 25, 7, 10, 6, 17}

1 6 6 7 {7, 17, 3, 25, 7, 10, 6, 17}

2 0 1 3 {3, 7, 17, 25, 7, 10, 6, 17}

2 4 5 7 {3, 7, 17, 25, 6, 7, 10, 17}

4 0 3 7 {3, 6, 7, 7, 10, 17, 17, 25}

7 17 25 3 7 10 6 17
0 1 2 3 4 5 6 7

arrA[8]

SUMMARY

• Quick sort and Merge Sort give the best performance
on average (O(n 𝑙𝑙𝑙𝑙𝑙𝑙2n)) when sorting general
purpose data

• Although the recursive implementation is easy to
understand (and contains less code) both algorithms
are often implemented iteratively.

•Note that the merge() and partition() functions are
unchanged in the iterative versions.

QUICKSORT CT102
Algorithms

menti.com
Code: 7869 6363

Questions/Issues?

Completed studentsurvey.ie?

Topics for revision?

Another “divide and conquer” Recursive
Sorting algorithm: quick sort

Widely used in practice in any application needing to
sort data – operating systems, database systems, built-in
libraries, and methods.

On average the algorithm provides the fastest
comparison sort for general data.
We will consider a partially recursive solution, although it
can be re-written to be fully iterative.

SORTING IN C
(Outside of CT102 and CT103!)

•The built in sorting function in C is a variant of quicksort
and sorts data in an array
•In stdlib.h
void qsort(void *base, size_t nitems, size_t size, int
(*compare)(const void *, const void*))

•Sorts the nitems of the array pointed by base. Every
element has a size of size-t bytes long. The qsort
function will sort according to the comparator function
specified in compare

•The qsort function does not return a value. The array
data is modified in the specified order

APPROACH:
Sorting values in an integer array arrA[]

Quicksort works by splitting – or partitioning values
in array A - by choosing a pivot such that:
All items to left of pivot are <= pivot
All items to right of pivot are > pivot
We hope that about half the items will be less than the
pivot value and half the items will be greater than it

Then the two sub parts (left and right of pivot) are
sorted separately using the same approach
Base case is when there is only 1 element left and
the data will then be sorted

pivotA <=pivot >pivot

WHY DOES THIS WORK?

Consider splitting/partitioning an array into two
halves using previous idea and using selection sort
to sort each of the two halves.

The total time required to sort the two sub-arrays
is only half the time that would have been
required to sort the original array … i.e. half the
number of comparisons are required.

EXAMPLE

Given the following integer array of size 8.

Pick the value at index location 0 to be pivot value (i.e., 10)

10 12 25 3 7 11 6 17
0 1 2 3 4 5 6 7

arrA[8]

10 12 25 3 7 11 6 17
0 1 2 3 4 5 6 7

arrA[8]

Now consider sub-array portions:

EXAMPLE: (using 1st position for pivot)

6 3
0 1

7
2

12 25
4 5

11 17
6 7

10
3

0 1 2 4 5 6 7

10
3

0 1 2 3 4 5 6 7

0 to 2: 4 to 7:

10

6 3 7
0 1 2 3

12 25 11 17
4 5 6 7

10 Now have one value
placed in correct
position and all
other values in
correct portion of
array

3 6 7 1211 25 17

Now consider sub-array portion 6 to 7:

6 7

17 253 6 7 10 11 12
0 1 2 3 4 5

WORK DONE

For each pivot chosen and partitioning of array:
One value (pivot) can be placed in its correct
position and will not have to be moved again (we do
not know this location at the start though)
The amount of comparisons/work done for
subsequent calls is reduced – ideally halved … as
the values have been moved to <= pivot or to >
pivot and will not have to ever be compared to each
other

pivotarrA <=pivot >pivot

PARTITIONING

The main work is to:
o Get pivot value
o Partition the array in to the 2 subparts:
 values <=pivot on LHS of pivot
 values > pivot on RHS of pivot
o Place pivot value in correct position (we will call it
position k)

Repeat this for smaller and smaller sub-arrays until there
is nothing left to partition

INPUT AND OUTPUT

Inputs: Array arrA[] of integers in unsorted order
with:

o lower bound startval

o upper bound endval

Outputs: Array arrA[] of integers in ascending
sorted order.

Partial function:

Base case

One value left in the array:

if ((endval - startval) < 1){

return;

}

Reduce

If not at base case then should call function with
smaller arrays (left and right partitions)

If pivot is at location k then calls should be:
//now sort the two sub-arrays

quickSort(arrA, startval, k - 1); //left partition

quickSort(arrA, k + 1, endval); //right partition

Choosing pivot value?

Any value can be chosen between startval and
endval as the pivot.
For convenience, we will initially take the value at
startval to be the pivot*
When partitioning is complete, pivot must be
moved to the correct (and final) position in the
array, which is k.

* we will revisit this decision later.

EXAMPLE:
Consider the following data in an integer array
arrA[]

int arrA[7] = {10, 17, 2, 7, 13, 6, 11};

Pick pivot at index = 0, so pivot is 10

10 17 2 7 13 6 11
0 1 2 3 4 5 6

arrA[7]

How to move 10 to its correct position and move
all other values to left or right of this?

PARTITION … one idea …
assuming pivot is stored at arrA[0]
o Use two extra arrays:

lessThEq[] to hold values <= pivot

grThan[] to hold values > pivot

o Loop through arrA[] from startval to endval checking
each value against the pivot value and moving to correct
array

o When finished write back the values to arrA[] in the
following order:
•all values in lessThEq[], starting at startval in arrA[]
• the pivot value (and let k = this location)
•all values in grThan[], ending at endval in arrA[]

EXAMPLE:
Consider the following data in an integer array
arrA[] of size 7

Pick pivot at index = 0, so pivot is 10

2 7 6 10 17 13 11
0 1 2 3 4 5 6

arrA[7]

2 7 6
0 1 2 3 4 5 6

lessThEq[7]

17 13 11
0 1 2 3 4 5 6

grThan[7]

10 17 2 7 13 6 11
0 1 2 3 4 5 6

arrA[7]

PARTITION … better idea … “in place
partition” - using the same array rather than
creating temporary arrays
One approach:
 If pivot not at startval, move it to startval
From LHS (startval + 1), start comparing values to the
pivot value … keep going as long as values are <= pivot.
From RHS of array (endval), start comparing elements to
pivot, keep going as long as values are > pivot.
 If there are still values to check and LHS value and RHS
value are out of order, swap these and keep going with
comparison.
 If all values have been compared, swap pivot value with
the value on RHS that is <= pivot

EXAMPLE:
Consider the following data in an integer array
arrA[] of size 7

7 6 2 10 13 17 11
0 1 2 3 4 5 6

k i

arrA[7]

pivot = 10;

10 17 2 7 13 6 11
0 1 2 3 4 5 6

i k

arrA[7]

10 6 2 7 13 17 11
0 1 2 3 4 5 6

k i

arrA[7]

Initial array

Final array
(after 1
partition)

After
first
swap

STEPS:
1. Put pivot value in first location (*)

2. Set up left and right traversals of array
 Index i to traverse array from left; set to startval+1initially
 Index k to traverse array from right; set to endval initially

3. With variable i, start comparing values to pivot
value at each stage, moving on to next location (i++), if
value is <= pivot and i <= k

4. With variable k, start comparing values to pivot
value at each stage, moving on to next location (k--), if
current value is > pivot and k >= i

C CODE:

i = startval + 1;

k = endval;

while(k >= i) {

while (arrA[i] <= pivot && i <= k) {

i++;

}

while (arrA[k] > pivot && k >= i) {

k--;

}

//swap needed?

}

10 17 2 7 13 6 11
0 1 2 3 4 5 6

i k

arrA[7]

YOU TRY …

L1 i = startval + 1;

L2 k = endval;

L3 while(k >= i) {

L4 while (arrA[i] <= pivot && i <= k) {

L5 i++;

L6 }

L7 while (arrA[k] > pivot && k >= i) {

L8 k--;

L9 }

L10 //k still > i?

L11 }

10 7 2 17 13 6 21 9 14 20
0 1 2 3 4 5 6 7 8 9

start
val

arrA[10]

Pick pivot at index = 0, so pivot is 10

startval = 0 and endval = 9

What is the value of i when get to line 10 (L10)?

What is the value of k when get to line 10 (L10)?

YOU TRY …

L1 i = startval + 1;

L2 k = endval;

L3 while(k >= i) {

L4 while (arrA[i] <= pivot && i <= k) {

L5 i++;

L6 }

L7 while (arrA[k] > pivot && k >= i) {

L8 k--;

L9 }

L10 //k still > i

L11 }

After this swap when will we next get to L10?

Now, what is the value of i when get to line 10 (L10)?

Now, what is the value of k when get to line 10 (L10)?

10 7 2 17 13 6 21 9 14 20
0 1 2 3 4 5 6 7 8 9

arrA[10]

10 7 2 9 13 6 21 17 14 20
0 1 2 3 4 5 6 7 8 9

arrA[10]

YOU TRY …

L1 i = startval + 1;

L2 k = endval;

L3 while(k >= i) {

L4 while (arrA[i] <= pivot && i <= k) {

L5 i++;

L6 }

L7 while (arrA[k] > pivot && k >= i) {

L8 k--;

L9 }

L10 //k still > i?

L11 }

10 7 2 9 13 6 21 17 14 20
0 1 2 3 4 5 6 7 8 9

i k

arrA[10]

10 7 2 9 6 13 21 17 14 20
0 1 2 3 4 5 6 7 8 9

i k

arrA[10]

10 7 2 9 6 13 21 17 14 20
0 1 2 3 4 5 6 7 8 9

k i

arrA[10]

AT SOME STAGE ….
one of two possibilities:

1. Not all of the array has been traversed:
i at value which is > pivot (L4 false) and
k at value which is <= pivot (L7 false) and
k >= i (L3 true)
2. All of the array has been traversed (i.e. all values
have been compared to the current pivot value): (L3
false)

L1 i = startval + 1;

L2 k = endval;

L3 while (k >= i) {

L4 while (arrA[i] <= pivot && i <= k) {

L5 i++;

L6 }

L7 while (arrA[k] > pivot && k >= i) {

L8 k--;

L9 }

L10 //k still > i?

L11 }

1. Not all of the array has been
traversed:
In this case swap the values at i and k, and continue
with i and k loop:
if (k > i) {

swap(&arrA[i], &arrA[k]);

}

10 7 2 9 13 6 21 17 14 20
0 1 2 3 4 5 6 7 8 9

i k

arrA[10]

10 7 2 17 13 6 21 9 14 20
0 1 2 3 4 5 6 7 8 9

i k

arrA[10]

2. i and k have passed each other
Finished work for this partition so put pivot in its correct
location and return this location (k): swap pivot value
with value at k
swap(&arrA[startval], &arrA[k]);

10 7 2 9 6 13 21 17 14 20
0 1 2 3 4 5 6 7 8 9

k i

arrA[10]

10 7 2 9 6 13 21 17 14 20
0 1 2 3 4 5 6 7 8 9

start
val

k i

arrA[10]

6 7 2 9 10 13 21 17 14 20
0 1 2 3 4 5 6 7 8 9

arrA[10]

Defining swap()

void swap (int *, int *);

// call with ... swap(&arrA[i], &arrA[j]); to swap

// values in array arrA[] at locations i and j

void swap(int* a, int* b)

{

int temp = *a;

*a = *b;

*b = temp;

}

partition() code in full:

Note:
The partition
function (the main
work) is iterative –
using loops for
control, not
recursion

BETTER VERSION?

We would like to re-write the partition()
function without the nested while loop.

Idea is:

oKeep pivot at startval.

o k is used to compare values and also
increments to the endval.

oLocation of i is at the “last small” value
found.

oWhen some k location finds a value <=
pivot, i is incremented and the value at i
and k is swapped.

oWhen finished, swap values at locations i
and startval

ALTERNATIVE PARTITION
(still using same swap() function)

EXAMPLE:

10 17 2 7 13 6 11
0 1 2 3 4 5 6

i j

arrA[7]

pivot = 10;

10 17 2 7 13 6 11
0 1 2 3 4 5 6

i k

arrA[7]

10 17 2 7 13 6 11
0 1 2 3 4 5 6

i k

arrA[7]

Initial array

Swap at
i and k

EXAMPLE:

10 2 17 7 13 6 11
0 1 2 3 4 5 6

i k

arrA[7]

pivot = 10;

After
swap
(L233)
and k++

10 2 17 7 13 6 11
0 1 2 3 4 5 6

i k

arrA[7]

10 2 7 17 13 6 11
0 1 2 3 4 5 6

i k

arrA[7]
After
swap
(L233)
and k++

EXAMPLE:
pivot = 10;

10 2 7 17 13 6 11
0 1 2 3 4 5 6

i k

arrA[7]

10 2 7 6 13 17 11
0 1 2 3 4 5 6

i k

arrA[7]
After swap
(L233)
and k++

6 2 7 10 13 17 11
0 1 2 3 4 5 6

i k

arrA[7]
Final swap
(L237)

Analysis of
partition2()
for one call with array of size N
and startval at 0

Line Cost numTimes cost*
numTimes

225-227 3 1 7
229 1 n n
230 1 n – 1 n – 1
231 and 232
Assume half of the values will be
<= pivot *not guaranteed

2 𝑛𝑛 − 1
2

n - 1

233 1? or more?
assume 4

𝑛𝑛 − 1
2

4(𝑛𝑛−1
2

)
= 2n – 2

237 4 1 4
238 1 1 1

f(n) = 5n + 8

How about full function?
Again assume that array is partitioned evenly

For 1st call ….

Line Cost

L142 1

L143 1

L146 5n + 8

L148 f(𝑛𝑛
2
)

L149 f(𝑛𝑛
2
)

f(n) = 2 f(𝑛𝑛
2
) + 5n + 8

What happens for next
2nd call?
Substitute for f(n)

Call: Cost

1 f(n) = 2 f(𝑛𝑛
2
) + 5n + 8

We will ignore constants 5 and 8 calling them c and const

f(n) = 2 f(𝑛𝑛
2
) + c n + const

2 f(n) = 2 (f(𝑛𝑛
4
) + f(𝑛𝑛

4
)+ 𝑐𝑐𝑛𝑛

2
+ const) + cn + const

f(n) = 2 (2f(𝑛𝑛
4
) + 𝑐𝑐𝑛𝑛

2
+ const) + cn + const

f(n) = 4f(𝑛𝑛
4
) + 2𝑐𝑐𝑛𝑛

2
+ const) + cn + c

f(n) = 4f(𝑛𝑛
4
) + 2cn + const

What happens for 3rd call?
Again, substitute for f(n)
f(n) = 2 f(

𝑛𝑛
2

) + c n + const

Call: Cost

2 f(n) = 4f(𝑛𝑛
4

) + 2cn + const

3 f(n) = 4 (f(𝑛𝑛
8

) + f(𝑛𝑛
8

)+ 𝑐𝑐𝑛𝑛
4

+ const) + 2cn + const

f(n) = 4 (2f(𝑛𝑛
8

) + 𝑐𝑐𝑛𝑛
4

+ const) + 2cn + const

f(n) = 8f(𝑛𝑛
8

) +cn + const) + 2cn + const

f(n) = 8f(𝑛𝑛
8

) +3cn + const

As we have seen already with merge sort …

In general: f(n) = 2𝑘𝑘 f(𝑛𝑛
2𝑘𝑘

) + k cn + const

i.e., for 3rd call: f(n) = 23 f(𝑛𝑛
23

) + 3cn + const

SOLVING FOR k …
If the array is partitioned evenly, then on average, each
partition produces 2 sub-array portions:
place 1 item and produce 2 sub-array portions
place 2 items and produce 4 sub-array portions
place 4 items and produce 8 sub-array portions
 etc.
 until we have 1 item in each sub-array portion

Eventually, 𝑛𝑛
2𝑘𝑘

will be equal to 1 (at the final recursive call),
i.e., 𝑛𝑛

2𝑘𝑘
= 1

So therefore multiplying across: n = 2𝑘𝑘

As before, solve for k
with n = 2𝑘𝑘

Now we must solve for k:

If n = 2𝑘𝑘 , multiply both sides by log2 to get rid of power of 2:

log2 n = k

Can now substitute for k in f(n) = 𝑛𝑛 + c k n + const
Giving: 𝑛𝑛 + c log2 n * n+ const
O(n log2 n)

f(n) = 2𝑘𝑘f(𝑛𝑛
2𝑘𝑘

) +c k n + const

f(n) = 𝑛𝑛 f(𝑛𝑛
𝑛𝑛

) + c k n + const

f(n) = 𝑛𝑛 f(1) + c k n + const

Let f(1) =
const time

f(n) = 𝑛𝑛 + c k n + const

NOTE ON PERFORMANCE

However, this performance is dependent on the value of the
pivot:
o A “good” pivot will split the array very evenly in two halves
thus giving the O(n log n) complexity
o A “poor” pivot will not split the array at all and give O(n2)
complexity

Generally we will not see improvements in performance on
small arrays
Quicksort is often modified so that when the sub-array is
small (e.g., size = 10) an algorithm that performs fewer
swaps and comparisons is used – think about how you might
do this!

10 12 25 30 35 41 44 70
0 1 2 3 4 5 6 7

arrA[8]

EXAMPLE: (using 1st position for pivot)

10 12 25
0 1 2 3

35 41 44 70
4 5 6 7

30

After 1st partition,
everything goes to
right of pivot at
location 0

After 2nd partition,
everything goes to
right of pivot at
location 1

After 3rd partition,
everything goes to
right of pivot at
location 2

10 12 25
0 1 2 3

35 41 44 70
4 5 6 7

30

etc.

10 12 25 30 35 41 44 70
0 1 2 3 4 5 6 7

arrA[8]

NOTE: would have the exact same problem if
using the last position for pivot)

10 12 25
0 1 2 3

35 41 44 70
4 5 6 7

30

After 1st partition,
everything goes to
left of pivot at
location 7

After 2nd partition,
everything goes to
left of pivot at
location 6

After 3rd partition,
everything goes to
left of pivot at
location 5

10 12 25
0 1 2 3

35 41 44 70
4 5 6 7

30

etc.

0 1 2 35 30 41 40 35
0 1 2 3 4 5 6 7

arrA[8]

NOTE: a less extreme version of this problem
would occur if the first portion of the array has
the smallest values

0 1 2
0 1 2 3

30 41 40 70
4 5 6 7

35

After 1st partition,
everything goes to
right of pivot at
location 0

After 2nd partition,
everything goes to
right of pivot at
location 1

After 3rd partition, then start to make more than one sub-array per
partition call

PICKING BETTER PIVOTS

As well as the modification when the sub-arrays are small, a
better choice of pivot value is also used in practice to get
better performance.

For example:
o pivot location at middle of the array is chosen per run.

o pivot location is chosen randomly per run (good and quick
random number generator needed).

o pivot location is chosen from getting the median of the
values at the first, last and middle location of the array per
run.

10 12 25 30 35 41 44 70
0 1 2 3 4 5 6 7

arrA[8]

WOULD USING MID POSITION HELP?
mid = int(startval + endval)/2;

10 12 25
0 1 2

35 41 44 70
4 5 6 7

30

mid = 3 and get two sub-arrays:

0 to 2 and 4 to 7

mid = 1 and get two
sub-arrays:

0 to 0 and 2 to 2

etc.

mid = 5 and get two sub-arrays:

4 to 4 and 6 to 7

IMPLEMENTING BETTER PIVOTS?

We should still move the pivot to the startval location,
but we do not need to pick the value at this location.

Try implementing the previous approaches to get pivot
value (based on current startval and endval):

int mid = int(startval + endval) / 2;

swap (&arrA[mid], &arrA[startval]);

pivot = arrA[startval];

TESTING:
o Try test the quicksort code with the larger files.

oAs well as checking number of comparisons and swaps we are also
interested in counting the number of function calls required for
quicksort.

o In this situation, you need to declare and initialise global counters
that are incremented on each entry to the relevant functions

RESULTS (comparing with merge sort):

RESULTS
(comparing with other techniques):

HYBRID QUICK SORT:
Quicksort is often modified so that when the sub-array is small (e.g.,
size = 10) an algorithm that performs fewer swaps and comparisons
is used

What needs to change in function quicksort to allow this modification?

void quickSort(int arrA[], int startval, int endval) {

if((endval - startval) < 1){

return;

}

else {

int k = partition(arrA, startval, endval);

quickSort(arrA, startval, k - 1); //left partition

quickSort(arrA, k + 1, endval); //right partition

}

}

HYBRID QUICK SORT:
void quickSortHybrid(int arrA[], int startval, int endval)

{

if((endval - startval) < 1) {

return;

}

else if (endval - startval + 1 < 10) { //subarrays of size < 10

// call Insertion Sort or Selection Sort

}

else {

int k = partition1(arrA, startval, endval);

quickSort(arrA, startval, k - 1); //left partition

quickSort(arrA, k + 1, endval); //right partition

}

}

MODIFICATIONS TO INSERTION SORT?
what lines need to change and how?
void insertionSort(int[], int);

MODIFICATIONS TO INSERTION SORT?
what lines need to change and how?
void insertionSort(int[], int);

//Insertion Sort: a sub-portion of the array

void insSort(int arrA[], int startval, int endval) {

int i, j, curr;

for (i = startval + 1; i <= endval; i++) {

curr = arrA[i];

for (j = i - 1; j >= startval && curr < arrA[j]; j--) {

arrA[j+1] = arrA[j];

}

if (i != j + 1) {

arrA[j + 1] = curr;

}

} // end i for

}

ITERATIVE QUICK SORT
How to modify the quicksort function to remove
the recursive calls? (Next lecture)
void quickSort(int arrA[], int startval, int endval) {

if((endval - startval) < 1) {

return;

}

else {

int k = partition(arrA, startval, endval);

quickSort(arrA, startval, k - 1); //left partition

quickSort(arrA, k + 1, endval); //right partition

}

}

SUMMARY

• Quicksort along with Merge Sort give the best
performance on average (O(n 𝑙𝑙𝑙𝑙𝑙𝑙2n)) when sorting
general purpose data.
• Quicksort is the default sorting program used in all
applications – however a fully iterative, and often
hybrid, version tends to be used (see next).
• Important to understand the partition aspect as this is
where the main work (“conquering”) is done, as well as
the difference between the recursive and iterative
approach to dividing the array.

	CT102: �Algorithms
	Searching
	Linear Search: Outline
	Linear Search: Examples
	Linear Search Algorithm (fragment of C)
	What do we need to add to this to actually run it?
	Full code when working with integers:
	Questions
	questions:�How fast/slow is it?
	Worksheet 2 Question 1:
	Writing a Better Version?
	Ordered (Sorted) Arrays
	Working with sorted data …
	Worksheet 2 Question 2 code:
	But, if data in array is sorted, can have an even better approach, using a Binary Search …
	Binary Search: Outline
	Binary Search: Idea
	Example: �Search for item = 60 in array A of size 11
	Finding middle position of array:
	Recall: int()
	Working with mid …
	Example: Search for item = 60 in Array A of size 11
	Updating mid …
	Stopping Condition
	Looking at Code and sharing code ..
	Working with the Code
	How “long” does it take? �(how fast/slow?)
	How to check array is sorted?
	Advanced Searching:�pathfinding algorithms
	Examples
	General Approach
	Summary
	Tutorial Thursday ….
	CT102: �Algorithms and Information Systems�
	Focus of Algorithm Analysis …
	For meaningful comparison, must have some standardisation
	3 approaches Used for comparison
	approach 1 ... Code and Run
	Approach 1 in C .. using time.h
	Adding this to linearSearch
	approach 2 ... Count “time steps”
	approach 2 ... Count “time steps” ctd.
	Approach 2 ctd., ... Count “time steps”
	Types of Analysis
	Which to use?
	Using Worst Case Analysis, how to Calculate the Time Steps and the Function which Represents the Worst Case Situation?
	What is N?	
	Counting time steps�Can annotate code or create a table like the following:
	Counting Time Steps �for Linear Search
	time step Analysis:�Linear Search
	Alternative: counting individual statements in for loop guard as 3
	Comparing:�2N + 5�4N + 8
	You Try … time step Analysis:�Checking if an array is sorted
	Which fragment of code correctly identifies if an array has values in ascending sorted order?�A, B, C or D
	Complete the�Time step Analysis:
	Time step Analysis�Binary Search
	Time Step Analysis:�Binary Search
	Looking at Loop Guard:�while (begSec <= endSec && arrA[mid] != item)
	Solving …. 𝑁 2 𝑘 = 1
	Will “steps of power of 2” always give us log2 behaviour?
	Consider this loop guard:�for (i = 1; i < n; i = i * 2) {
	Consider this loop guard:��for (i = n; i > 0; i = int (i / 2)) {�
	Back to:�Binary Search�time step analysis:�
	How does this compare to linear Search?
	approach 2 ... Count “time steps”�Summary
	Approach 3: Rate of Growth
	Summary
	CT102: �Algorithms and Information Systems�
	Recall: �Focus of Algorithm Analysis …
	Recall: �3 approaches Used for comparison
	Complete the�Time step Analysis:
	Time step Analysis�Binary Search
	Time Step Analysis:�Binary Search
	Looking at Loop Guard:�while (begSec <= endSec && arrA[mid] != item)
	Solving …. 𝑁 2 𝑘 = 1
	Will “steps of power of 2” always give us log2 behaviour?
	Consider this loop guard:�for (i = 1; i < n; i = i * 2) {
	Consider this loop guard:��for (i = n; i > 0; i = int (i / 2)) {�
	Back to:�Binary Search�time step analysis:�
	How does this compare to linear Search?
	approach 2 ... Count “time steps”�Summary
	Approach 3: Rate of Growth
	Commonly used Rate of Growth functions
	�What is the Rate of growth of these standard functions?�Look at different values of n to see difference …. 				�
	Standard Functions and Algorithm examples
	Big-o Notation
	More formally:
	Examples:�What is big O (upper bound) for the following functions
	O, Ω, Θ
	Dominance relations
	Note on Polynomials:
	For example:
	But what about the constants?�i.e., For Big O, what is k and 𝑛 0 ?
	Aside: can also define similar constants for lower bound (Ω), and average (Θ)
	Examples
	List appropriate values for k and 𝑛0 for the function f(n) = n4 + 100n2 + 50
	Note:
	General Steps to find big-o runtime
	Class Question:�
	Consider another problem that you have already seen a solution for (in CT103) … Bubble Sort
	Approach �(“bubbling” largest)
	Approach �(“bubbling” largest)
	void bubbleSort(int[], int);�See Blackboard for function code
	How to call function bubbleSort() with sample data?
	AlGorithm Analysis
	What is the best and worst case situation for bubble sort?
	Running code:
	Adding in counts and clock()
	Time step analysis�Let N = size�Assume worst case
	Looking more closely at line 24:
	Looking more closely at line 25:
	Equivalently …
	Time step analysis�Let N = size�Assume worst case
	Big-O analysis
	How to test this on larger data?
	Summary
	CT102: Algorithms and Information Systems
	Recall: Bubble Sort code�void bubbleSort(int[], int);
	Time step analysis�Let N = size�Assume worst case
	Looking more closely at line 24:
	Looking more closely at line 25:
	Equivalently …
	Time step analysis�Let N = size�Assume worst case
	Big-O analysis
	Selection Sort
	Example: Sort the following data using Selection Sort
	Algorithm Outline
	How to find minimum?�Considered in Worksheet 	2, Question 5:
	Modifying previous for Selection Sort:
	Selection Sort�void selectionSort(int[], int);
	Time step analysis: �Selection sort:
	Consider Line 38:
	Consider Line 39:�if statement
	Consider Line 40
	You try …. �Putting it all together
	Big-O analysis
	Where do we need to add code to count comparisons and swaps?
	Insertion Sort
	Example: �Sort the following data using Insertion Sort
	Algorithm Outline
	Algorithm Outline
	Algorithm Outline
	�Finding correct position
	Slide Number 28
	Insertion Sort�void insertionSort(int[], int);
	Insertion sort�Time step Analysis: �Let N= size of array�Assume worst case …�
	for loop at �line 37:
	Line 39: moving
	Putting it all together:
	Big-O analysis
	Where do we need to add code to count comparisons and swaps?
	Sorting 1000 integers�Some results for a “typical” run (all sorting the same integers)
	What does the data look like?
	questions
	Summary
	CT102: �Algorithms
	Parallel Arrays
	Motivation
	Example:
	Example: 3 Parallel arrays to hold name, id and exam score
	Steps when creating parallel arrays
	In C:
	Merging Sorted Arrays
	Inputs, Outputs and Assumptions
	Example:�What values are in arrC[]?
	Indexing 3 arrays
	Steps:
	Getting started….
	Getting started….
	Comparing ….
	Finished Comparing ….
	Time Step Analysis�let P = sizeA and M = sizeB
	Time Step Analysis ctd.
	Modifications needed if we have non unique values in each array and want to keep all duplicates?
	How does time step analysis Differ?
	Time Step Analysis ctd.
	Summary
	CT102: Algorithms
	Counting
	You try … �Counting integers in arrays
	Approach 1
	Approach 1 is not very efficient!�Alternatives?
	Approach 2 is not very efficient! Especially if we are counting many different values�Alternatives?
	Example: using array count[] to hold counts
	Approach 3 advantages
	Array count[]
	Example:
	Worksheet questions
	Updating count[] with 	++count[arrA[i]];
	What is the size of count[]?
	Back to code for counting:�Given array arrA[] of size size with positive integers:
	Approach 3:�I am going to use the name freq[] for the array that holds the counts – it is of size freqSize
	Declaring freq[] given maxVal, the maximum value
	Full function
	Approach 3 �Timestep analysis �and Big-O analysis�(Ignore output – lines 51&52)�Let N = size�maxVal is maximum value in arrA[]
	How to find maxVal?
	Modifications
	Applications�Can you solve the following problems in linear order time complexity?
	Summary
	Topic:�Counting and Count Sort�
	Recall: Counting
	Modifications
	Solution
	Example with Positive & negative integers
	non-zero based Positive range�? Question … why bother with this?
	Changes needed to function?
	Applications
	1. Given an array of N integers in unsorted order with mostly unique values and values are in the range [0-100]. Write an algorithm which will find and print any value that is present more than once.
	2. Given an array of N integers in the range [0-100] and in unsorted order, write an algorithm to check whether all values in the array are unique.
	Note:
	New Problem: Given an array of non-unique N integers in unsorted order, write an algorithm to sort the integers.
	Topic:�Counting and Count Sort�
	Recall: Counting
	Problem Statement: Given an array of non-unique N integers in unsorted order, write an algorithm to sort the integers.
	Example:�Given arrA[] = {1, 2, 1, 3, 2, 4, 6, 1, 1, 6};
	How can we use this to sort?�Given arrA[10] = {1, 2, 1, 3, 2, 4, 6, 1, 1, 6};
	What is happening at each stage?�Given arrA[10] = {1, 2, 1, 3, 2, 4, 6, 1, 1, 6};
	Finding correct position for each value:�int arrA[10] = {1, 2, 1, 3, 2, 4, 6, 1, 1, 6};�
	Finding correct position for each value:�int arrA[10] = {1, 2, 1, 3, 2, 4, 6, 1, 1, 6};�
	Finding correct position for each value:�int arrA[10] = {1, 2, 1, 3, 2, 4, 6, 1, 1, 6};�
	Count Sort: �Inputs and Outputs
	Count Sort Steps:
	C Code fragments
	Note: �no need for extra variables count and value but they increase readability
	Final step: Write back values to arrA[]
	void countSort(int[], int, int);
	Time Step Analysis:�Let N = size Let K = freqSize (maxVal+1)
	Time taken? �Number of comparisons and swaps?
	Additional Questions/work
	Count sort for negative integers
	Changes needed to code:
	Putting it all together? … You try ….
	Summary
	�Topic: �Problem solving with Recursion�
	Recursion
	Slide Number 3
	“Reference to itself”
	Recursion* – �Computing Definition:
	RECURSION IN COMPUTING
	Recall:�When creating your own function need:
	Recall: Flow of control
	Recursive Problem 1:
	“recursive on all control paths”
	Well defined Recursive Functions
	Well-defined:
	Activations
	Run time Stack
	Recurrence/recursive Tree
	Creating a well-defined version of puzzle();
	Counting how many times puzzle() is called at line 43 for any on-zero num? Let n = num
	Problem 2: A new function passed an integer array and its size�Is function test() well defined?�
	Problem 2: test()�What does the function test() do? �e.g., Check with: test(A,5) as given in main()
	Example 2: Analysis
	General approach to solving problems recursively …
	General Structure�Usually an if/else structure or if/else if/else:�
	Mistakes to Avoid:
	Problem 3 … �already seen in ct103
	Steps for Factorial�int factorial(int n)
	factorial()
	Time Step Analysis
	Problem 4: Fibonacci Sequence�… already seen in CT103
	Why is this an inefficient solution?
	Time Step Analysis
	Considering line 223 in more detAil
	Considering line 223 in more detAil
	Problem 5: Linear Search �(Recursive Solution)
	Recursive idea for linear search:
	Steps:
	Linear Search
	Linear Search – class worK
	Time step analysis of linear search
	Is Big-O of recursive linear search different to that of iterative linear search?
	Problem 6: Binary Search�Recursive version
	Binary Search Time Step Analysis
	Linear and Binary Search Time Step Analysis
	Problem 7: Variation of Binary Search …�What is happening? �Assuming an array of sorted, unique values
	Problem 7: �What is happening?
	Recall problem 2 again: �
	Problem 2 Alternative version …. what’s the difference?�Assume tempsum has value 0 when function first called
	Call with test(A, 5, 0);�A[5] = {2, 4, 6, 8, 10};�
	Summary
	Recursion & Merge Sort
	Recall: RECURSION IN COMPUTING
	Well-defined:
	Problem 5 Linear Search – �Recursive Solution
	Problem 6: Binary Search�Recursive version
	Linear and Binary Search Time Step Analysis
	Problem 7: Variation of Binary Search …�What is happening? �Assuming an array of sorted, unique values
	Problem 7: �What is happening?
	Recall problem 2 again: �
	Problem 2 Alternative version …. what’s the difference?�Assume tempsum has value 0 when function first called
	Call with test(A, 5, 0);�A[5] = {2, 4, 6, 8, 10};�
	A recursive sorting algorithm:�Merge Sort
	Approach:
	Input and Output
	Steps:
	�
	�
	Functions for both Steps:
	mergeSort()an integer array A[]
	How does this progress?�What line does the sorting happen at?
	void merge (int[], int, int, int);
	Recall: Example of merging 2 sorted arrays:
	Recall Code :�to merge two sorted arrays
	Modifications required to previous merge function
	Setting up Indexes and Comparing
	Once comparisons have finished …
	�
	C code
	merge()�Time step analysis
	Complexity Analysis
	How many times?
	Consider first call to mergeSort()�when n = size
	What happens for next 2nd call?�Substitute for f(n)
	What happens for 3rd call?�Again, substitute for f(n)�f(n) = 2 f(𝑛 2) + c n + const�
	Solve for k
	Solve for k�with n = 2 𝑘
	Complexity Analysis Summary	
	Question from exam paper on mergeSort()
	(a) Using some sample data, and with reference to the code line numbers, explain, in your own words, how the mergeSort() function works. (4 marks)�
	(b) Using some sample data, and with reference to the code line numbers, explain, in your own words, how the merge() function works. (4 marks)
	Another Question to consider?
	Iterative versions of�QuickSort and merge sort
	Iterative QuickSort�How to modify the quicksort function to remove the recursive calls?
	What needs to change?
	One approach: Use an additional array to keep track of startval and endval
	How to make sure you are accessing correct pairs?
	To add next pair of values �(if something left to add):
	Combining …
	When to stop?
	Full function
	�
	�
	Analysis
	Question
	Iterative merge sort
	Slide Number 15
	One Approach:
	int currSize; �int lb, mid, ub;
	Putting all this together:
	Example
	Example
	Example
	Summarising:
	Summary
	QuickSort
	menti.com�Code: 7869 6363
	Another “divide and conquer” Recursive Sorting algorithm: quick sort
	Sorting in C�(Outside of CT102 and CT103!)
	Approach: �Sorting values in an integer array arrA[]
	Why does this work?
	Example
	�
	Work done
	Partitioning
	Input and Output
	Partial function:
	Base case
	Reduce
	Choosing pivot value?
	Example:�Consider the following data in an integer array arrA[]
	Partition … one idea …�assuming pivot is stored at arrA[0]
	Example:�Consider the following data in an integer array arrA[] of size 7
	Partition … better idea … “in place partition” - using the same array rather than creating temporary arrays
	Example:�Consider the following data in an integer array arrA[] of size 7
	Steps:
	C code:
	You try … �
	You try … �
	You try … �
	At some stage …. �one of two possibilities:
	1. Not all of the array has been traversed:
	2. i and k have passed each other
	Defining swap()
	partition() code in full:
	Better version?
	Alternative partition�(still using same swap() function)
	Example:�
	Example:�
	Example:�
	Analysis of �partition2()�for one call with array of size N�and startval at 0
	How about full function?�Again assume that array is partitioned evenly
	What happens for next 2nd call?�Substitute for f(n)
	What happens for 3rd call?�Again, substitute for f(n)�f(n) = 2 f(𝑛 2) + c n + const�
	Solving for k …
	As before, solve for k�with n = 2 𝑘
	Note on Performance
	�
	�
	�
	Picking better pivots
	��
	Implementing better pivots?
	Testing:
	RESULTS (comparing with merge sort):
	RESULTS �(comparing with other techniques):
	Hybrid Quick Sort:�Quicksort is often modified so that when the sub-array is small (e.g., size = 10) an algorithm that performs fewer swaps and comparisons is used
	Hybrid Quick Sort:
	Modifications to insertion sort?�what lines need to change and how?�void insertionSort(int[], int);
	Modifications to insertion sort?�what lines need to change and how?�void insertionSort(int[], int);
	Iterative Quick Sort�How to modify the quicksort function to remove the recursive calls? (Next lecture)
	Summary

